Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
2f463a94
Commit
2f463a94
authored
May 25, 2023
by
carlushuang
Browse files
Merge remote-tracking branch 'origin/develop' into stream-k-initial-impl
parents
ca8b5c79
ac9e01e2
Changes
151
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
368 additions
and
182 deletions
+368
-182
library/include/ck/library/reference_tensor_operation/cpu/reference_gemm_bias_activation_add.hpp
...nsor_operation/cpu/reference_gemm_bias_activation_add.hpp
+0
-148
library/include/ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp
...ary/reference_tensor_operation/cpu/reference_pool_fwd.hpp
+345
-0
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm.hpp
...ck/library/tensor_operation_instance/gpu/batched_gemm.hpp
+2
-2
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_add_relu_gemm_add.hpp
...operation_instance/gpu/batched_gemm_add_relu_gemm_add.hpp
+2
-2
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_bias_softmax_gemm_permute.hpp
...n_instance/gpu/batched_gemm_bias_softmax_gemm_permute.hpp
+2
-2
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_gemm.hpp
...brary/tensor_operation_instance/gpu/batched_gemm_gemm.hpp
+2
-2
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_softmax_gemm_permute.hpp
...ration_instance/gpu/batched_gemm_softmax_gemm_permute.hpp
+2
-2
library/include/ck/library/tensor_operation_instance/gpu/contraction_bilinear.hpp
...ry/tensor_operation_instance/gpu/contraction_bilinear.hpp
+0
-2
library/include/ck/library/tensor_operation_instance/gpu/contraction_scale.hpp
...brary/tensor_operation_instance/gpu/contraction_scale.hpp
+0
-2
library/include/ck/library/tensor_operation_instance/gpu/convolution_backward_data.hpp
...nsor_operation_instance/gpu/convolution_backward_data.hpp
+2
-2
library/include/ck/library/tensor_operation_instance/gpu/convolution_forward.hpp
...ary/tensor_operation_instance/gpu/convolution_forward.hpp
+2
-2
library/include/ck/library/tensor_operation_instance/gpu/device_elementwise_instance.hpp
...or_operation_instance/gpu/device_elementwise_instance.hpp
+1
-2
library/include/ck/library/tensor_operation_instance/gpu/device_gemm_mean_squaremean_instance.hpp
...ion_instance/gpu/device_gemm_mean_squaremean_instance.hpp
+1
-1
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
...include/ck/library/tensor_operation_instance/gpu/gemm.hpp
+0
-2
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_add_fastgelu.hpp
...y/tensor_operation_instance/gpu/gemm_add_add_fastgelu.hpp
+0
-2
library/include/ck/library/tensor_operation_instance/gpu/gemm_bilinear.hpp
...k/library/tensor_operation_instance/gpu/gemm_bilinear.hpp
+0
-2
library/include/ck/library/tensor_operation_instance/gpu/gemm_splitk.hpp
.../ck/library/tensor_operation_instance/gpu/gemm_splitk.hpp
+2
-2
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp
...or_operation_instance/gpu/grouped_convolution_forward.hpp
+1
-1
library/include/ck/library/tensor_operation_instance/gpu/grouped_gemm.hpp
...ck/library/tensor_operation_instance/gpu/grouped_gemm.hpp
+2
-2
library/include/ck/library/tensor_operation_instance/gpu/normalization.hpp
...k/library/tensor_operation_instance/gpu/normalization.hpp
+2
-2
No files found.
library/include/ck/library/reference_tensor_operation/cpu/reference_gemm_bias_activation_add.hpp
deleted
100644 → 0
View file @
ca8b5c79
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
host
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
ReferenceGemmBiasActivationAdd
:
public
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_k_n
,
Tensor
<
CDataType
>&
c_m_n
,
const
Tensor
<
CDataType
>&
c0_n
,
const
Tensor
<
CDataType
>&
c1_m_n
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
:
a_m_k_
{
a_m_k
},
b_k_n_
{
b_k_n
},
c_m_n_
{
c_m_n
},
c0_n_
{
c0_n
},
c1_m_n_
{
c1_m_n
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_m_k_
;
const
Tensor
<
BDataType
>&
b_k_n_
;
Tensor
<
CDataType
>&
c_m_n_
;
const
Tensor
<
CDataType
>&
c0_n_
;
const
Tensor
<
CDataType
>&
c1_m_n_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
};
// Invoker
struct
Invoker
:
public
device
::
BaseInvoker
{
using
Argument
=
ReferenceGemmBiasActivationAdd
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_mk_kn_mn
=
[
&
](
auto
m
,
auto
n
)
{
const
int
K
=
arg
.
a_m_k_
.
mDesc
.
GetLengths
()[
1
];
float
v_acc
=
0
;
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
float
v_a
;
float
v_b
;
arg
.
a_element_op_
(
v_a
,
static_cast
<
const
float
>
(
arg
.
a_m_k_
(
m
,
k
)));
arg
.
b_element_op_
(
v_b
,
static_cast
<
const
float
>
(
arg
.
b_k_n_
(
k
,
n
)));
v_acc
+=
v_a
*
v_b
;
}
float
v_c
;
arg
.
c_element_op_
(
v_c
,
v_acc
,
static_cast
<
float
>
(
arg
.
c0_n_
(
n
)),
static_cast
<
float
>
(
arg
.
c1_m_n_
(
m
,
n
)));
arg
.
c_m_n_
(
m
,
n
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_mk_kn_mn
,
arg
.
c_m_n_
.
mDesc
.
GetLengths
()[
0
],
arg
.
c_m_n_
.
mDesc
.
GetLengths
()[
1
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_k_n
,
Tensor
<
CDataType
>&
c_m_n
,
const
Tensor
<
CDataType
>&
c0_n
,
const
Tensor
<
CDataType
>&
c1_m_n
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
a_m_k
,
b_k_n
,
c_m_n
,
c0_n
,
c1_m_n
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceGemmBiasActivationAdd"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace host
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp
0 → 100644
View file @
2f463a94
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include <vector>
#include <algorithm>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
host
{
template
<
index_t
InOutRank
,
index_t
WindowRank
,
typename
InDataType
,
typename
OutDataType
,
typename
ComputeDataType
,
typename
IndexDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
bool
PropagateNan
,
bool
OutputIndex
>
struct
ReferencePoolingFwd
:
public
device
::
BaseOperator
{
using
ReduceOperation
=
typename
ck
::
reduce_binary_operator
<
ReduceOpId
>::
opType
;
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
const
Tensor
<
InDataType
>&
in
,
Tensor
<
OutDataType
>&
out
,
Tensor
<
IndexDataType
>&
out_indices
,
const
std
::
vector
<
ck
::
index_t
>&
window_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
window_strides
,
const
std
::
vector
<
ck
::
index_t
>&
in_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
/*in_right_pads*/
)
:
in_
(
in
),
out_
(
out
),
out_indices_
(
out_indices
),
window_spatial_lengths_
(
window_spatial_lengths
),
window_strides_
(
window_strides
),
in_left_pads_
(
in_left_pads
),
reduceLength_
(
1
)
{
static_for
<
0
,
WindowRank
,
1
>
{}(
[
&
](
auto
I
)
{
reduceLength_
*=
window_spatial_lengths
[
I
];
});
}
const
Tensor
<
InDataType
>&
in_
;
Tensor
<
OutDataType
>&
out_
;
Tensor
<
IndexDataType
>&
out_indices_
;
const
std
::
vector
<
ck
::
index_t
>&
window_spatial_lengths_
;
const
std
::
vector
<
ck
::
index_t
>&
window_strides_
;
const
std
::
vector
<
ck
::
index_t
>&
in_left_pads_
;
int
reduceLength_
;
};
// Invoker
struct
Invoker
:
public
device
::
BaseInvoker
{
float
RunPooling3dFwd
(
const
Argument
&
arg
)
{
auto
elementwise_ops
=
ck
::
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
arg
.
reduceLength_
);
auto
in_elementwise_op
=
std
::
get
<
0
>
(
elementwise_ops
);
auto
acc_elementwise_op
=
std
::
get
<
1
>
(
elementwise_ops
);
if
constexpr
(
!
OutputIndex
)
{
using
Accumulation
=
ck
::
detail
::
AccumulateWithNanCheck
<
PropagateNan
,
ReduceOperation
,
ComputeDataType
>
;
auto
f_ncdhw
=
[
&
](
auto
n
,
auto
c
,
auto
do_
,
auto
ho
,
auto
wo
)
{
auto
accuVal
=
ReduceOperation
::
template
GetIdentityValue
<
ComputeDataType
>();
for
(
ck
::
index_t
z
=
0
;
z
<
arg
.
window_spatial_lengths_
[
0
];
++
z
)
{
ck
::
index_t
di
=
do_
*
arg
.
window_strides_
[
0
]
+
z
-
arg
.
in_left_pads_
[
0
];
for
(
ck
::
index_t
y
=
0
;
y
<
arg
.
window_spatial_lengths_
[
1
];
++
y
)
{
ck
::
index_t
hi
=
ho
*
arg
.
window_strides_
[
1
]
+
y
-
arg
.
in_left_pads_
[
1
];
for
(
ck
::
index_t
x
=
0
;
x
<
arg
.
window_spatial_lengths_
[
2
];
++
x
)
{
ck
::
index_t
wi
=
wo
*
arg
.
window_strides_
[
2
]
+
x
-
arg
.
in_left_pads_
[
2
];
if
(
di
>=
0
&&
di
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
2
])
&&
hi
>=
0
&&
hi
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
3
])
&&
wi
>=
0
&&
wi
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
4
]))
{
ComputeDataType
currVal
=
static_cast
<
ComputeDataType
>
(
arg
.
in_
(
n
,
c
,
di
,
hi
,
wi
));
in_elementwise_op
(
currVal
,
currVal
);
Accumulation
::
Calculate
(
accuVal
,
currVal
);
}
}
}
}
acc_elementwise_op
(
accuVal
,
accuVal
);
arg
.
out_
(
n
,
c
,
do_
,
ho
,
wo
)
=
accuVal
;
};
make_ParallelTensorFunctor
(
f_ncdhw
,
arg
.
out_
.
mDesc
.
GetLengths
()[
0
],
arg
.
out_
.
mDesc
.
GetLengths
()[
1
],
arg
.
out_
.
mDesc
.
GetLengths
()[
2
],
arg
.
out_
.
mDesc
.
GetLengths
()[
3
],
arg
.
out_
.
mDesc
.
GetLengths
()[
4
])(
std
::
thread
::
hardware_concurrency
());
}
else
{
using
Accumulation
=
ck
::
detail
::
AccumulateWithIndexAndNanCheck
<
PropagateNan
,
ReduceOperation
,
ComputeDataType
,
IndexDataType
>
;
auto
f_ncdhw
=
[
&
](
auto
n
,
auto
c
,
auto
do_
,
auto
ho
,
auto
wo
)
{
auto
accuVal
=
ReduceOperation
::
template
GetIdentityValue
<
ComputeDataType
>();
IndexDataType
accuIndex
=
0
;
for
(
ck
::
index_t
z
=
0
;
z
<
arg
.
window_spatial_lengths_
[
0
];
++
z
)
{
ck
::
index_t
di
=
do_
*
arg
.
window_strides_
[
0
]
+
z
-
arg
.
in_left_pads_
[
0
];
for
(
ck
::
index_t
y
=
0
;
y
<
arg
.
window_spatial_lengths_
[
1
];
++
y
)
{
ck
::
index_t
hi
=
ho
*
arg
.
window_strides_
[
1
]
+
y
-
arg
.
in_left_pads_
[
1
];
for
(
ck
::
index_t
x
=
0
;
x
<
arg
.
window_spatial_lengths_
[
2
];
++
x
)
{
ck
::
index_t
wi
=
wo
*
arg
.
window_strides_
[
2
]
+
x
-
arg
.
in_left_pads_
[
2
];
if
(
di
>=
0
&&
di
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
2
])
&&
hi
>=
0
&&
hi
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
3
])
&&
wi
>=
0
&&
wi
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
4
]))
{
ComputeDataType
currVal
=
static_cast
<
ComputeDataType
>
(
arg
.
in_
(
n
,
c
,
di
,
hi
,
wi
));
IndexDataType
currIndex
=
arg
.
in_
.
GetOffsetFromMultiIndex
(
n
,
c
,
di
,
hi
,
wi
);
in_elementwise_op
(
currVal
,
currVal
);
Accumulation
::
Calculate
(
accuVal
,
currVal
,
accuIndex
,
currIndex
);
}
}
}
}
acc_elementwise_op
(
accuVal
,
accuVal
);
arg
.
out_
(
n
,
c
,
do_
,
ho
,
wo
)
=
accuVal
;
arg
.
out_indices_
(
n
,
c
,
do_
,
ho
,
wo
)
=
accuIndex
;
};
make_ParallelTensorFunctor
(
f_ncdhw
,
arg
.
out_
.
mDesc
.
GetLengths
()[
0
],
arg
.
out_
.
mDesc
.
GetLengths
()[
1
],
arg
.
out_
.
mDesc
.
GetLengths
()[
2
],
arg
.
out_
.
mDesc
.
GetLengths
()[
3
],
arg
.
out_
.
mDesc
.
GetLengths
()[
4
])(
std
::
thread
::
hardware_concurrency
());
};
return
0
;
}
float
RunPooling2dFwd
(
const
Argument
&
arg
)
{
auto
elementwise_ops
=
ck
::
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
arg
.
reduceLength_
);
auto
in_elementwise_op
=
std
::
get
<
0
>
(
elementwise_ops
);
auto
acc_elementwise_op
=
std
::
get
<
1
>
(
elementwise_ops
);
if
constexpr
(
!
OutputIndex
)
{
using
Accumulation
=
ck
::
detail
::
AccumulateWithNanCheck
<
PropagateNan
,
ReduceOperation
,
ComputeDataType
>
;
auto
f_nchw
=
[
&
](
auto
n
,
auto
c
,
auto
ho
,
auto
wo
)
{
auto
accuVal
=
ReduceOperation
::
template
GetIdentityValue
<
ComputeDataType
>();
for
(
ck
::
index_t
y
=
0
;
y
<
arg
.
window_spatial_lengths_
[
0
];
++
y
)
{
ck
::
index_t
hi
=
ho
*
arg
.
window_strides_
[
0
]
+
y
-
arg
.
in_left_pads_
[
0
];
for
(
ck
::
index_t
x
=
0
;
x
<
arg
.
window_spatial_lengths_
[
1
];
++
x
)
{
ck
::
index_t
wi
=
wo
*
arg
.
window_strides_
[
1
]
+
x
-
arg
.
in_left_pads_
[
1
];
if
(
hi
>=
0
&&
hi
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
2
])
&&
wi
>=
0
&&
wi
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
3
]))
{
ComputeDataType
currVal
=
static_cast
<
ComputeDataType
>
(
arg
.
in_
(
n
,
c
,
hi
,
wi
));
in_elementwise_op
(
currVal
,
currVal
);
Accumulation
::
Calculate
(
accuVal
,
currVal
);
}
}
}
acc_elementwise_op
(
accuVal
,
accuVal
);
arg
.
out_
(
n
,
c
,
ho
,
wo
)
=
accuVal
;
};
make_ParallelTensorFunctor
(
f_nchw
,
arg
.
out_
.
mDesc
.
GetLengths
()[
0
],
arg
.
out_
.
mDesc
.
GetLengths
()[
1
],
arg
.
out_
.
mDesc
.
GetLengths
()[
2
],
arg
.
out_
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
}
else
{
using
Accumulation
=
ck
::
detail
::
AccumulateWithIndexAndNanCheck
<
PropagateNan
,
ReduceOperation
,
ComputeDataType
,
IndexDataType
>
;
auto
f_nchw
=
[
&
](
auto
n
,
auto
c
,
auto
ho
,
auto
wo
)
{
auto
accuVal
=
ReduceOperation
::
template
GetIdentityValue
<
ComputeDataType
>();
IndexDataType
accuIndex
=
0
;
for
(
ck
::
index_t
y
=
0
;
y
<
arg
.
window_spatial_lengths_
[
0
];
++
y
)
{
ck
::
index_t
hi
=
ho
*
arg
.
window_strides_
[
0
]
+
y
-
arg
.
in_left_pads_
[
0
];
for
(
ck
::
index_t
x
=
0
;
x
<
arg
.
window_spatial_lengths_
[
1
];
++
x
)
{
ck
::
index_t
wi
=
wo
*
arg
.
window_strides_
[
1
]
+
x
-
arg
.
in_left_pads_
[
1
];
if
(
hi
>=
0
&&
hi
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
2
])
&&
wi
>=
0
&&
wi
<
static_cast
<
ck
::
index_t
>
(
arg
.
in_
.
mDesc
.
GetLengths
()[
3
]))
{
ComputeDataType
currVal
=
static_cast
<
ComputeDataType
>
(
arg
.
in_
(
n
,
c
,
hi
,
wi
));
IndexDataType
currIndex
=
arg
.
in_
.
GetOffsetFromMultiIndex
(
n
,
c
,
hi
,
wi
);
in_elementwise_op
(
currVal
,
currVal
);
Accumulation
::
Calculate
(
accuVal
,
currVal
,
accuIndex
,
currIndex
);
}
}
}
acc_elementwise_op
(
accuVal
,
accuVal
);
arg
.
out_
(
n
,
c
,
ho
,
wo
)
=
accuVal
;
arg
.
out_indices_
(
n
,
c
,
ho
,
wo
)
=
accuIndex
;
};
make_ParallelTensorFunctor
(
f_nchw
,
arg
.
out_
.
mDesc
.
GetLengths
()[
0
],
arg
.
out_
.
mDesc
.
GetLengths
()[
1
],
arg
.
out_
.
mDesc
.
GetLengths
()[
2
],
arg
.
out_
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
};
return
0
;
}
float
Run
(
const
Argument
&
arg
)
{
// TODO - support generic pooling
if
constexpr
(
InOutRank
==
5
&&
WindowRank
==
3
)
return
RunPooling3dFwd
(
arg
);
else
if
constexpr
(
InOutRank
==
4
&&
WindowRank
==
2
)
return
RunPooling2dFwd
(
arg
);
else
throw
std
::
runtime_error
(
"Only support pooling3d or pooling2d so far"
);
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
InDataType
>&
in
,
Tensor
<
OutDataType
>&
out
,
Tensor
<
IndexDataType
>&
out_indices
,
const
std
::
vector
<
ck
::
index_t
>&
window_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
window_strides
,
const
std
::
vector
<
ck
::
index_t
>&
in_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
in_right_pads
)
{
return
Argument
{
in
,
out
,
out_indices
,
window_spatial_lengths
,
window_strides
,
in_left_pads
,
in_right_pads
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferencePoolingFwd"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace host
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm.hpp
View file @
2f463a94
...
...
@@ -3,8 +3,8 @@
#pragma once
#include <
cstdlib
>
#include <
vector
>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_add_relu_gemm_add.hpp
View file @
2f463a94
...
...
@@ -3,8 +3,8 @@
#pragma once
#include <
cstdlib
>
#include <
vector
>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_multiple_d_gemm_multiple_d.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_bias_softmax_gemm_permute.hpp
View file @
2f463a94
...
...
@@ -3,8 +3,8 @@
#pragma once
#include <
cstdlib
>
#include <
vector
>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_gemm.hpp
View file @
2f463a94
...
...
@@ -3,8 +3,8 @@
#pragma once
#include <
cstdlib
>
#include <
vector
>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/batched_gemm_softmax_gemm_permute.hpp
View file @
2f463a94
...
...
@@ -3,8 +3,8 @@
#pragma once
#include <
cstdlib
>
#include <
vector
>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/contraction_bilinear.hpp
View file @
2f463a94
...
...
@@ -3,10 +3,8 @@
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/contraction_scale.hpp
View file @
2f463a94
...
...
@@ -3,10 +3,8 @@
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/convolution_backward_data.hpp
View file @
2f463a94
...
...
@@ -3,8 +3,8 @@
#pragma once
#include <
cstdlib
>
#include <
vector
>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_data.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/convolution_forward.hpp
View file @
2f463a94
...
...
@@ -3,8 +3,8 @@
#pragma once
#include <
cstdlib
>
#include <
vector
>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/device_elementwise_instance.hpp
View file @
2f463a94
...
...
@@ -3,8 +3,7 @@
#pragma once
#include <cstdlib>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/device_gemm_mean_squaremean_instance.hpp
View file @
2f463a94
...
...
@@ -4,7 +4,7 @@
#pragma once
#include <cstdlib>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_reduce.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
View file @
2f463a94
...
...
@@ -3,10 +3,8 @@
#pragma once
#include <cstdlib>
#include <memory>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_add_fastgelu.hpp
View file @
2f463a94
...
...
@@ -3,10 +3,8 @@
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/gemm_bilinear.hpp
View file @
2f463a94
...
...
@@ -3,10 +3,8 @@
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/gemm_splitk.hpp
View file @
2f463a94
...
...
@@ -3,8 +3,8 @@
#pragma once
#include <
cstdlib
>
#include <
vector
>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_splitk.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp
View file @
2f463a94
...
...
@@ -4,7 +4,7 @@
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_gemm.hpp
View file @
2f463a94
...
...
@@ -3,8 +3,8 @@
#pragma once
#include <
cstdlib
>
#include <
vector
>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
...
...
library/include/ck/library/tensor_operation_instance/gpu/normalization.hpp
View file @
2f463a94
...
...
@@ -3,8 +3,8 @@
#pragma once
#include <
cstdlib
>
#include <
vector
>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
...
...
Prev
1
2
3
4
5
6
7
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment