Commit 2b27d5fc authored by Chao Liu's avatar Chao Liu
Browse files

Merge remote-tracking branch 'origin/develop' into rosenrodt/gemm-layernorm

parents f689a155 fa9a0a5c
...@@ -71,13 +71,6 @@ if( DEFINED CK_OVERRIDE_HIP_VERSION_PATCH ) ...@@ -71,13 +71,6 @@ if( DEFINED CK_OVERRIDE_HIP_VERSION_PATCH )
endif() endif()
message(STATUS "Build with HIP ${HIP_VERSION}") message(STATUS "Build with HIP ${HIP_VERSION}")
rocm_create_package(
NAME composablekernel
DESCRIPTION "High Performance Composable Kernel for AMD GPUs"
MAINTAINER "MIOpen Kernels Dev Team <dl.MIOpen@amd.com>"
LDCONFIG
)
## tidy ## tidy
include(EnableCompilerWarnings) include(EnableCompilerWarnings)
set(CK_TIDY_ERRORS ERRORS * -readability-inconsistent-declaration-parameter-name) set(CK_TIDY_ERRORS ERRORS * -readability-inconsistent-declaration-parameter-name)
......
...@@ -379,23 +379,23 @@ pipeline { ...@@ -379,23 +379,23 @@ pipeline {
} }
} }
} }
//stage("Client App") stage("Client App")
//{ {
// parallel parallel
// { {
// stage("Run Client App") stage("Run Client App")
// { {
// agent{ label rocmnode("gfx908")} agent{ label rocmnode("gfx908")}
// environment{ environment{
// setup_args = """ -D -DBUILD_DEV=Off -DCMAKE_INSTALL_PREFIX=../install CMAKE_CXX_FLAGS="--offload-arch=gfx908 -O3 " """ setup_args = """ -D -DBUILD_DEV=Off -DCMAKE_INSTALL_PREFIX=../install CMAKE_CXX_FLAGS="--offload-arch=gfx908 -O3 " """
// execute_args = """ cd ../test/client_app && rm -rf build && mkdir build && cd build && cmake -DCMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" .. && make """ execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && cmake -DCMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DCMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc .. && make -j """
// } }
// steps{ steps{
// buildHipClangJobAndReboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local') buildHipClangJobAndReboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local')
// } }
// } }
// } }
//} }
stage("Performance Tests") stage("Performance Tests")
{ {
parallel parallel
......
add_executable(client_gemm_add_add_fastgelu gemm_add_add_fastgelu.cpp)
target_link_libraries(client_gemm_add_add_fastgelu PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/device_gemm_add_add_fastgelu_instance.hpp"
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddAddFastGelu;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using D0DataType = F16;
using D1DataType = F16;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using D0Layout = Row;
using D1Layout = Row;
using ELayout = Row;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideD0 = 0;
ck::index_t StrideD1 = 4096;
ck::index_t StrideE = 4096;
if(argc == 1)
{
// use default case
}
else if(argc == 9)
{
M = std::stoi(argv[1]);
N = std::stoi(argv[2]);
K = std::stoi(argv[3]);
StrideA = std::stoi(argv[4]);
StrideB = std::stoi(argv[5]);
StrideD0 = std::stoi(argv[6]);
StrideD1 = std::stoi(argv[7]);
StrideE = std::stoi(argv[8]);
}
else
{
printf("arg1 to 8: M, N, K, StrideA, StrideB, StrideD0, StrideD1, StrideE\n");
exit(0);
}
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if(std::is_same<Layout, ck::tensor_layout::gemm::RowMajor>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
SimpleDeviceMem a_device_buf(sizeof(ADataType) * f_matrix_space_size(M, K, StrideA, ALayout{}));
SimpleDeviceMem b_device_buf(sizeof(BDataType) * f_matrix_space_size(K, N, StrideB, BLayout{}));
SimpleDeviceMem d0_m_n_device_buf(sizeof(D0DataType) *
f_matrix_space_size(M, N, StrideD0, D0Layout{}));
SimpleDeviceMem d1_m_n_device_buf(sizeof(D1DataType) *
f_matrix_space_size(M, N, StrideD1, D1Layout{}));
SimpleDeviceMem e_device_buf(sizeof(EDataType) * f_matrix_space_size(M, N, StrideE, ELayout{}));
// add device op instances
const auto op_ptrs = ck::tensor_operation::device::device_gemm_instance::
get_device_gemm_add_add_fastgelu_instances<ADataType,
BDataType,
AccDataType,
D0DataType,
D1DataType,
EDataType,
ALayout,
BLayout,
D0Layout,
D1Layout,
ELayout>();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{};
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 2>{d0_m_n_device_buf.GetDeviceBuffer(),
d1_m_n_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, 2>{StrideD0, StrideD1},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(
a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 2>{d0_m_n_device_buf.GetDeviceBuffer(),
d1_m_n_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, 2>{StrideD0, StrideD1},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
}
return 0;
}
add_executable(gemm_add_add_reduce_normalize gemm_add_add_layernorm.cpp)
target_link_libraries(gemm_add_add_reduce_normalize PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_reduce.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/device_elementwise_instance.hpp"
#include "ck/library/tensor_operation_instance/gpu/device_gemm_mean_squaremean_instance.hpp"
using F16 = ck::half_t;
using F32 = float;
using ADataType = F16;
using BDataType = F16;
using BiasDataType = F32;
using CDataType = F16;
using D0DataType = F16;
using ReduceDataType = F32;
using GammaDataType = F16;
using BetaDataType = F16;
using LayerNormOutDataType = F16;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
template <typename gemm_reduce_op_ptr>
bool RunDeviceGemmMeanSquareMean(gemm_reduce_op_ptr& p_op,
const void* p_a,
const void* p_b,
const void* p_bias,
const void* p_d0,
void* p_c,
void* p_mean,
void* p_square_mean,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideC,
int StrideD0,
bool time_kernel)
{
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using UnaryDivElementOp = ck::tensor_operation::element_wise::UnaryDivide;
using UnarySquareElementOp = ck::tensor_operation::element_wise::UnarySquare;
auto passOp = PassThrough{};
auto squareOp = UnarySquareElementOp{};
auto divOp = UnaryDivElementOp{N};
auto argument_ptr =
p_op->MakeArgumentPointer(p_a,
p_b,
p_bias,
{p_d0},
p_c,
{p_mean, p_square_mean},
M,
N,
K,
StrideA,
StrideB,
StrideC,
{StrideD0},
{&passOp, &passOp, &passOp}, // functor for a, b, c
{&passOp}, // functor for d0
{&passOp, &squareOp}, // functor for inputs of reduction
{&divOp, &divOp}); // functor for outputs of reduction
if(p_op->IsSupportedArgument(argument_ptr.get()))
{
auto invoker_ptr = p_op->MakeInvokerPointer();
// If we evaluate running time of gemm_reduce. The output may wrong.
// Because we need to initialize the reduction tensor before runing the kernel.
// However we run kernel many times for time_kernel = trie without reinitialize the out
// of reduction tensor.
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
if(time_kernel)
std::cout << "Gemm + reduce Perf: " << std::setw(10) << ave_time << " ms" << std::endl;
return true;
}
return false;
}
template <typename normalize_op_ptr>
bool RunDeviceNormalize2D(normalize_op_ptr& p_op,
const void* p_x,
const void* p_mean,
const void* p_square_mean,
const void* p_gamma,
const void* p_beta,
void* p_y,
int M,
int N,
int StrideX,
bool time_kernel)
{
std::array<const void*, 5> input = {p_x, p_mean, p_square_mean, p_gamma, p_beta};
std::array<void*, 1> output = {p_y};
auto normalize_functor = ck::tensor_operation::element_wise::Normalize{};
auto argument_ptr = p_op->MakeArgumentPointer(input,
output,
{M, N},
{{StrideX, 1}, {1, 0}, {1, 0}, {0, 1}, {0, 1}},
{{StrideX, 1}},
ck::tensor_operation::element_wise::Normalize{});
if(p_op->IsSupportedArgument(argument_ptr.get()))
{
auto invoker_ptr = p_op->MakeInvokerPointer();
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
if(time_kernel)
std::cout << "Normalize Perf: " << std::setw(10) << ave_time << " ms" << std::endl;
return true;
}
return false;
}
int main()
{
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t K = 1024;
ck::index_t StrideA = 1024;
ck::index_t StrideB = 1024;
ck::index_t StrideC = 1024;
ck::index_t StrideD0 = 1024;
const auto gemm_reduce_ptrs = ck::tensor_operation::device::device_gemm_instance::
get_device_gemm_add_add_mean_squaremean_instances<ADataType,
BDataType,
CDataType,
ALayout,
BLayout,
CLayout>();
const auto normalize_ptrs =
ck::tensor_operation::device::get_device_normalize_from_mean_meansquare_instances<
CDataType,
ReduceDataType,
ReduceDataType,
GammaDataType,
BetaDataType,
LayerNormOutDataType>();
std::cout << "found " << gemm_reduce_ptrs.size()
<< " gemm_reduceMean_reduceSquareMean instances" << std::endl;
std::cout << "found " << normalize_ptrs.size() << " normalize instances" << std::endl;
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if(std::is_same<Layout, ck::tensor_layout::gemm::RowMajor>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
SimpleDeviceMem a_device_buf(sizeof(ADataType) * f_matrix_space_size(M, K, StrideA, ALayout{}));
SimpleDeviceMem b_device_buf(sizeof(BDataType) * f_matrix_space_size(K, N, StrideB, BLayout{}));
SimpleDeviceMem bias_device_buf(sizeof(BiasDataType) * N);
SimpleDeviceMem c_device_buf(sizeof(CDataType) * f_matrix_space_size(M, N, StrideC, CLayout{}));
SimpleDeviceMem d0_device_buf(sizeof(D0DataType) *
f_matrix_space_size(M, N, StrideD0, CLayout{}));
SimpleDeviceMem reduceMean_device_buf(sizeof(ReduceDataType) * M);
SimpleDeviceMem reduceMeanSquare_device_buf(sizeof(ReduceDataType) * M);
SimpleDeviceMem gamma_device_buf(sizeof(GammaDataType) * N);
SimpleDeviceMem beta_device_buf(sizeof(BetaDataType) * N);
SimpleDeviceMem layerNorm_device_buf(sizeof(LayerNormOutDataType) * M * N);
bool b_time_kernel = true;
bool b_only_run_first_kernel = true;
// layernorm => (1) + (2)
// (1). c = gemm(a, b), reduce_mean(c), reduce_square_mean(c)
// (2). normalize(c, mean, square_mean, gamma, beta)
for(auto& gemm_reduce_ptr : gemm_reduce_ptrs)
{
// run first available kernel
if(RunDeviceGemmMeanSquareMean(gemm_reduce_ptr,
a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
bias_device_buf.GetDeviceBuffer(),
d0_device_buf.GetDeviceBuffer(),
c_device_buf.GetDeviceBuffer(),
reduceMean_device_buf.GetDeviceBuffer(),
reduceMeanSquare_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
StrideC,
StrideD0,
b_time_kernel))
{
if(b_only_run_first_kernel)
break;
}
else
{
std::cout << gemm_reduce_ptr->GetTypeString() << " does not support this problem"
<< std::endl;
}
}
for(auto& normalize_ptr : normalize_ptrs)
{
if(RunDeviceNormalize2D(normalize_ptr,
c_device_buf.GetDeviceBuffer(),
reduceMean_device_buf.GetDeviceBuffer(),
reduceMeanSquare_device_buf.GetDeviceBuffer(),
gamma_device_buf.GetDeviceBuffer(),
beta_device_buf.GetDeviceBuffer(),
layerNorm_device_buf.GetDeviceBuffer(),
M,
N,
StrideC,
b_time_kernel))
{
if(b_only_run_first_kernel)
break;
}
else
{
std::cout << normalize_ptr->GetTypeString() << " does not support this problem"
<< std::endl;
}
}
}
\ No newline at end of file
cmake_minimum_required(VERSION 3.15)
project(ck_app)
add_compile_options(-std=c++17)
find_package(composable_kernel 1.0.0 COMPONENTS device_operations)
find_package(hip REQUIRED PATHS /opt/rocm)
message(STATUS "Build with HIP ${hip_VERSION}")
add_subdirectory(02_gemm_add_add_fastgelu)
add_subdirectory(03_gemm_layernorm)
##
Client application links to CK library, and therefore CK library needs to be installed before building client applications.
## Docker script
```bash
docker run \
-it \
--privileged \
--group-add sudo \
-w /root/workspace \
-v ${PATH_TO_LOCAL_WORKSPACE}:/root/workspace \
rocm/tensorflow:rocm5.1-tf2.6-dev \
/bin/bash
```
## Build
```bash
mkdir -p client_example/build
cd client_example/build
```
```bash
cmake \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_PREFIX_PATH=/opt/rocm \
..
```
### Build client example
```bash
make -j
```
...@@ -84,8 +84,13 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle ...@@ -84,8 +84,13 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
8>; // index_t CShuffleBlockTransferScalarPerVector_NPerBlock 8>; // index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// clang-format on // clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host:: using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
ReferenceGemm<float, float, float, float, PassThrough, PassThrough, PassThrough>; BDataType,
CDataType,
AccDataType,
PassThrough,
PassThrough,
PassThrough>;
int main(int argc, char* argv[]) int main(int argc, char* argv[])
{ {
...@@ -216,24 +221,17 @@ int main(int argc, char* argv[]) ...@@ -216,24 +221,17 @@ int main(int argc, char* argv[])
if(do_verification) if(do_verification)
{ {
Tensor<float> a_f32_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{})); Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<float> b_f32_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<float> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<float> c_m_n_device_f32_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
bf16_to_f32_(a_m_k, a_f32_m_k);
bf16_to_f32_(b_k_n, b_f32_k_n);
bf16_to_f32_(c_m_n_device_result, c_m_n_device_f32_result);
auto ref_gemm = ReferenceGemmInstance{}; auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker(); auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument( auto ref_argument = ref_gemm.MakeArgument(
a_f32_m_k, b_f32_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op); a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
return ck::utils::check_err(c_m_n_device_f32_result.mData, c_m_n_host_result.mData) ? 0 : 1; return ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData) ? 0 : 1;
} }
return 0; return 0;
......
...@@ -33,19 +33,19 @@ using BDataType = F16; ...@@ -33,19 +33,19 @@ using BDataType = F16;
using CDataType = F16; using CDataType = F16;
using GemmAccDataType = F32; using GemmAccDataType = F32;
using ReduceAccDataType = F32; using ReduceAccDataType = F32;
using DDataType = F64; using ReduceDataType = F64;
using DPtrsGlobal = ck::Tuple<DDataType*>; using ReducePtrsGlobal = ck::Tuple<ReduceDataType*>;
using ALayout = ck::tensor_layout::gemm::RowMajor; using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor; using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor; using CLayout = ck::tensor_layout::gemm::RowMajor;
using AElementOp = ck::tensor_operation::element_wise::PassThrough; using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough; using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough; using CElementOp = ck::tensor_operation::element_wise::PassThrough;
using DsReduceOp = ck::Tuple<ck::reduce::Max>; using ReduceOps = ck::Tuple<ck::reduce::Max>;
using DsElementOp = ck::Tuple<ck::tensor_operation::element_wise::PassThrough>; using ReduceElementOps = ck::Tuple<ck::tensor_operation::element_wise::PassThrough>;
using DGlobalMemOp = using ReduceGlobalMemOps =
ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicMax>; ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicMax>;
static constexpr auto GemmSpecialization = static constexpr auto GemmSpecialization =
...@@ -53,11 +53,11 @@ static constexpr auto GemmSpecialization = ...@@ -53,11 +53,11 @@ static constexpr auto GemmSpecialization =
// clang-format off // clang-format off
using DeviceGemmReduceInstance = ck::tensor_operation::device::DeviceGemmReduce_Xdl_CShuffle using DeviceGemmReduceInstance = ck::tensor_operation::device::DeviceGemmReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsAccEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy| //######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| ReduceData| A| B| C| Reduce| ReduceInEleOp| ReduceAccEleOp| Reduce| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector| //######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Operation| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock| //######| | | | | | | | | | | Operation| Operation| Operation| | | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | //######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< Row, Col, Row, F16, F16, F16, F32, F32, ReduceAccDataType, DPtrsGlobal, AElementOp, BElementOp, CElementOp, DsReduceOp, DsElementOp, DsElementOp, DGlobalMemOp, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>; < Row, Col, Row, F16, F16, F16, F32, F32, ReduceAccDataType, ReducePtrsGlobal, AElementOp, BElementOp, CElementOp, ReduceOps, ReduceElementOps, ReduceElementOps, ReduceGlobalMemOps, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>;
// clang-format on // clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType, using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
...@@ -68,12 +68,12 @@ using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataTyp ...@@ -68,12 +68,12 @@ using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataTyp
BElementOp, BElementOp,
CElementOp>; CElementOp>;
template <typename ADataType, typename BDataType, typename CDataType, typename DDataType> template <typename ADataType, typename BDataType, typename CDataType, typename ReduceDataType>
void DumpGemmLayerNormPerf(float gemm_reduce_time, int M, int N, int K) void DumpGemmLayerNormPerf(float gemm_reduce_time, int M, int N, int K)
{ {
std::size_t gemm_flop = std::size_t(2) * M * N * K; std::size_t gemm_flop = std::size_t(2) * M * N * K;
std::size_t gemm_num_byte = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + std::size_t gemm_num_byte = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(CDataType) * M * N + sizeof(DDataType) * M; sizeof(CDataType) * M * N + sizeof(ReduceDataType) * M;
float tflops = static_cast<float>(gemm_flop) / 1.E9 / gemm_reduce_time; float tflops = static_cast<float>(gemm_flop) / 1.E9 / gemm_reduce_time;
float gemm_gb_per_sec = gemm_num_byte / 1.E6 / gemm_reduce_time; float gemm_gb_per_sec = gemm_num_byte / 1.E6 / gemm_reduce_time;
...@@ -148,17 +148,17 @@ int main(int argc, char* argv[]) ...@@ -148,17 +148,17 @@ int main(int argc, char* argv[])
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{})); Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{})); Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<DDataType> d_m_host_result( Tensor<ReduceDataType> reduce_m_host_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)}))); HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{})); Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<DDataType> d_m_device_result( Tensor<ReduceDataType> reduce_m_device_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)}))); HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl; std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl; std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl; std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
std::cout << "d_m: " << d_m_host_result.mDesc << std::endl; std::cout << "reduce_m: " << reduce_m_host_result.mDesc << std::endl;
switch(init_method) switch(init_method)
{ {
...@@ -176,35 +176,40 @@ int main(int argc, char* argv[]) ...@@ -176,35 +176,40 @@ int main(int argc, char* argv[])
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace()); DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace()); DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace()); DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
DeviceMem d_device_buf(sizeof(DDataType) * d_m_device_result.mDesc.GetElementSpace()); DeviceMem reduce_device_buf(sizeof(ReduceDataType) *
reduce_m_device_result.mDesc.GetElementSpace());
a_device_buf.ToDevice(a_m_k.mData.data()); a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data()); b_device_buf.ToDevice(b_k_n.mData.data());
auto a_element_op = AElementOp{}; auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{}; auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{}; auto c_element_op = CElementOp{};
auto ds_element_op = DsElementOp{}; auto reduce_element_op = ReduceElementOps{}[ck::Number<0>{}];
auto p_ds_global = ck::make_tuple(static_cast<DDataType*>(d_device_buf.GetDeviceBuffer())); std::array<void*, 3> gemm_element_ops = {&a_element_op, &b_element_op, &c_element_op};
std::array<void*, 1> reduce_element_ops = {&reduce_element_op};
std::array<void*, 1> p_reduces = {reduce_device_buf.GetDeviceBuffer()};
// do GEMM // do GEMM
auto gemm = DeviceGemmReduceInstance{}; auto gemm = DeviceGemmReduceInstance{};
auto invoker = gemm.MakeInvoker(); auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()), auto argument = gemm.MakeArgument(a_device_buf.GetDeviceBuffer(),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()), b_device_buf.GetDeviceBuffer(),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()), nullptr,
p_ds_global, {},
c_device_buf.GetDeviceBuffer(),
p_reduces,
M, M,
N, N,
K, K,
StrideA, StrideA,
StrideB, StrideB,
StrideC, StrideC,
a_element_op, {},
b_element_op, gemm_element_ops,
c_element_op, {},
ds_element_op, reduce_element_ops,
ds_element_op); reduce_element_ops);
if(!gemm.IsSupportedArgument(argument)) if(!gemm.IsSupportedArgument(argument))
{ {
...@@ -215,7 +220,7 @@ int main(int argc, char* argv[]) ...@@ -215,7 +220,7 @@ int main(int argc, char* argv[])
// [CAUSION]: launch_and_time_kernel will not initialize D. // [CAUSION]: launch_and_time_kernel will not initialize D.
// If we evaluate kernel multiple time but without initialize D. Verification will fail // If we evaluate kernel multiple time but without initialize D. Verification will fail
d_device_buf.SetValue(ck::NumericLimits<DDataType>::Lowest()); reduce_device_buf.SetValue(ck::NumericLimits<ReduceDataType>::Lowest());
invoker.Run(argument, StreamConfig{nullptr, false}); invoker.Run(argument, StreamConfig{nullptr, false});
bool pass = true; bool pass = true;
...@@ -223,7 +228,7 @@ int main(int argc, char* argv[]) ...@@ -223,7 +228,7 @@ int main(int argc, char* argv[])
if(do_verification) if(do_verification)
{ {
c_device_buf.FromDevice(c_m_n_device_result.mData.data()); c_device_buf.FromDevice(c_m_n_device_result.mData.data());
d_device_buf.FromDevice(d_m_device_result.mData.data()); reduce_device_buf.FromDevice(reduce_m_device_result.mData.data());
auto ref_gemm = ReferenceGemmInstance{}; auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker(); auto ref_invoker = ref_gemm.MakeInvoker();
...@@ -233,27 +238,27 @@ int main(int argc, char* argv[]) ...@@ -233,27 +238,27 @@ int main(int argc, char* argv[])
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
auto d_reduce_op = DsReduceOp{}[ck::Number<0>{}]; auto reduce_op = ReduceOps{}[ck::Number<0>{}];
for(int m = 0; m < M; ++m) for(int m = 0; m < M; ++m)
{ {
ReduceAccDataType d_acc = d_reduce_op.GetIdentityValue<ReduceAccDataType>(); ReduceAccDataType reduce_acc = reduce_op.GetIdentityValue<ReduceAccDataType>();
for(int n = 0; n < N; ++n) for(int n = 0; n < N; ++n)
{ {
ReduceAccDataType curr_val = ReduceAccDataType curr_val =
ck::type_convert<ReduceAccDataType>(c_m_n_host_result(m, n)); ck::type_convert<ReduceAccDataType>(c_m_n_host_result(m, n));
d_reduce_op(d_acc, curr_val); reduce_op(reduce_acc, curr_val);
}; };
d_m_host_result(m) = d_acc; reduce_m_host_result(m) = reduce_acc;
} }
pass = ck::utils::check_err(c_m_n_device_result.mData, pass = ck::utils::check_err(c_m_n_device_result.mData,
c_m_n_host_result.mData, c_m_n_host_result.mData,
"Error: Incorrect results c") && "Error: Incorrect results c") &&
ck::utils::check_err(d_m_device_result.mData, ck::utils::check_err(reduce_m_device_result.mData,
d_m_host_result.mData, reduce_m_host_result.mData,
"Error: Incorrect results d", "Error: Incorrect results d",
1e-3, 1e-3,
1e-3); 1e-3);
...@@ -263,7 +268,7 @@ int main(int argc, char* argv[]) ...@@ -263,7 +268,7 @@ int main(int argc, char* argv[])
{ {
float gemm_reduceMax_ave_time = invoker.Run(argument, StreamConfig{nullptr, true}); float gemm_reduceMax_ave_time = invoker.Run(argument, StreamConfig{nullptr, true});
DumpGemmLayerNormPerf<ADataType, BDataType, CDataType, DDataType>( DumpGemmLayerNormPerf<ADataType, BDataType, CDataType, ReduceDataType>(
gemm_reduceMax_ave_time, M, N, K); gemm_reduceMax_ave_time, M, N, K);
} }
......
...@@ -33,27 +33,27 @@ using BDataType = F16; ...@@ -33,27 +33,27 @@ using BDataType = F16;
using CDataType = F16; using CDataType = F16;
using GemmAccDataType = F32; using GemmAccDataType = F32;
using ReduceAccDataType = F32; using ReduceAccDataType = F32;
using DDataType = F32; using ReduceDataType = F32;
using DPtrsGlobal = ck::Tuple<DDataType*, DDataType*>; using ReducePtrsGlobal = ck::Tuple<ReduceDataType*, ReduceDataType*>;
using ALayout = ck::tensor_layout::gemm::RowMajor; using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor; using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor; using CLayout = ck::tensor_layout::gemm::RowMajor;
using AElementOp = ck::tensor_operation::element_wise::PassThrough; using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough; using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough; using CElementOp = ck::tensor_operation::element_wise::PassThrough;
using D0ReduceOp = ck::reduce::Add; using ReduceOp0 = ck::reduce::Add;
using D1ReduceOp = ck::reduce::Add; using ReduceOp1 = ck::reduce::Add;
using DxsReduceOp = ck::Tuple<D0ReduceOp, D1ReduceOp>; using ReduceOps = ck::Tuple<ReduceOp0, ReduceOp1>;
using UnaryIdenticElementOp = ck::tensor_operation::element_wise::PassThrough; using UnaryIdenticElementOp = ck::tensor_operation::element_wise::PassThrough;
using UnaryDivElementOp = ck::tensor_operation::element_wise::UnaryDivide; using UnaryDivElementOp = ck::tensor_operation::element_wise::UnaryDivide;
using UnarySquareElementOp = ck::tensor_operation::element_wise::UnarySquare; using UnarySquareElementOp = ck::tensor_operation::element_wise::UnarySquare;
using DxsInElementOps = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>; using ReduceInElementOps = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>;
using DxsOutElementOps = ck::Tuple<UnaryDivElementOp, UnaryDivElementOp>; using ReduceOutElementOps = ck::Tuple<UnaryDivElementOp, UnaryDivElementOp>;
using DGlobalMemOp = using ReduceGlobalMemOps =
ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicAdd, ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicAdd,
ck::InMemoryDataOperationEnum::AtomicAdd>; ck::InMemoryDataOperationEnum::AtomicAdd>;
...@@ -62,11 +62,11 @@ static constexpr auto GemmSpecialization = ...@@ -62,11 +62,11 @@ static constexpr auto GemmSpecialization =
// clang-format off // clang-format off
using DeviceGemmReduceInstance = ck::tensor_operation::device::DeviceGemmReduce_Xdl_CShuffle using DeviceGemmReduceInstance = ck::tensor_operation::device::DeviceGemmReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsAccEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy| //######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| ReduceDData| A| B| C| Reduce| ReduceInEleOp| ReduceOutEleOp| Reduce| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector| //######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Operation| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock| //######| | | | | | | | | | | Operation| Operation| Operation| | | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | //######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< Row, Col, Row, F16, F16, F16, F32, F32, F32, DPtrsGlobal, AElementOp, BElementOp, CElementOp, DxsReduceOp, DxsInElementOps, DxsOutElementOps, DGlobalMemOp, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>; < Row, Col, Row, F16, F16, F16, F32, F32, F32, ReducePtrsGlobal, AElementOp, BElementOp, CElementOp, ReduceOps, ReduceInElementOps, ReduceOutElementOps, ReduceGlobalMemOps, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>;
// clang-format on // clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType, using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
...@@ -77,13 +77,13 @@ using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataTyp ...@@ -77,13 +77,13 @@ using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataTyp
BElementOp, BElementOp,
CElementOp>; CElementOp>;
template <typename ADataType, typename BDataType, typename CDataType, typename DDataType> template <typename ADataType, typename BDataType, typename CDataType, typename ReduceDataType>
void DumpGemmLayerNormPerf(float gemm_reduce_time, int M, int N, int K) void DumpGemmLayerNormPerf(float gemm_reduce_time, int M, int N, int K)
{ {
std::size_t gemm_flop = std::size_t(2) * M * N * K; std::size_t gemm_flop = std::size_t(2) * M * N * K;
std::size_t gemm_num_byte = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + std::size_t gemm_num_byte = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(CDataType) * M * N + sizeof(DDataType) * M + sizeof(CDataType) * M * N + sizeof(ReduceDataType) * M +
sizeof(DDataType) * M; sizeof(ReduceDataType) * M;
float tflops = static_cast<float>(gemm_flop) / 1.E9 / gemm_reduce_time; float tflops = static_cast<float>(gemm_flop) / 1.E9 / gemm_reduce_time;
float gemm_gb_per_sec = gemm_num_byte / 1.E6 / gemm_reduce_time; float gemm_gb_per_sec = gemm_num_byte / 1.E6 / gemm_reduce_time;
...@@ -158,22 +158,22 @@ int main(int argc, char* argv[]) ...@@ -158,22 +158,22 @@ int main(int argc, char* argv[])
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{})); Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{})); Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<DDataType> d0_m_host_result( Tensor<ReduceDataType> reduce0_m_host_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)}))); HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
Tensor<DDataType> d1_m_host_result( Tensor<ReduceDataType> reduce1_m_host_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)}))); HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{})); Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<DDataType> d0_m_device_result( Tensor<ReduceDataType> reduce0_m_device_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)}))); HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
Tensor<DDataType> d1_m_device_result( Tensor<ReduceDataType> reduce1_m_device_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)}))); HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl; std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl; std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl; std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
std::cout << "d0_m: " << d0_m_host_result.mDesc << std::endl; std::cout << "reduce0_m: " << reduce0_m_host_result.mDesc << std::endl;
std::cout << "d1_m: " << d1_m_host_result.mDesc << std::endl; std::cout << "reduce1_m: " << reduce1_m_host_result.mDesc << std::endl;
switch(init_method) switch(init_method)
{ {
...@@ -191,39 +191,48 @@ int main(int argc, char* argv[]) ...@@ -191,39 +191,48 @@ int main(int argc, char* argv[])
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace()); DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace()); DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace()); DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
DeviceMem d0_device_buf(sizeof(DDataType) * d0_m_device_result.mDesc.GetElementSpace()); DeviceMem reduce0_device_buf(sizeof(ReduceDataType) *
DeviceMem d1_device_buf(sizeof(DDataType) * d1_m_device_result.mDesc.GetElementSpace()); reduce0_m_device_result.mDesc.GetElementSpace());
DeviceMem reduce1_device_buf(sizeof(ReduceDataType) *
reduce1_m_device_result.mDesc.GetElementSpace());
a_device_buf.ToDevice(a_m_k.mData.data()); a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data()); b_device_buf.ToDevice(b_k_n.mData.data());
auto a_element_op = AElementOp{}; auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{}; auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{}; auto c_element_op = CElementOp{};
auto dxs_global = ck::make_tuple(static_cast<DDataType*>(d0_device_buf.GetDeviceBuffer()), std::array<void*, 3> gemm_element_ops = {&a_element_op, &b_element_op, &c_element_op};
static_cast<DDataType*>(d1_device_buf.GetDeviceBuffer()));
auto dxs_in_element_op = DxsInElementOps{}; auto passthrough = UnaryIdenticElementOp{};
auto dxs_out_element_op = DxsOutElementOps{N, N}; auto square = UnarySquareElementOp{};
auto div = UnaryDivElementOp{N};
std::array<void*, 2> reduce_in_element_ops = {&passthrough, &square};
std::array<void*, 2> reduce_out_element_ops = {&div, &div};
std::array<void*, 2> p_reduces = {reduce0_device_buf.GetDeviceBuffer(),
reduce1_device_buf.GetDeviceBuffer()};
// do GEMM // do GEMM
auto gemm = DeviceGemmReduceInstance{}; auto gemm = DeviceGemmReduceInstance{};
auto invoker = gemm.MakeInvoker(); auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()), auto argument = gemm.MakeArgument(a_device_buf.GetDeviceBuffer(),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()), b_device_buf.GetDeviceBuffer(),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()), nullptr,
dxs_global, {},
c_device_buf.GetDeviceBuffer(),
p_reduces,
M, M,
N, N,
K, K,
StrideA, StrideA,
StrideB, StrideB,
StrideC, StrideC,
a_element_op, {},
b_element_op, gemm_element_ops,
c_element_op, {},
dxs_in_element_op, reduce_in_element_ops,
dxs_out_element_op); reduce_out_element_ops);
if(!gemm.IsSupportedArgument(argument)) if(!gemm.IsSupportedArgument(argument))
{ {
...@@ -232,9 +241,9 @@ int main(int argc, char* argv[]) ...@@ -232,9 +241,9 @@ int main(int argc, char* argv[])
"not support this GEMM problem"); "not support this GEMM problem");
} }
// init DO, D1 to 0 // init reducetion buffer to 0
d0_device_buf.SetZero(); reduce0_device_buf.SetZero();
d1_device_buf.SetZero(); reduce1_device_buf.SetZero();
// if time_kernel == true, kernel will run multiple times. This kernel use atomic-add so result // if time_kernel == true, kernel will run multiple times. This kernel use atomic-add so result
// will not be correct. need to set time_kernel = false for correctness test // will not be correct. need to set time_kernel = false for correctness test
...@@ -244,8 +253,8 @@ int main(int argc, char* argv[]) ...@@ -244,8 +253,8 @@ int main(int argc, char* argv[])
if(do_verification) if(do_verification)
{ {
c_device_buf.FromDevice(c_m_n_device_result.mData.data()); c_device_buf.FromDevice(c_m_n_device_result.mData.data());
d0_device_buf.FromDevice(d0_m_device_result.mData.data()); reduce0_device_buf.FromDevice(reduce0_m_device_result.mData.data());
d1_device_buf.FromDevice(d1_m_device_result.mData.data()); reduce1_device_buf.FromDevice(reduce1_m_device_result.mData.data());
auto ref_gemm = ReferenceGemmInstance{}; auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker(); auto ref_invoker = ref_gemm.MakeInvoker();
...@@ -255,42 +264,40 @@ int main(int argc, char* argv[]) ...@@ -255,42 +264,40 @@ int main(int argc, char* argv[])
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
auto d0_reduce_op = D0ReduceOp{}; auto reduce0_op = ReduceOp0{};
auto d1_reduce_op = D1ReduceOp{}; auto reduce1_op = ReduceOp1{};
for(int m = 0; m < M; ++m) for(int m = 0; m < M; ++m)
{ {
auto d0_acc = d0_reduce_op.GetIdentityValue<ReduceAccDataType>(); auto reduce0_acc = reduce0_op.GetIdentityValue<ReduceAccDataType>();
auto d1_acc = d1_reduce_op.GetIdentityValue<ReduceAccDataType>(); auto reduce1_acc = reduce1_op.GetIdentityValue<ReduceAccDataType>();
for(int n = 0; n < N; ++n) for(int n = 0; n < N; ++n)
{ {
auto c_val = ck::type_convert<ReduceAccDataType>(c_m_n_host_result(m, n)); auto c_val = ck::type_convert<ReduceAccDataType>(c_m_n_host_result(m, n));
ReduceAccDataType d0_val; ReduceAccDataType square_c_val;
ReduceAccDataType d1_val; square(square_c_val, c_val);
dxs_in_element_op(ck::Number<0>{})(d0_val, c_val); reduce0_op(reduce0_acc, c_val);
dxs_in_element_op(ck::Number<1>{})(d1_val, c_val); reduce1_op(reduce1_acc, square_c_val);
d0_reduce_op(d0_acc, d0_val);
d1_reduce_op(d1_acc, d1_val);
} }
dxs_out_element_op(ck::Number<0>{})(d0_acc, d0_acc); div(reduce0_acc, reduce0_acc);
dxs_out_element_op(ck::Number<1>{})(d1_acc, d1_acc); div(reduce1_acc, reduce1_acc);
d0_m_host_result(m) = ck::type_convert<DDataType>(d0_acc); reduce0_m_host_result(m) = ck::type_convert<ReduceDataType>(reduce0_acc);
d1_m_host_result(m) = ck::type_convert<DDataType>(d1_acc); reduce1_m_host_result(m) = ck::type_convert<ReduceDataType>(reduce1_acc);
} }
pass = ck::utils::check_err(c_m_n_device_result.mData, pass = ck::utils::check_err(c_m_n_device_result.mData,
c_m_n_host_result.mData, c_m_n_host_result.mData,
"Error: Incorrect results c") && "Error: Incorrect results c") &&
ck::utils::check_err(d0_m_device_result.mData, ck::utils::check_err(reduce0_m_device_result.mData,
d0_m_host_result.mData, reduce0_m_host_result.mData,
"Error: Incorrect results d0", "Error: Incorrect results d0",
1e-4, 1e-4,
1e-5) && 1e-5) &&
ck::utils::check_err(d1_m_device_result.mData, ck::utils::check_err(reduce1_m_device_result.mData,
d1_m_host_result.mData, reduce1_m_host_result.mData,
"Error: Incorrect results d1", "Error: Incorrect results d1",
1e-3, 1e-3,
1e-5); 1e-5);
...@@ -300,7 +307,7 @@ int main(int argc, char* argv[]) ...@@ -300,7 +307,7 @@ int main(int argc, char* argv[])
{ {
float ave_time = invoker.Run(argument, StreamConfig{nullptr, true}); float ave_time = invoker.Run(argument, StreamConfig{nullptr, true});
DumpGemmLayerNormPerf<ADataType, BDataType, CDataType, DDataType>(ave_time, M, N, K); DumpGemmLayerNormPerf<ADataType, BDataType, CDataType, ReduceDataType>(ave_time, M, N, K);
} }
return pass ? 0 : 1; return pass ? 0 : 1;
......
...@@ -31,26 +31,26 @@ using ADataType = F16; ...@@ -31,26 +31,26 @@ using ADataType = F16;
using BDataType = F16; using BDataType = F16;
using CDataType = F16; using CDataType = F16;
using ReduceAccDataType = F32; using ReduceAccDataType = F32;
using DDataType = F32; using ReduceDataType = F32;
using DPtrsGlobal = ck::Tuple<DDataType*, DDataType*>; using ReducePtrsGlobal = ck::Tuple<ReduceDataType*, ReduceDataType*>;
using ALayout = ck::tensor_layout::gemm::RowMajor; using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor; using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor; using CLayout = ck::tensor_layout::gemm::RowMajor;
using AElementOp = ck::tensor_operation::element_wise::PassThrough; using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough; using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough; using CElementOp = ck::tensor_operation::element_wise::PassThrough;
using D0ReduceOp = ck::reduce::Add; using ReduceOp0 = ck::reduce::Add;
using D1ReduceOp = ck::reduce::Add; using ReduceOp1 = ck::reduce::Add;
using DxsReduceOp = ck::Tuple<D0ReduceOp, D1ReduceOp>; using ReduceOps = ck::Tuple<ReduceOp0, ReduceOp1>;
using UnaryIdenticElementOp = ck::tensor_operation::element_wise::PassThrough; using UnaryIdenticElementOp = ck::tensor_operation::element_wise::PassThrough;
using UnarySquareElementOp = ck::tensor_operation::element_wise::UnarySquare; using UnarySquareElementOp = ck::tensor_operation::element_wise::UnarySquare;
using DxsInElementOps = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>; using ReduceInElementOps = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>;
using DxsOutElementOps = ck::Tuple<UnaryIdenticElementOp, UnaryIdenticElementOp>; using ReduceOutElementOps = ck::Tuple<UnaryIdenticElementOp, UnaryIdenticElementOp>;
using DGlobalMemOp = using ReduceGlobalMemOps =
ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicAdd, ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicAdd,
ck::InMemoryDataOperationEnum::AtomicAdd>; ck::InMemoryDataOperationEnum::AtomicAdd>;
...@@ -63,7 +63,7 @@ using DeviceBatchedGemmReduceInstance = ck::tensor_operation::device::DeviceBatc ...@@ -63,7 +63,7 @@ using DeviceBatchedGemmReduceInstance = ck::tensor_operation::device::DeviceBatc
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector| //######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock| //######| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | //######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< Row, Col, Row, F16, F16, F16, F32, F32, F32, DPtrsGlobal, AElementOp, BElementOp, CElementOp, DxsReduceOp, DxsInElementOps, DxsOutElementOps, DGlobalMemOp, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>; < Row, Col, Row, F16, F16, F16, F32, F32, F32, ReducePtrsGlobal, AElementOp, BElementOp, CElementOp, ReduceOps, ReduceInElementOps, ReduceOutElementOps, ReduceGlobalMemOps, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>;
// clang-format on // clang-format on
using ReferenceBatchedGemmInstance = ck::tensor_operation::host:: using ReferenceBatchedGemmInstance = ck::tensor_operation::host::
...@@ -143,16 +143,16 @@ int main(int argc, char* argv[]) ...@@ -143,16 +143,16 @@ int main(int argc, char* argv[])
Tensor<CDataType> c_g_m_n_host_result( Tensor<CDataType> c_g_m_n_host_result(
f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{})); f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
Tensor<DDataType> d0_g_m_host_result(HostTensorDescriptor(std::vector<std::size_t>( Tensor<ReduceDataType> d0_g_m_host_result(HostTensorDescriptor(std::vector<std::size_t>(
{static_cast<std::size_t>(BatchCount), static_cast<std::size_t>(M)}))); {static_cast<std::size_t>(BatchCount), static_cast<std::size_t>(M)})));
Tensor<DDataType> d1_g_m_host_result(HostTensorDescriptor(std::vector<std::size_t>( Tensor<ReduceDataType> d1_g_m_host_result(HostTensorDescriptor(std::vector<std::size_t>(
{static_cast<std::size_t>(BatchCount), static_cast<std::size_t>(M)}))); {static_cast<std::size_t>(BatchCount), static_cast<std::size_t>(M)})));
Tensor<CDataType> c_g_m_n_device_result( Tensor<CDataType> c_g_m_n_device_result(
f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{})); f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
Tensor<DDataType> d0_g_m_device_result(HostTensorDescriptor(std::vector<std::size_t>( Tensor<ReduceDataType> d0_g_m_device_result(HostTensorDescriptor(std::vector<std::size_t>(
{static_cast<std::size_t>(BatchCount), static_cast<std::size_t>(M)}))); {static_cast<std::size_t>(BatchCount), static_cast<std::size_t>(M)})));
Tensor<DDataType> d1_g_m_device_result(HostTensorDescriptor(std::vector<std::size_t>( Tensor<ReduceDataType> d1_g_m_device_result(HostTensorDescriptor(std::vector<std::size_t>(
{static_cast<std::size_t>(BatchCount), static_cast<std::size_t>(M)}))); {static_cast<std::size_t>(BatchCount), static_cast<std::size_t>(M)})));
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl; std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
...@@ -177,38 +177,48 @@ int main(int argc, char* argv[]) ...@@ -177,38 +177,48 @@ int main(int argc, char* argv[])
DeviceMem a_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpace()); DeviceMem a_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_g_k_n.mDesc.GetElementSpace()); DeviceMem b_device_buf(sizeof(BDataType) * b_g_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_g_m_n_device_result.mDesc.GetElementSpace()); DeviceMem c_device_buf(sizeof(CDataType) * c_g_m_n_device_result.mDesc.GetElementSpace());
DeviceMem d0_device_buf(sizeof(DDataType) * d0_g_m_device_result.mDesc.GetElementSpace()); DeviceMem reduce0_device_buf(sizeof(ReduceDataType) *
DeviceMem d1_device_buf(sizeof(DDataType) * d1_g_m_device_result.mDesc.GetElementSpace()); d0_g_m_device_result.mDesc.GetElementSpace());
DeviceMem reduce1_device_buf(sizeof(ReduceDataType) *
d1_g_m_device_result.mDesc.GetElementSpace());
a_device_buf.ToDevice(a_g_m_k.mData.data()); a_device_buf.ToDevice(a_g_m_k.mData.data());
b_device_buf.ToDevice(b_g_k_n.mData.data()); b_device_buf.ToDevice(b_g_k_n.mData.data());
auto a_element_op = AElementOp{}; auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{}; auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{}; auto c_element_op = CElementOp{};
auto dxs_global = ck::make_tuple(static_cast<DDataType*>(d0_device_buf.GetDeviceBuffer()), std::array<void*, 3> gemm_element_ops = {&a_element_op, &b_element_op, &c_element_op};
static_cast<DDataType*>(d1_device_buf.GetDeviceBuffer()));
auto passthrough = UnaryIdenticElementOp{};
auto square = UnarySquareElementOp{};
std::array<void*, 2> reduce_in_element_ops = {&passthrough, &square};
std::array<void*, 2> reduce_out_element_ops = {&passthrough, &passthrough};
std::array<void*, 2> p_reduces = {reduce0_device_buf.GetDeviceBuffer(),
reduce1_device_buf.GetDeviceBuffer()};
// do GEMM // do GEMM
auto batched_gemm = DeviceBatchedGemmReduceInstance{}; auto batched_gemm = DeviceBatchedGemmReduceInstance{};
auto invoker = batched_gemm.MakeInvoker(); auto invoker = batched_gemm.MakeInvoker();
auto argument = auto argument = batched_gemm.MakeArgument(a_device_buf.GetDeviceBuffer(),
batched_gemm.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()), b_device_buf.GetDeviceBuffer(),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()), nullptr,
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()), {},
dxs_global, c_device_buf.GetDeviceBuffer(),
M, p_reduces,
N, M,
K, N,
StrideA, K,
StrideB, StrideA,
StrideC, StrideB,
a_element_op, StrideC,
b_element_op, {},
c_element_op, gemm_element_ops,
DxsInElementOps{}, {},
DxsOutElementOps{}, reduce_in_element_ops,
BatchCount); reduce_out_element_ops,
BatchCount);
if(!batched_gemm.IsSupportedArgument(argument)) if(!batched_gemm.IsSupportedArgument(argument))
{ {
...@@ -218,8 +228,8 @@ int main(int argc, char* argv[]) ...@@ -218,8 +228,8 @@ int main(int argc, char* argv[])
} }
// init DO, D1 to 0 // init DO, D1 to 0
d0_device_buf.SetZero(); reduce0_device_buf.SetZero();
d1_device_buf.SetZero(); reduce1_device_buf.SetZero();
// if time_kernel == true, kernel will run multiple times. This kernel use atomic-add so result // if time_kernel == true, kernel will run multiple times. This kernel use atomic-add so result
// will not be correct. need to set time_kernel = false for correctness test // will not be correct. need to set time_kernel = false for correctness test
...@@ -241,8 +251,8 @@ int main(int argc, char* argv[]) ...@@ -241,8 +251,8 @@ int main(int argc, char* argv[])
if(do_verification) if(do_verification)
{ {
c_device_buf.FromDevice(c_g_m_n_device_result.mData.data()); c_device_buf.FromDevice(c_g_m_n_device_result.mData.data());
d0_device_buf.FromDevice(d0_g_m_device_result.mData.data()); reduce0_device_buf.FromDevice(d0_g_m_device_result.mData.data());
d1_device_buf.FromDevice(d1_g_m_device_result.mData.data()); reduce1_device_buf.FromDevice(d1_g_m_device_result.mData.data());
auto ref_batched_gemm = ReferenceBatchedGemmInstance{}; auto ref_batched_gemm = ReferenceBatchedGemmInstance{};
auto ref_invoker = ref_batched_gemm.MakeInvoker(); auto ref_invoker = ref_batched_gemm.MakeInvoker();
...@@ -252,15 +262,15 @@ int main(int argc, char* argv[]) ...@@ -252,15 +262,15 @@ int main(int argc, char* argv[])
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
auto d0_reduce_op = D0ReduceOp{}; auto reduce0_op = ReduceOp0{};
auto d1_reduce_op = D1ReduceOp{}; auto reduce1_op = ReduceOp1{};
for(int batch = 0; batch < BatchCount; ++batch) for(int batch = 0; batch < BatchCount; ++batch)
{ {
for(int m = 0; m < M; ++m) for(int m = 0; m < M; ++m)
{ {
auto d0_acc = d0_reduce_op.GetIdentityValue<ReduceAccDataType>(); auto reduce0_acc = reduce0_op.GetIdentityValue<ReduceAccDataType>();
auto d1_acc = d1_reduce_op.GetIdentityValue<ReduceAccDataType>(); auto reduce1_acc = reduce1_op.GetIdentityValue<ReduceAccDataType>();
for(int n = 0; n < N; ++n) for(int n = 0; n < N; ++n)
{ {
...@@ -271,12 +281,12 @@ int main(int argc, char* argv[]) ...@@ -271,12 +281,12 @@ int main(int argc, char* argv[])
UnaryIdenticElementOp{}(d0_val, c_val); UnaryIdenticElementOp{}(d0_val, c_val);
UnarySquareElementOp{}(d1_val, c_val); UnarySquareElementOp{}(d1_val, c_val);
d0_reduce_op(d0_acc, d0_val); reduce0_op(reduce0_acc, d0_val);
d1_reduce_op(d1_acc, d1_val); reduce1_op(reduce1_acc, d1_val);
} }
d0_g_m_host_result(batch, m) = ck::type_convert<DDataType>(d0_acc); d0_g_m_host_result(batch, m) = ck::type_convert<ReduceDataType>(reduce0_acc);
d1_g_m_host_result(batch, m) = ck::type_convert<DDataType>(d1_acc); d1_g_m_host_result(batch, m) = ck::type_convert<ReduceDataType>(reduce1_acc);
} }
} }
......
...@@ -99,15 +99,17 @@ int main() ...@@ -99,15 +99,17 @@ int main()
a_m_n_device_buf.ToDevice(a_m_n.mData.data()); a_m_n_device_buf.ToDevice(a_m_n.mData.data());
b_n_device_buf.ToDevice(b_n.mData.data()); b_n_device_buf.ToDevice(b_n.mData.data());
std::array<const void*, 2> input = {a_m_n_device_buf.GetDeviceBuffer(),
b_n_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {c_m_n_device_buf.GetDeviceBuffer()};
std::vector<ck::index_t> a_strides = {Stride, 1};
std::vector<ck::index_t> b_strides = {0, 1};
std::vector<ck::index_t> c_strides = {Stride, 1};
auto broadcastAdd = DeviceElementwiseAddInstance{}; auto broadcastAdd = DeviceElementwiseAddInstance{};
auto argument = broadcastAdd.MakeArgumentPointer(a_m_n_device_buf.GetDeviceBuffer(), auto argument = broadcastAdd.MakeArgumentPointer(
b_n_device_buf.GetDeviceBuffer(), input, output, {M, N}, {a_strides, b_strides}, {c_strides}, Add{});
c_m_n_device_buf.GetDeviceBuffer(),
{M, N},
{Stride, 1},
{0, 1}, // broadcast in first dimension
{Stride, 1},
Add{});
if(!broadcastAdd.IsSupportedArgument(argument.get())) if(!broadcastAdd.IsSupportedArgument(argument.get()))
{ {
......
...@@ -81,18 +81,24 @@ int main() ...@@ -81,18 +81,24 @@ int main()
a_m_device_buf.ToDevice(a_m.mData.data()); a_m_device_buf.ToDevice(a_m.mData.data());
b_m_n_k_device_buf.ToDevice(b_m_n_k.mData.data()); b_m_n_k_device_buf.ToDevice(b_m_n_k.mData.data());
std::array<const void*, 2> input = {a_m_device_buf.GetDeviceBuffer(),
b_m_n_k_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {c_m_n_k_device_buf.GetDeviceBuffer()};
std::vector<ck::index_t> a_strides = {1, 0, 0};
std::vector<ck::index_t> b_strides{b_m_n_k.mDesc.GetStrides().begin(),
b_m_n_k.mDesc.GetStrides().end()};
std::vector<ck::index_t> c_strides{c_m_n_k.mDesc.GetStrides().begin(),
c_m_n_k.mDesc.GetStrides().end()};
auto broadcastAdd = DeviceElementwiseAddInstance{}; auto broadcastAdd = DeviceElementwiseAddInstance{};
auto argument = broadcastAdd.MakeArgumentPointer( auto argument =
a_m_device_buf.GetDeviceBuffer(), broadcastAdd.MakeArgumentPointer(input,
b_m_n_k_device_buf.GetDeviceBuffer(), output,
c_m_n_k_device_buf.GetDeviceBuffer(), std::vector<ck::index_t>{mnk.begin(), mnk.end()},
std::vector<ck::index_t>{mnk.begin(), mnk.end()}, {a_strides, b_strides},
{1, 0, 0}, // broadcast A on second and third dimension {c_strides},
std::vector<ck::index_t>{b_m_n_k.mDesc.GetStrides().begin(), Add{});
b_m_n_k.mDesc.GetStrides().end()},
std::vector<ck::index_t>{c_m_n_k.mDesc.GetStrides().begin(),
c_m_n_k.mDesc.GetStrides().end()},
Add{});
if(!broadcastAdd.IsSupportedArgument(argument.get())) if(!broadcastAdd.IsSupportedArgument(argument.get()))
{ {
......
...@@ -79,15 +79,17 @@ int main() ...@@ -79,15 +79,17 @@ int main()
a_m_device_buf.ToDevice(a_m.mData.data()); a_m_device_buf.ToDevice(a_m.mData.data());
b_m_device_buf.ToDevice(b_m.mData.data()); b_m_device_buf.ToDevice(b_m.mData.data());
std::array<const void*, 2> input = {a_m_device_buf.GetDeviceBuffer(),
b_m_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {c_m_device_buf.GetDeviceBuffer()};
std::vector<ck::index_t> a_strides = {1};
std::vector<ck::index_t> b_strides = {1};
std::vector<ck::index_t> c_strides = {1};
auto broadcastAdd = DeviceElementwiseAddInstance{}; auto broadcastAdd = DeviceElementwiseAddInstance{};
auto argument = broadcastAdd.MakeArgumentPointer(a_m_device_buf.GetDeviceBuffer(), auto argument = broadcastAdd.MakeArgumentPointer(
b_m_device_buf.GetDeviceBuffer(), input, output, {M}, {{a_strides}, b_strides}, {c_strides}, Add{});
c_m_device_buf.GetDeviceBuffer(),
{M},
{1},
{1},
{1},
Add{});
if(!broadcastAdd.IsSupportedArgument(argument.get())) if(!broadcastAdd.IsSupportedArgument(argument.get()))
{ {
......
...@@ -81,16 +81,22 @@ int main() ...@@ -81,16 +81,22 @@ int main()
a_device_buf.ToDevice(a.mData.data()); a_device_buf.ToDevice(a.mData.data());
b_device_buf.ToDevice(b.mData.data()); b_device_buf.ToDevice(b.mData.data());
std::array<const void*, 2> input = {a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {c_device_buf.GetDeviceBuffer()};
std::vector<ck::index_t> a_strides{a.mDesc.GetStrides().begin(), a.mDesc.GetStrides().end()};
std::vector<ck::index_t> b_strides{b.mDesc.GetStrides().begin(), b.mDesc.GetStrides().end()};
std::vector<ck::index_t> c_strides{c.mDesc.GetStrides().begin(), c.mDesc.GetStrides().end()};
auto broadcastAdd = DeviceElementwiseAddInstance{}; auto broadcastAdd = DeviceElementwiseAddInstance{};
auto argument = broadcastAdd.MakeArgumentPointer( auto argument =
a_device_buf.GetDeviceBuffer(), broadcastAdd.MakeArgumentPointer(input,
b_device_buf.GetDeviceBuffer(), output,
c_device_buf.GetDeviceBuffer(), std::vector<ck::index_t>{nchw.begin(), nchw.end()},
std::vector<ck::index_t>{nchw.begin(), nchw.end()}, {{a_strides}, b_strides},
std::vector<ck::index_t>{a.mDesc.GetStrides().begin(), a.mDesc.GetStrides().end()}, {c_strides},
std::vector<ck::index_t>{b.mDesc.GetStrides().begin(), b.mDesc.GetStrides().end()}, Add{});
std::vector<ck::index_t>{c.mDesc.GetStrides().begin(), c.mDesc.GetStrides().end()},
Add{});
if(!broadcastAdd.IsSupportedArgument(argument.get())) if(!broadcastAdd.IsSupportedArgument(argument.get()))
{ {
......
...@@ -31,12 +31,12 @@ using Col = ck::tensor_layout::gemm::ColumnMajor; ...@@ -31,12 +31,12 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
using ADataType = F16; using ADataType = F16;
using BDataType = F16; using BDataType = F16;
using CDataType = F16; using CDataType = F16;
using C0DataType = F32; using BiasDataType = F32;
using C1DataType = F16; using D0DataType = F16;
using GemmAccDataType = F32; using GemmAccDataType = F32;
using ReduceAccDataType = F32; using ReduceAccDataType = F32;
using DDataType = F32; using ReduceDataType = F32;
using DPtrsGlobal = ck::Tuple<DDataType*, DDataType*>; using ReducePtrsGlobal = ck::Tuple<ReduceDataType*, ReduceDataType*>;
using GammaDataType = F16; using GammaDataType = F16;
using BetaDataType = F16; using BetaDataType = F16;
using LayerNormOutDataType = F16; using LayerNormOutDataType = F16;
...@@ -50,17 +50,17 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough; ...@@ -50,17 +50,17 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AElementOp = PassThrough; using AElementOp = PassThrough;
using BElementOp = PassThrough; using BElementOp = PassThrough;
using CElementOp = ck::tensor_operation::element_wise::Relu; using CElementOp = ck::tensor_operation::element_wise::Relu;
using C1ElementOp = PassThrough; using D0ElementOp = PassThrough;
using ReduceSumOp = ck::reduce::Add; using ReduceSumOp = ck::reduce::Add;
using DxsReduceOp = ck::Tuple<ReduceSumOp, ReduceSumOp>; using ReduceOps = ck::Tuple<ReduceSumOp, ReduceSumOp>;
using UnaryIdenticElementOp = ck::tensor_operation::element_wise::PassThrough; using UnaryIdenticElementOp = ck::tensor_operation::element_wise::PassThrough;
using UnaryDivElementOp = ck::tensor_operation::element_wise::UnaryDivide; using UnaryDivElementOp = ck::tensor_operation::element_wise::UnaryDivide;
using UnarySquareElementOp = ck::tensor_operation::element_wise::UnarySquare; using UnarySquareElementOp = ck::tensor_operation::element_wise::UnarySquare;
using DxsInElementOps = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>; using ReduceInElementOps = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>;
using DxsOutElementOps = ck::Tuple<UnaryDivElementOp, UnaryDivElementOp>; using ReduceOutElementOps = ck::Tuple<UnaryDivElementOp, UnaryDivElementOp>;
using DxsGlobalMemOp = using ReduceGlobalMemOps =
ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicAdd, ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicAdd,
ck::InMemoryDataOperationEnum::AtomicAdd>; ck::InMemoryDataOperationEnum::AtomicAdd>;
...@@ -69,11 +69,11 @@ static constexpr auto GemmSpecialization = ...@@ -69,11 +69,11 @@ static constexpr auto GemmSpecialization =
// clang-format off // clang-format off
using DeviceGemmBiasAddReduceInstance = ck::tensor_operation::device::DeviceGemmBiasAddReduce_Xdl_CShuffle using DeviceGemmBiasAddReduceInstance = ck::tensor_operation::device::DeviceGemmBiasAddReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData|C0Data|C1Data| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| C1| Dxs| DxsInEleOp| DxsAccEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy| //######| ALayout| BLayout| CLayout|AData| BData| CData|C0Data|C1Data| GemmAcc| CShuffle| ReduceAcc| ReduceData| A| B| C| C1| Reduce| ReduceInEleOp| ReduceAccEleOp| Reduce| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector| //######| | | | Type| Type| Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Elementwise| Operation| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock| //######| | | | | | | | | | | | | Operation| Operation| Operation| Operation| | | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | //######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< Row, Col, Row, F16, F16, F16, F32, F16, F32, F32, F32, DPtrsGlobal, AElementOp, BElementOp, CElementOp, C1ElementOp, DxsReduceOp, DxsInElementOps, DxsOutElementOps, DxsGlobalMemOp, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>; < Row, Col, Row, F16, F16, F16, F32, F16, F32, F32, F32, ReducePtrsGlobal, AElementOp, BElementOp, CElementOp, D0ElementOp, ReduceOps,ReduceInElementOps, ReduceOutElementOps, ReduceGlobalMemOps, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>;
// clang-format on // clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType, using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
...@@ -89,8 +89,8 @@ using NormalizeFunctor = ck::tensor_operation::element_wise::Normalize; ...@@ -89,8 +89,8 @@ using NormalizeFunctor = ck::tensor_operation::element_wise::Normalize;
// A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y // A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y
using DeviceNormalizeInstance = using DeviceNormalizeInstance =
ck::tensor_operation::device::Device5AryElementwise<CDataType, ck::tensor_operation::device::Device5AryElementwise<CDataType,
DDataType, ReduceDataType,
DDataType, ReduceDataType,
GammaDataType, GammaDataType,
BetaDataType, BetaDataType,
LayerNormOutDataType, LayerNormOutDataType,
...@@ -125,10 +125,10 @@ auto f_host_tensor_descriptor2d = ...@@ -125,10 +125,10 @@ auto f_host_tensor_descriptor2d =
}; };
template <typename CDataType, template <typename CDataType,
typename DDataType, typename ReduceDataType,
typename AccDataType, typename AccDataType,
typename C0DataType, typename BiasDataType,
typename C1DataType, typename D0DataType,
typename A_functor, typename A_functor,
typename B_functor, typename B_functor,
typename C_functor, typename C_functor,
...@@ -136,8 +136,8 @@ template <typename CDataType, ...@@ -136,8 +136,8 @@ template <typename CDataType,
void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n, void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
const Tensor<ADataType>& a_m_k, const Tensor<ADataType>& a_m_k,
const Tensor<ADataType>& b_k_n, const Tensor<ADataType>& b_k_n,
const Tensor<C0DataType>& bias_n, const Tensor<BiasDataType>& bias_n,
const Tensor<C1DataType>& c1_m_n, const Tensor<D0DataType>& c1_m_n,
const Tensor<GammaDataType>& gamma_n, const Tensor<GammaDataType>& gamma_n,
const Tensor<GammaDataType>& beta_n, const Tensor<GammaDataType>& beta_n,
A_functor a_element_op, A_functor a_element_op,
...@@ -150,8 +150,8 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n, ...@@ -150,8 +150,8 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
int StrideC = N; int StrideC = N;
Tensor<CDataType> c_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{})); Tensor<CDataType> c_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
Tensor<DDataType> mean_m(f_host_tensor_descriptor1d(M, 1)); Tensor<ReduceDataType> mean_m(f_host_tensor_descriptor1d(M, 1));
Tensor<DDataType> meanSquare_m(f_host_tensor_descriptor1d(M, 1)); Tensor<ReduceDataType> meanSquare_m(f_host_tensor_descriptor1d(M, 1));
auto averageOpInst = UnaryDivElementOp{N}; auto averageOpInst = UnaryDivElementOp{N};
auto ref_gemm = ReferenceGemmInstance{}; auto ref_gemm = ReferenceGemmInstance{};
...@@ -196,8 +196,8 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n, ...@@ -196,8 +196,8 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
averageOpInst(mean_acc, mean_acc); averageOpInst(mean_acc, mean_acc);
averageOpInst(square_mean_acc, square_mean_acc); averageOpInst(square_mean_acc, square_mean_acc);
mean_m(m) = ck::type_convert<DDataType>(mean_acc); mean_m(m) = ck::type_convert<ReduceDataType>(mean_acc);
meanSquare_m(m) = ck::type_convert<DDataType>(square_mean_acc); meanSquare_m(m) = ck::type_convert<ReduceDataType>(square_mean_acc);
} }
// LayerNorm // LayerNorm
...@@ -213,7 +213,7 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n, ...@@ -213,7 +213,7 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
static_cast<AccDataType>(meanSquare_m(m)), static_cast<AccDataType>(meanSquare_m(m)),
static_cast<AccDataType>(gamma_n(n)), static_cast<AccDataType>(gamma_n(n)),
static_cast<AccDataType>(beta_n(n))); static_cast<AccDataType>(beta_n(n)));
out_m_n(m, n) = static_cast<DDataType>(out_acc); out_m_n(m, n) = static_cast<ReduceDataType>(out_acc);
} }
} }
} }
...@@ -221,9 +221,9 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n, ...@@ -221,9 +221,9 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
template <typename ADataType, template <typename ADataType,
typename BDataType, typename BDataType,
typename CDataType, typename CDataType,
typename C0DataType, typename BiasDataType,
typename C1DataType, typename D0DataType,
typename DDataType, typename ReduceDataType,
typename GammaDataType, typename GammaDataType,
typename BetaDataType, typename BetaDataType,
typename NormalizeDataType> typename NormalizeDataType>
...@@ -231,12 +231,12 @@ void DumpGemmLayerNormPerf(float gemm_reduce_time, float normalize_time, int M, ...@@ -231,12 +231,12 @@ void DumpGemmLayerNormPerf(float gemm_reduce_time, float normalize_time, int M,
{ {
std::size_t gemm_flop = std::size_t(2) * M * N * K + std::size_t(2) * M * N; std::size_t gemm_flop = std::size_t(2) * M * N * K + std::size_t(2) * M * N;
std::size_t gemm_num_byte = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + std::size_t gemm_num_byte = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(CDataType) * M * N + sizeof(C0DataType) * M * N + sizeof(CDataType) * M * N + sizeof(BiasDataType) * M * N +
sizeof(C1DataType) * M * N + sizeof(DDataType) * M + sizeof(D0DataType) * M * N + sizeof(ReduceDataType) * M +
sizeof(DDataType) * M; sizeof(ReduceDataType) * M;
std::size_t normalize_num_byte = sizeof(CDataType) * M * N + sizeof(DDataType) * M + std::size_t normalize_num_byte = sizeof(CDataType) * M * N + sizeof(ReduceDataType) * M +
sizeof(DDataType) * M + sizeof(GammaDataType) * N + sizeof(ReduceDataType) * M + sizeof(GammaDataType) * N +
sizeof(BetaDataType) * N + sizeof(NormalizeDataType) * M * N; sizeof(BetaDataType) * N + sizeof(NormalizeDataType) * M * N;
float tflops = static_cast<float>(gemm_flop) / 1.E9 / gemm_reduce_time; float tflops = static_cast<float>(gemm_flop) / 1.E9 / gemm_reduce_time;
...@@ -260,15 +260,15 @@ int main() ...@@ -260,15 +260,15 @@ int main()
ck::index_t StrideA = 1024; ck::index_t StrideA = 1024;
ck::index_t StrideB = 1024; ck::index_t StrideB = 1024;
ck::index_t StrideC = 1024; ck::index_t StrideC = 1024;
ck::index_t StrideC1 = 1024; ck::index_t StrideD0 = 1024;
Tensor<ADataType> a_m_k(f_host_tensor_descriptor2d(M, K, StrideA, ALayout{})); Tensor<ADataType> a_m_k(f_host_tensor_descriptor2d(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor2d(K, N, StrideB, BLayout{})); Tensor<BDataType> b_k_n(f_host_tensor_descriptor2d(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{})); Tensor<CDataType> c_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
Tensor<C0DataType> bias_n(f_host_tensor_descriptor1d(N, 1)); Tensor<BiasDataType> bias_n(f_host_tensor_descriptor1d(N, 1));
Tensor<C1DataType> c1_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{})); Tensor<D0DataType> c1_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
Tensor<DDataType> reduceMean_m(f_host_tensor_descriptor1d(M, 1)); Tensor<ReduceDataType> reduceMean_m(f_host_tensor_descriptor1d(M, 1));
Tensor<DDataType> reduceMeanSquare_m(f_host_tensor_descriptor1d(M, 1)); Tensor<ReduceDataType> reduceMeanSquare_m(f_host_tensor_descriptor1d(M, 1));
Tensor<GammaDataType> gamma_n(f_host_tensor_descriptor1d(N, 1)); Tensor<GammaDataType> gamma_n(f_host_tensor_descriptor1d(N, 1));
Tensor<BetaDataType> beta_n(f_host_tensor_descriptor1d(N, 1)); Tensor<BetaDataType> beta_n(f_host_tensor_descriptor1d(N, 1));
Tensor<LayerNormOutDataType> layerNorm_m_n( Tensor<LayerNormOutDataType> layerNorm_m_n(
...@@ -276,18 +276,18 @@ int main() ...@@ -276,18 +276,18 @@ int main()
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{-1, 1}); a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{-1, 1});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-1, 1}); b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-1, 1});
bias_n.GenerateTensorValue(GeneratorTensor_3<C0DataType>{-1, 1}); bias_n.GenerateTensorValue(GeneratorTensor_3<BiasDataType>{-1, 1});
c1_m_n.GenerateTensorValue(GeneratorTensor_3<C1DataType>{-5, 5}); c1_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{-5, 5});
gamma_n.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{-1, 1}); gamma_n.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{-1, 1});
beta_n.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{-1, 1}); beta_n.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{-1, 1});
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace()); DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace()); DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n.mDesc.GetElementSpace()); DeviceMem c_device_buf(sizeof(CDataType) * c_m_n.mDesc.GetElementSpace());
DeviceMem bias_device_buf(sizeof(C0DataType) * bias_n.mDesc.GetElementSpace()); DeviceMem bias_device_buf(sizeof(BiasDataType) * bias_n.mDesc.GetElementSpace());
DeviceMem c1_device_buf(sizeof(C1DataType) * c1_m_n.mDesc.GetElementSpace()); DeviceMem d0_device_buf(sizeof(D0DataType) * c1_m_n.mDesc.GetElementSpace());
DeviceMem reduceMean_device_buf(sizeof(DDataType) * reduceMean_m.mDesc.GetElementSpace()); DeviceMem reduceMean_device_buf(sizeof(ReduceDataType) * reduceMean_m.mDesc.GetElementSpace());
DeviceMem reduceMeanSquare_device_buf(sizeof(DDataType) * DeviceMem reduceMeanSquare_device_buf(sizeof(ReduceDataType) *
reduceMeanSquare_m.mDesc.GetElementSpace()); reduceMeanSquare_m.mDesc.GetElementSpace());
DeviceMem gamma_device_buf(sizeof(GammaDataType) * gamma_n.mDesc.GetElementSpace()); DeviceMem gamma_device_buf(sizeof(GammaDataType) * gamma_n.mDesc.GetElementSpace());
DeviceMem beta_device_buf(sizeof(BetaDataType) * beta_n.mDesc.GetElementSpace()); DeviceMem beta_device_buf(sizeof(BetaDataType) * beta_n.mDesc.GetElementSpace());
...@@ -297,44 +297,45 @@ int main() ...@@ -297,44 +297,45 @@ int main()
a_device_buf.ToDevice(a_m_k.mData.data()); a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data()); b_device_buf.ToDevice(b_k_n.mData.data());
bias_device_buf.ToDevice(bias_n.mData.data()); bias_device_buf.ToDevice(bias_n.mData.data());
c1_device_buf.ToDevice(c1_m_n.mData.data()); d0_device_buf.ToDevice(c1_m_n.mData.data());
gamma_device_buf.ToDevice(gamma_n.mData.data()); gamma_device_buf.ToDevice(gamma_n.mData.data());
beta_device_buf.ToDevice(beta_n.mData.data()); beta_device_buf.ToDevice(beta_n.mData.data());
auto a_element_op = AElementOp{}; auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{}; auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{}; auto c_element_op = CElementOp{};
auto c1_element_op = C1ElementOp{}; auto d_element_op = D0ElementOp{};
auto dxs_global = std::array<void*, 3> gemm_element_ops = {&a_element_op, &b_element_op, &c_element_op};
ck::make_tuple(static_cast<DDataType*>(reduceMean_device_buf.GetDeviceBuffer()),
static_cast<DDataType*>(reduceMeanSquare_device_buf.GetDeviceBuffer()));
auto dxs_in_element_op = DxsInElementOps{}; auto passthrough = UnaryIdenticElementOp{};
auto dxs_out_element_op = DxsOutElementOps{N, N}; auto square = UnarySquareElementOp{};
auto div = UnaryDivElementOp{N};
std::array<void*, 2> reduce_in_element_ops = {&passthrough, &square};
std::array<void*, 2> reduce_out_element_ops = {&div, &div};
std::array<void*, 2> p_reduces = {reduceMean_device_buf.GetDeviceBuffer(),
reduceMeanSquare_device_buf.GetDeviceBuffer()};
// Prepare GEMM, reduce_mean, reduce_mean_square // Prepare GEMM, reduce_mean, reduce_mean_square
auto gemmReduce = DeviceGemmBiasAddReduceInstance{}; auto gemmReduce = DeviceGemmBiasAddReduceInstance{};
auto gemmReduce_invoker = gemmReduce.MakeInvoker(); auto gemmReduce_invoker = gemmReduce.MakeInvoker();
auto gemmReduce_argument = auto gemmReduce_argument = gemmReduce.MakeArgument(a_device_buf.GetDeviceBuffer(),
gemmReduce.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()), b_device_buf.GetDeviceBuffer(),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()), bias_device_buf.GetDeviceBuffer(),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()), {d0_device_buf.GetDeviceBuffer()},
static_cast<C0DataType*>(bias_device_buf.GetDeviceBuffer()), c_device_buf.GetDeviceBuffer(),
static_cast<C1DataType*>(c1_device_buf.GetDeviceBuffer()), p_reduces,
dxs_global, M,
M, N,
N, K,
K, StrideA,
StrideA, StrideB,
StrideB, StrideC,
StrideC, {StrideD0},
StrideC1, gemm_element_ops,
a_element_op, {&d_element_op},
b_element_op, reduce_in_element_ops,
c_element_op, reduce_out_element_ops);
c1_element_op,
dxs_in_element_op,
dxs_out_element_op);
if(!gemmReduce.IsSupportedArgument(gemmReduce_argument)) if(!gemmReduce.IsSupportedArgument(gemmReduce_argument))
{ {
...@@ -347,23 +348,25 @@ int main() ...@@ -347,23 +348,25 @@ int main()
reduceMeanSquare_device_buf.SetZero(); reduceMeanSquare_device_buf.SetZero();
// Prepare LayerNorm // Prepare LayerNorm
std::array<const void*, 5> input = {c_device_buf.GetDeviceBuffer(),
reduceMean_device_buf.GetDeviceBuffer(),
reduceMeanSquare_device_buf.GetDeviceBuffer(),
gamma_device_buf.GetDeviceBuffer(),
beta_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {layerNorm_device_buf.GetDeviceBuffer()};
auto normalize = DeviceNormalizeInstance{}; auto normalize = DeviceNormalizeInstance{};
auto normalize_invoker = normalize.MakeInvoker(); auto normalize_invoker = normalize.MakeInvoker();
auto normalize_argument = normalize.MakeArgument( auto normalize_argument = normalize.MakeArgument(input,
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()), output,
static_cast<DDataType*>(reduceMean_device_buf.GetDeviceBuffer()), {M, N},
static_cast<DDataType*>(reduceMeanSquare_device_buf.GetDeviceBuffer()), {StrideC, 1},
static_cast<GammaDataType*>(gamma_device_buf.GetDeviceBuffer()), {1, 0},
static_cast<BetaDataType*>(beta_device_buf.GetDeviceBuffer()), {1, 0},
static_cast<LayerNormOutDataType*>(layerNorm_device_buf.GetDeviceBuffer()), {0, 1},
{M, N}, {0, 1},
{StrideC, 1}, {StrideC, 1},
{1, 0}, NormalizeFunctor{});
{1, 0},
{0, 1},
{0, 1},
{StrideC, 1},
NormalizeFunctor{});
if(!normalize.IsSupportedArgument(normalize_argument)) if(!normalize.IsSupportedArgument(normalize_argument))
{ {
...@@ -381,19 +384,19 @@ int main() ...@@ -381,19 +384,19 @@ int main()
Tensor<LayerNormOutDataType> host_layerNorm_m_n( Tensor<LayerNormOutDataType> host_layerNorm_m_n(
f_host_tensor_descriptor2d(M, N, StrideC, CLayout{})); f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
host_gemm_layernorm<CDataType, DDataType, ReduceAccDataType>(host_layerNorm_m_n, host_gemm_layernorm<CDataType, ReduceDataType, ReduceAccDataType>(host_layerNorm_m_n,
a_m_k, a_m_k,
b_k_n, b_k_n,
bias_n, bias_n,
c1_m_n, c1_m_n,
gamma_n, gamma_n,
beta_n, beta_n,
a_element_op, a_element_op,
b_element_op, b_element_op,
c_element_op, c_element_op,
c1_element_op, d_element_op,
M, M,
N); N);
layerNorm_device_buf.FromDevice(layerNorm_m_n.mData.data()); layerNorm_device_buf.FromDevice(layerNorm_m_n.mData.data());
pass &= ck::utils::check_err(layerNorm_m_n.mData, pass &= ck::utils::check_err(layerNorm_m_n.mData,
...@@ -416,9 +419,9 @@ int main() ...@@ -416,9 +419,9 @@ int main()
DumpGemmLayerNormPerf<ADataType, DumpGemmLayerNormPerf<ADataType,
BDataType, BDataType,
CDataType, CDataType,
C0DataType, BiasDataType,
C1DataType, D0DataType,
DDataType, ReduceDataType,
GammaDataType, GammaDataType,
BetaDataType, BetaDataType,
LayerNormOutDataType>( LayerNormOutDataType>(
......
...@@ -33,8 +33,8 @@ using BDataType = F16; ...@@ -33,8 +33,8 @@ using BDataType = F16;
using CDataType = F16; using CDataType = F16;
using GemmAccDataType = F32; using GemmAccDataType = F32;
using ReduceAccDataType = F32; using ReduceAccDataType = F32;
using DDataType = F32; using ReduceDataType = F32;
using DPtrsGlobal = ck::Tuple<DDataType*, DDataType*>; using ReducePtrsGlobal = ck::Tuple<ReduceDataType*, ReduceDataType*>;
using GammaDataType = F16; using GammaDataType = F16;
using BetaDataType = F16; using BetaDataType = F16;
using LayerNormOutDataType = F16; using LayerNormOutDataType = F16;
...@@ -48,15 +48,15 @@ using AElementOp = ck::tensor_operation::element_wise::PassThrough; ...@@ -48,15 +48,15 @@ using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough; using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough; using CElementOp = ck::tensor_operation::element_wise::PassThrough;
using ReduceSumOp = ck::reduce::Add; using ReduceSumOp = ck::reduce::Add;
using DxsReduceOp = ck::Tuple<ReduceSumOp, ReduceSumOp>; using ReduceOps = ck::Tuple<ReduceSumOp, ReduceSumOp>;
using UnaryIdenticElementOp = ck::tensor_operation::element_wise::PassThrough; using UnaryIdenticElementOp = ck::tensor_operation::element_wise::PassThrough;
using UnaryDivElementOp = ck::tensor_operation::element_wise::UnaryDivide; using UnaryDivElementOp = ck::tensor_operation::element_wise::UnaryDivide;
using UnarySquareElementOp = ck::tensor_operation::element_wise::UnarySquare; using UnarySquareElementOp = ck::tensor_operation::element_wise::UnarySquare;
using DxsInElementOps = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>; using ReduceInElementOps = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>;
using DxsOutElementOps = ck::Tuple<UnaryDivElementOp, UnaryDivElementOp>; using ReduceOutElementOps = ck::Tuple<UnaryDivElementOp, UnaryDivElementOp>;
using DxsGlobalMemOp = using ReduceGlobalMemOps =
ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicAdd, ck::InMemoryDataOperationEnumSequence<ck::InMemoryDataOperationEnum::AtomicAdd,
ck::InMemoryDataOperationEnum::AtomicAdd>; ck::InMemoryDataOperationEnum::AtomicAdd>;
...@@ -65,11 +65,11 @@ static constexpr auto GemmSpecialization = ...@@ -65,11 +65,11 @@ static constexpr auto GemmSpecialization =
// clang-format off // clang-format off
using DeviceGemmReduceInstance = ck::tensor_operation::device::DeviceGemmReduce_Xdl_CShuffle using DeviceGemmReduceInstance = ck::tensor_operation::device::DeviceGemmReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsAccEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy| //######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| ReduceData| A| B| C| Reduce| ReduceInEleOp| ReduceAccEleOp| Reduce| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector| //######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Operation| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock| //######| | | | | | | | | | | Operation| Operation| Operation| | | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | //######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< Row, Col, Row, F16, F16, F16, F32, F32, F32, DPtrsGlobal, AElementOp, BElementOp, CElementOp, DxsReduceOp, DxsInElementOps, DxsOutElementOps, DxsGlobalMemOp, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>; < Row, Col, Row, F16, F16, F16, F32, F32, F32, ReducePtrsGlobal, AElementOp, BElementOp, CElementOp, ReduceOps,ReduceInElementOps, ReduceOutElementOps, ReduceGlobalMemOps, GemmSpecialization, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8, S<64, 4>, 4, 1>;
// clang-format on // clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType, using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
...@@ -85,8 +85,8 @@ using NormalizeFunctor = ck::tensor_operation::element_wise::Normalize; ...@@ -85,8 +85,8 @@ using NormalizeFunctor = ck::tensor_operation::element_wise::Normalize;
// A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y // A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y
using DeviceNormalizeInstance = using DeviceNormalizeInstance =
ck::tensor_operation::device::Device5AryElementwise<CDataType, ck::tensor_operation::device::Device5AryElementwise<CDataType,
DDataType, ReduceDataType,
DDataType, ReduceDataType,
GammaDataType, GammaDataType,
BetaDataType, BetaDataType,
LayerNormOutDataType, LayerNormOutDataType,
...@@ -121,7 +121,7 @@ auto f_host_tensor_descriptor2d = ...@@ -121,7 +121,7 @@ auto f_host_tensor_descriptor2d =
}; };
template <typename CDataType, template <typename CDataType,
typename DDataType, typename ReduceDataType,
typename A_functor, typename A_functor,
typename B_functor, typename B_functor,
typename C_functor> typename C_functor>
...@@ -140,8 +140,8 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n, ...@@ -140,8 +140,8 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
int StrideC = N; int StrideC = N;
Tensor<CDataType> c_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{})); Tensor<CDataType> c_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
Tensor<DDataType> mean_m(f_host_tensor_descriptor1d(M, 1)); Tensor<ReduceDataType> mean_m(f_host_tensor_descriptor1d(M, 1));
Tensor<DDataType> meanSquare_m(f_host_tensor_descriptor1d(M, 1)); Tensor<ReduceDataType> meanSquare_m(f_host_tensor_descriptor1d(M, 1));
auto averageOpInst = UnaryDivElementOp{N}; auto averageOpInst = UnaryDivElementOp{N};
auto ref_gemm = ReferenceGemmInstance{}; auto ref_gemm = ReferenceGemmInstance{};
...@@ -172,8 +172,8 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n, ...@@ -172,8 +172,8 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
averageOpInst(mean_acc, mean_acc); averageOpInst(mean_acc, mean_acc);
averageOpInst(square_mean_acc, square_mean_acc); averageOpInst(square_mean_acc, square_mean_acc);
mean_m(m) = ck::type_convert<DDataType>(mean_acc); mean_m(m) = ck::type_convert<ReduceDataType>(mean_acc);
meanSquare_m(m) = ck::type_convert<DDataType>(square_mean_acc); meanSquare_m(m) = ck::type_convert<ReduceDataType>(square_mean_acc);
} }
// LayerNorm // LayerNorm
...@@ -197,7 +197,7 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n, ...@@ -197,7 +197,7 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
template <typename ADataType, template <typename ADataType,
typename BDataType, typename BDataType,
typename CDataType, typename CDataType,
typename DDataType, typename ReduceDataType,
typename GammaDataType, typename GammaDataType,
typename BetaDataType, typename BetaDataType,
typename NormalizeDataType> typename NormalizeDataType>
...@@ -205,11 +205,11 @@ void DumpGemmLayerNormPerf(float gemm_reduce_time, float normalize_time, int M, ...@@ -205,11 +205,11 @@ void DumpGemmLayerNormPerf(float gemm_reduce_time, float normalize_time, int M,
{ {
std::size_t gemm_flop = std::size_t(2) * M * N * K; std::size_t gemm_flop = std::size_t(2) * M * N * K;
std::size_t gemm_num_byte = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + std::size_t gemm_num_byte = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(CDataType) * M * N + sizeof(DDataType) * M + sizeof(CDataType) * M * N + sizeof(ReduceDataType) * M +
sizeof(DDataType) * M; sizeof(ReduceDataType) * M;
std::size_t normalize_num_btye = sizeof(CDataType) * M * N + sizeof(DDataType) * M + std::size_t normalize_num_btye = sizeof(CDataType) * M * N + sizeof(ReduceDataType) * M +
sizeof(DDataType) * M + sizeof(GammaDataType) * N + sizeof(ReduceDataType) * M + sizeof(GammaDataType) * N +
sizeof(BetaDataType) * N + sizeof(NormalizeDataType) * M * N; sizeof(BetaDataType) * N + sizeof(NormalizeDataType) * M * N;
float tflops = static_cast<float>(gemm_flop) / 1.E9 / gemm_reduce_time; float tflops = static_cast<float>(gemm_flop) / 1.E9 / gemm_reduce_time;
...@@ -237,8 +237,8 @@ int main() ...@@ -237,8 +237,8 @@ int main()
Tensor<ADataType> a_m_k(f_host_tensor_descriptor2d(M, K, StrideA, ALayout{})); Tensor<ADataType> a_m_k(f_host_tensor_descriptor2d(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor2d(K, N, StrideB, BLayout{})); Tensor<BDataType> b_k_n(f_host_tensor_descriptor2d(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{})); Tensor<CDataType> c_m_n(f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
Tensor<DDataType> reduceMean_m(f_host_tensor_descriptor1d(M, 1)); Tensor<ReduceDataType> reduceMean_m(f_host_tensor_descriptor1d(M, 1));
Tensor<DDataType> reduceMeanSquare_m(f_host_tensor_descriptor1d(M, 1)); Tensor<ReduceDataType> reduceMeanSquare_m(f_host_tensor_descriptor1d(M, 1));
Tensor<GammaDataType> gamma_n(f_host_tensor_descriptor1d(N, 1)); Tensor<GammaDataType> gamma_n(f_host_tensor_descriptor1d(N, 1));
Tensor<BetaDataType> beta_n(f_host_tensor_descriptor1d(N, 1)); Tensor<BetaDataType> beta_n(f_host_tensor_descriptor1d(N, 1));
Tensor<LayerNormOutDataType> layerNorm_m_n( Tensor<LayerNormOutDataType> layerNorm_m_n(
...@@ -252,8 +252,8 @@ int main() ...@@ -252,8 +252,8 @@ int main()
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace()); DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace()); DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n.mDesc.GetElementSpace()); DeviceMem c_device_buf(sizeof(CDataType) * c_m_n.mDesc.GetElementSpace());
DeviceMem reduceMean_device_buf(sizeof(DDataType) * reduceMean_m.mDesc.GetElementSpace()); DeviceMem reduceMean_device_buf(sizeof(ReduceDataType) * reduceMean_m.mDesc.GetElementSpace());
DeviceMem reduceMeanSquare_device_buf(sizeof(DDataType) * DeviceMem reduceMeanSquare_device_buf(sizeof(ReduceDataType) *
reduceMeanSquare_m.mDesc.GetElementSpace()); reduceMeanSquare_m.mDesc.GetElementSpace());
DeviceMem gamma_device_buf(sizeof(GammaDataType) * gamma_n.mDesc.GetElementSpace()); DeviceMem gamma_device_buf(sizeof(GammaDataType) * gamma_n.mDesc.GetElementSpace());
DeviceMem beta_device_buf(sizeof(BetaDataType) * beta_n.mDesc.GetElementSpace()); DeviceMem beta_device_buf(sizeof(BetaDataType) * beta_n.mDesc.GetElementSpace());
...@@ -265,35 +265,40 @@ int main() ...@@ -265,35 +265,40 @@ int main()
gamma_device_buf.ToDevice(gamma_n.mData.data()); gamma_device_buf.ToDevice(gamma_n.mData.data());
beta_device_buf.ToDevice(beta_n.mData.data()); beta_device_buf.ToDevice(beta_n.mData.data());
auto a_element_op = AElementOp{}; auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{}; auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{}; auto c_element_op = CElementOp{};
auto dxs_global = std::array<void*, 3> gemm_element_ops = {&a_element_op, &b_element_op, &c_element_op};
ck::make_tuple(static_cast<DDataType*>(reduceMean_device_buf.GetDeviceBuffer()),
static_cast<DDataType*>(reduceMeanSquare_device_buf.GetDeviceBuffer()));
auto dxs_in_element_op = DxsInElementOps{}; auto passthrough = UnaryIdenticElementOp{};
auto dxs_out_element_op = DxsOutElementOps{N, N}; auto square = UnarySquareElementOp{};
auto div = UnaryDivElementOp{N};
std::array<void*, 2> reduce_in_element_ops = {&passthrough, &square};
std::array<void*, 2> reduce_out_element_ops = {&div, &div};
std::array<void*, 2> p_reduces = {reduceMean_device_buf.GetDeviceBuffer(),
reduceMeanSquare_device_buf.GetDeviceBuffer()};
// Prepare GEMM, reduce_mean, reduce_mean_square // Prepare GEMM, reduce_mean, reduce_mean_square
auto gemmReduce = DeviceGemmReduceInstance{}; auto gemmReduce = DeviceGemmReduceInstance{};
auto gemmReduce_invoker = gemmReduce.MakeInvoker(); auto gemmReduce_invoker = gemmReduce.MakeInvoker();
auto gemmReduce_argument = auto gemmReduce_argument = gemmReduce.MakeArgument(a_device_buf.GetDeviceBuffer(),
gemmReduce.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()), b_device_buf.GetDeviceBuffer(),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()), nullptr,
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()), {},
dxs_global, c_device_buf.GetDeviceBuffer(),
M, p_reduces,
N, M,
K, N,
StrideA, K,
StrideB, StrideA,
StrideC, StrideB,
a_element_op, StrideC,
b_element_op, {},
c_element_op, gemm_element_ops,
dxs_in_element_op, {},
dxs_out_element_op); reduce_in_element_ops,
reduce_out_element_ops);
if(!gemmReduce.IsSupportedArgument(gemmReduce_argument)) if(!gemmReduce.IsSupportedArgument(gemmReduce_argument))
{ {
...@@ -306,23 +311,25 @@ int main() ...@@ -306,23 +311,25 @@ int main()
reduceMeanSquare_device_buf.SetZero(); reduceMeanSquare_device_buf.SetZero();
// Prepare LayerNorm // Prepare LayerNorm
std::array<const void*, 5> input = {c_device_buf.GetDeviceBuffer(),
reduceMean_device_buf.GetDeviceBuffer(),
reduceMeanSquare_device_buf.GetDeviceBuffer(),
gamma_device_buf.GetDeviceBuffer(),
beta_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {layerNorm_device_buf.GetDeviceBuffer()};
auto normalize = DeviceNormalizeInstance{}; auto normalize = DeviceNormalizeInstance{};
auto normalize_invoker = normalize.MakeInvoker(); auto normalize_invoker = normalize.MakeInvoker();
auto normalize_argument = normalize.MakeArgument( auto normalize_argument = normalize.MakeArgument(input,
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()), output,
static_cast<DDataType*>(reduceMean_device_buf.GetDeviceBuffer()), {M, N},
static_cast<DDataType*>(reduceMeanSquare_device_buf.GetDeviceBuffer()), {StrideC, 1},
static_cast<GammaDataType*>(gamma_device_buf.GetDeviceBuffer()), {1, 0},
static_cast<BetaDataType*>(beta_device_buf.GetDeviceBuffer()), {1, 0},
static_cast<LayerNormOutDataType*>(layerNorm_device_buf.GetDeviceBuffer()), {0, 1},
{M, N}, {0, 1},
{StrideC, 1}, {StrideC, 1},
{1, 0}, NormalizeFunctor{});
{1, 0},
{0, 1},
{0, 1},
{StrideC, 1},
NormalizeFunctor{});
if(!normalize.IsSupportedArgument(normalize_argument)) if(!normalize.IsSupportedArgument(normalize_argument))
{ {
...@@ -340,16 +347,16 @@ int main() ...@@ -340,16 +347,16 @@ int main()
Tensor<LayerNormOutDataType> host_layerNorm_m_n( Tensor<LayerNormOutDataType> host_layerNorm_m_n(
f_host_tensor_descriptor2d(M, N, StrideC, CLayout{})); f_host_tensor_descriptor2d(M, N, StrideC, CLayout{}));
host_gemm_layernorm<CDataType, DDataType>(host_layerNorm_m_n, host_gemm_layernorm<CDataType, ReduceDataType>(host_layerNorm_m_n,
a_m_k, a_m_k,
b_k_n, b_k_n,
gamma_n, gamma_n,
beta_n, beta_n,
a_element_op, a_element_op,
b_element_op, b_element_op,
c_element_op, c_element_op,
M, M,
N); N);
layerNorm_device_buf.FromDevice(layerNorm_m_n.mData.data()); layerNorm_device_buf.FromDevice(layerNorm_m_n.mData.data());
pass &= ck::utils::check_err(layerNorm_m_n.mData, pass &= ck::utils::check_err(layerNorm_m_n.mData,
...@@ -372,7 +379,7 @@ int main() ...@@ -372,7 +379,7 @@ int main()
DumpGemmLayerNormPerf<ADataType, DumpGemmLayerNormPerf<ADataType,
BDataType, BDataType,
CDataType, CDataType,
DDataType, ReduceDataType,
GammaDataType, GammaDataType,
BetaDataType, BetaDataType,
LayerNormOutDataType>( LayerNormOutDataType>(
......
...@@ -150,6 +150,9 @@ int main(int argc, char* argv[]) ...@@ -150,6 +150,9 @@ int main(int argc, char* argv[])
AccDataType alpha = args.scales[0]; AccDataType alpha = args.scales[0];
AccDataType beta = args.scales[1]; AccDataType beta = args.scales[1];
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "out: " << out.mDesc << std::endl;
std::size_t num_thread = 1; std::size_t num_thread = 1;
if(args.do_verification) if(args.do_verification)
...@@ -195,7 +198,7 @@ int main(int argc, char* argv[]) ...@@ -195,7 +198,7 @@ int main(int argc, char* argv[])
using ReferenceInstance = using ReferenceInstance =
tensor_operation::host::ReferenceSoftmax<InDataType, OutDataType, AccDataType>; tensor_operation::host::ReferenceSoftmax<InDataType, OutDataType, AccDataType>;
ReferenceInstance ref; ReferenceInstance ref;
auto ref_arg = ref.MakeArgument(in, out_ref, alpha, beta, Rank, reduceDims); auto ref_arg = ref.MakeArgument(in, out_ref, alpha, beta, reduceDims);
auto invoker = ref.MakeInvoker(); auto invoker = ref.MakeInvoker();
invoker.Run(ref_arg); invoker.Run(ref_arg);
// LogRangeAsType<float>(std::cout << "tensor out_ref: ", out_ref.mData, ",") << std::endl; // LogRangeAsType<float>(std::cout << "tensor out_ref: ", out_ref.mData, ",") << std::endl;
...@@ -212,8 +215,8 @@ int main(int argc, char* argv[]) ...@@ -212,8 +215,8 @@ int main(int argc, char* argv[])
auto argument_ptr = device_instance.MakeArgumentPointer(i_inLengths, auto argument_ptr = device_instance.MakeArgumentPointer(i_inLengths,
i_inStrides, i_inStrides,
reduceDims, reduceDims,
alpha, &alpha,
beta, &beta,
in_dev.GetDeviceBuffer(), in_dev.GetDeviceBuffer(),
out_dev.GetDeviceBuffer()); out_dev.GetDeviceBuffer());
......
add_example_executable(example_gemm_bias_c_permute_xdl_fp16 gemm_bias_c_permute_xdl_fp16.cpp)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment