Commit 2b27d5fc authored by Chao Liu's avatar Chao Liu
Browse files

Merge remote-tracking branch 'origin/develop' into rosenrodt/gemm-layernorm

parents f689a155 fa9a0a5c
......@@ -21,16 +21,16 @@ namespace ck {
template <typename GridwiseGemm,
typename FloatAB,
typename FloatC,
typename DPtrsGlobal,
typename ReducePtrsGlobal,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename DxsInElementwiseOperation,
typename DxsReduceAccElementwiseOperation,
typename ReduceInElementwiseOperations,
typename ReduceAccElementwiseOperations,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename DGridDescriptor_MBlock_MPerBlock,
typename ReduceGridDescriptor_MBlock_MPerBlock,
typename Block2CTileMap,
bool HasMainKBlockLoop>
__global__ void
......@@ -41,17 +41,17 @@ __global__ void
const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
DPtrsGlobal p_ds_grid,
ReducePtrsGlobal p_reduces_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CElementwiseOperation c_element_op,
const DxsInElementwiseOperation dxs_in_element_op,
const DxsReduceAccElementwiseOperation dxs_out_element_op,
const ReduceInElementwiseOperations reduce_in_element_ops,
const ReduceAccElementwiseOperations reduce_out_element_ops,
const AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock,
const DGridDescriptor_MBlock_MPerBlock d_grid_desc_mblock_mperblock,
const ReduceGridDescriptor_MBlock_MPerBlock reduce_grid_desc_mblock_mperblock,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
......@@ -60,32 +60,32 @@ __global__ void
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
p_b_grid,
p_c_grid,
p_ds_grid,
p_reduces_grid,
p_shared,
a_element_op,
b_element_op,
c_element_op,
dxs_in_element_op,
dxs_out_element_op,
reduce_in_element_ops,
reduce_out_element_ops,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
d_grid_desc_mblock_mperblock,
reduce_grid_desc_mblock_mperblock,
block_2_ctile_map);
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_c_grid;
ignore = p_ds_grid;
ignore = p_reduces_grid;
ignore = a_element_op;
ignore = b_element_op;
ignore = c_element_op;
ignore = dxs_in_element_op;
ignore = dxs_out_element_op;
ignore = reduce_in_element_ops;
ignore = reduce_out_element_ops;
ignore = a_grid_desc_ak0_m_ak1;
ignore = b_grid_desc_bk0_n_bk1;
ignore = c_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = d_grid_desc_mblock_mperblock;
ignore = reduce_grid_desc_mblock_mperblock;
ignore = block_2_ctile_map;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
......@@ -95,19 +95,19 @@ template <typename FloatAB,
typename FloatCShuffle,
typename FloatC,
typename FloatReduceAcc,
typename DPtrsGlobal,
typename ReducePtrsGlobal,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename DxsReduceOperation,
typename DxsInElementwiseOperation,
typename DxsReduceAccElementwiseOperation,
typename ReduceOperations,
typename ReduceInElementwiseOperations,
typename ReduceAccElementwiseOperations,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
typename DGlobalMemoryDataOperation,
typename ReduceGlobalMemoryDataOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename CGridDesc_M_N,
typename DGridDesc_M,
typename ReduceGridDesc_M,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t MPerBlock,
......@@ -293,18 +293,18 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
}
__host__ __device__ static constexpr auto
MakeDGridDescriptor_MBlock_MPerBlock(const DGridDesc_M& d_grid_desc_m)
MakeReduceGridDescriptor_MBlock_MPerBlock(const ReduceGridDesc_M& d_grid_desc_m)
{
const auto M = d_grid_desc_m.GetLength(I0);
const auto MBlock = M / MPerBlock;
const auto d_grid_desc_mblock_mperblock = transform_tensor_descriptor(
const auto reduce_grid_desc_mblock_mperblock = transform_tensor_descriptor(
d_grid_desc_m,
make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{}))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1>{}));
return d_grid_desc_mblock_mperblock;
return reduce_grid_desc_mblock_mperblock;
}
// return block_id to C matrix tile idx (m0, n0) mapping
......@@ -318,29 +318,30 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
using CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<decltype(
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(CGridDesc_M_N{}))>;
using DGridDescriptor_MBlock_MPerBlock =
remove_cvref_t<decltype(MakeDGridDescriptor_MBlock_MPerBlock(DGridDesc_M{}))>;
using ReduceGridDescriptor_MBlock_MPerBlock =
remove_cvref_t<decltype(MakeReduceGridDescriptor_MBlock_MPerBlock(ReduceGridDesc_M{}))>;
using DefaultBlock2CTileMap =
remove_cvref_t<decltype(MakeDefaultBlock2CTileMap(CGridDesc_M_N{}))>;
template <bool HasMainKBlockLoop, typename Block2CTileMap>
__device__ static void Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
DPtrsGlobal p_ds_grid,
void* __restrict__ p_shared,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CElementwiseOperation& c_element_op,
const DxsInElementwiseOperation& dxs_in_element_op,
const DxsReduceAccElementwiseOperation& dxs_out_element_op,
const AGridDesc_AK0_M_AK1& a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock&
c_grid_desc_mblock_mperblock_nblock_nperblock,
const DGridDescriptor_MBlock_MPerBlock& d_grid_desc_mblock_mperblock,
const Block2CTileMap& block_2_ctile_map)
__device__ static void
Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
ReducePtrsGlobal p_reduces_grid,
void* __restrict__ p_shared,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CElementwiseOperation& c_element_op,
const ReduceInElementwiseOperations& reduce_in_element_ops,
const ReduceAccElementwiseOperations& reduce_out_element_ops,
const AGridDesc_AK0_M_AK1& a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock&
c_grid_desc_mblock_mperblock_nblock_nperblock,
const ReduceGridDescriptor_MBlock_MPerBlock& reduce_grid_desc_mblock_mperblock,
const Block2CTileMap& block_2_ctile_map)
{
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
......@@ -706,12 +707,12 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
make_naive_tensor_descriptor_packed(
make_tuple(Number<mreduce_per_thread>{}, Number<nreduce_per_thread>{}));
// VGPR d_reduce_thread_desc_mperblock
constexpr auto d_reduce_thread_desc_mperblock =
// VGPR reduce_thread_desc_mperblock
constexpr auto reduce_thread_desc_mperblock =
make_naive_tensor_descriptor_packed(make_tuple(Number<mreduce_per_thread>{}));
// VGPR d_reduce_thread_desc_mblock_mperblock
constexpr auto d_reduce_thread_desc_mblock_mperblock =
// VGPR reduce_thread_desc_mblock_mperblock
constexpr auto reduce_thread_desc_mblock_mperblock =
make_naive_tensor_descriptor_packed(make_tuple(I1, Number<mreduce_per_thread>{}));
auto c_reduce_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatReduceAcc>(
......@@ -740,29 +741,29 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
1,
true>{c_reduce_block_desc_mperblock_nperblock, c_reduce_thread_data_idx_begin};
auto dxs_reduce_thread_copy_vgpr_to_global = generate_tuple(
auto reduce_tuple_thread_copy_vgpr_to_global = generate_tuple(
[&](auto I) {
auto p_d_grid = p_ds_grid[I];
auto d_out_element_op = dxs_out_element_op[I];
auto p_reduce_grid = p_reduces_grid[I];
auto reduce_acc_element_op = reduce_out_element_ops[I];
return ThreadwiseTensorSliceTransfer_v1r3<
FloatReduceAcc,
remove_pointer_t<decltype(p_d_grid)>,
decltype(d_reduce_thread_desc_mblock_mperblock),
decltype(d_grid_desc_mblock_mperblock),
decltype(d_out_element_op),
remove_pointer_t<decltype(p_reduce_grid)>,
decltype(reduce_thread_desc_mblock_mperblock),
decltype(reduce_grid_desc_mblock_mperblock),
decltype(reduce_acc_element_op),
Sequence<1, mreduce_per_thread>,
Sequence<0, 1>,
1,
CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock,
DGlobalMemoryDataOperation::At(I),
ReduceGlobalMemoryDataOperation::At(I),
1,
false>{d_grid_desc_mblock_mperblock,
false>{reduce_grid_desc_mblock_mperblock,
make_multi_index(block_work_idx[I0], // mblock
c_reduce_thread_data_idx_begin[I0]), // mperblock
d_out_element_op};
reduce_acc_element_op};
},
Number<p_ds_grid.Size()>{});
Number<p_reduces_grid.Size()>{});
constexpr index_t num_access = sfc_c_vgpr.GetNumOfAccess();
......@@ -797,35 +798,35 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
make_tuple(I0, I0),
c_reduce_thread_buf);
static_for<0, p_ds_grid.Size(), 1>{}([&](auto In) {
auto& p_d_grid = p_ds_grid[In];
static_for<0, p_reduces_grid.Size(), 1>{}([&](auto In) {
auto& p_reduce_grid = p_reduces_grid[In];
auto d_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_d_grid, d_grid_desc_mblock_mperblock.GetElementSpaceSize());
auto reduce_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_reduce_grid, reduce_grid_desc_mblock_mperblock.GetElementSpaceSize());
auto d_thread_buf =
auto reduce_thread_buf =
make_static_buffer<AddressSpaceEnum::Vgpr, FloatReduceAcc>(
d_reduce_thread_desc_mperblock.GetElementSpaceSize());
reduce_thread_desc_mperblock.GetElementSpaceSize());
auto& d_in_element_op = dxs_in_element_op[In];
auto& reduce_in_element_op = reduce_in_element_ops[In];
auto& d_reduce_thread_copy_vgpr_to_global =
dxs_reduce_thread_copy_vgpr_to_global(In);
auto& reduce_thread_copy_vgpr_to_global =
reduce_tuple_thread_copy_vgpr_to_global(In);
using DReduceOperation = remove_cvref_t<decltype(DxsReduceOperation{}[In])>;
using ReduceOperation = remove_cvref_t<decltype(ReduceOperations{}[In])>;
using ThreadwiseReduce =
ThreadwiseReduction<FloatReduceAcc,
decltype(c_reduce_thread_desc_mperblock_nperblock),
decltype(d_reduce_thread_desc_mperblock),
DReduceOperation,
decltype(reduce_thread_desc_mperblock),
ReduceOperation,
false>;
// Global write Gemm shuffle + reduction
const auto d_identityVal =
DReduceOperation::template GetIdentityValue<FloatReduceAcc>();
const auto reduce_identityVal =
ReduceOperation::template GetIdentityValue<FloatReduceAcc>();
static_for<0, mreduce_per_thread, 1>{}(
[&](auto I) { d_thread_buf(I) = d_identityVal; });
[&](auto I) { reduce_thread_buf(I) = reduce_identityVal; });
// reduce in VGPR
static_for<0, mreduce_per_thread, 1>{}([&](auto im) {
......@@ -834,26 +835,25 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
Number<c_reduce_thread_desc_mperblock_nperblock.CalculateOffset(
make_tuple(im, in))>{};
d_in_element_op(c_reduce_thread_buf(offset),
c_reduce_thread_buf(offset));
reduce_in_element_op(c_reduce_thread_buf(offset),
c_reduce_thread_buf(offset));
});
});
ThreadwiseReduce::Reduce(c_reduce_thread_buf, d_thread_buf);
ThreadwiseReduce::Reduce(c_reduce_thread_buf, reduce_thread_buf);
// copy from VGPR to Global
d_reduce_thread_copy_vgpr_to_global.Run(
d_reduce_thread_desc_mblock_mperblock,
make_tuple(I0, I0),
d_thread_buf,
d_grid_desc_mblock_mperblock,
d_grid_buf);
reduce_thread_copy_vgpr_to_global.Run(reduce_thread_desc_mblock_mperblock,
make_tuple(I0, I0),
reduce_thread_buf,
reduce_grid_desc_mblock_mperblock,
reduce_grid_buf);
if constexpr(access_id < num_access - 1)
{
constexpr auto c_global_step = sfc_c_global.GetForwardStep(access_id);
d_reduce_thread_copy_vgpr_to_global.MoveDstSliceWindow(
d_grid_desc_mblock_mperblock,
reduce_thread_copy_vgpr_to_global.MoveDstSliceWindow(
reduce_grid_desc_mblock_mperblock,
make_tuple(c_global_step[I0], c_global_step[I1]));
}
});
......
......@@ -49,7 +49,8 @@ template <typename InDataType,
index_t KThreadSliceSize,
index_t InSrcVectorDim,
index_t InSrcVectorSize,
index_t OutDstVectorSize>
index_t OutDstVectorSize,
bool SweepOnce>
struct GridwiseSoftmax_mk_to_mk
{
static_assert(((InSrcVectorDim == 0 && MThreadSliceSize % InSrcVectorSize == 0) ||
......@@ -75,19 +76,6 @@ struct GridwiseSoftmax_mk_to_mk
using ThreadReduceDstDesc_M =
decltype(make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{})));
using BlockwiseMaxReduce = PartitionedBlockwiseReduction<AccDataType,
BlockSize,
ThreadClusterLengths_M_K,
ThreadClusterArrangeOrder,
reduce::Max,
false>; // PropagateNan
using ThreadwiseMaxReduce = ThreadwiseReduction<AccDataType,
ThreadReduceSrcDesc_M_K,
ThreadReduceDstDesc_M,
reduce::Max,
false>; // PropagateNan
using PassThroughOp = tensor_operation::element_wise::PassThrough;
static constexpr auto I0 = Number<0>{};
......@@ -105,6 +93,11 @@ struct GridwiseSoftmax_mk_to_mk
AccDataType beta,
OutDataType* const __restrict__ p_out_value_global)
{
if constexpr(SweepOnce)
{
num_k_block_tile_iteration = 1;
}
// LDS
__shared__ AccDataType p_reduce_work_buffer[BlockSize];
......@@ -149,6 +142,20 @@ struct GridwiseSoftmax_mk_to_mk
constexpr auto thread_buffer_desc = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<KThreadSliceSize>{}));
// Normally, 0 as invalid element value is adequate since 0 makes no contribution to
// accumulated result. However, in stable softmax, all values 0s or not are subtracted by
// another value_max. As numbers become non-zero, effectively it allows invalid values to
// slip through and contribute to the accumulated result.
//
// The trick here is leveraging the fact that many math functions (add, sub, exp, ...)
// propagate NaNs when operands have NaNs involved. By initialiing invalid element value
// with NaN, an invalid value doing math manipulations is still NaN, which in turn can still
// be identified as an invalid value. We can then discard the invalid values which
// originally failed the bound check during accumulation. This allows to ignore values that
// failed bound check even after multiple math manipulations.
//
// NOTE: reset coordinate after every step because the same threadwise copy will sweep
// through global memory 3 times back and forth
auto threadwise_src_load = ThreadwiseTensorSliceTransfer_v2<InDataType,
AccDataType,
GridDesc_M_K,
......@@ -158,7 +165,8 @@ struct GridwiseSoftmax_mk_to_mk
InSrcVectorDim,
InSrcVectorSize,
1,
false>(
true /* ResetCoordAfterRun */,
true /* InvalidElementAsNaN */>(
in_grid_desc_m_k,
make_multi_index(blkgroup_id * M_BlockTileSize + thread_m_cluster_id * MThreadSliceSize,
block_local_id * reduceSizePerBlock +
......@@ -198,21 +206,39 @@ struct GridwiseSoftmax_mk_to_mk
block_local_id * reduceSizePerBlock + thread_k_cluster_id * KThreadSliceSize),
PassThroughOp{});
constexpr auto in_thread_copy_fwd_step = make_multi_index(0, K_BlockTileSize);
constexpr auto in_thread_copy_bwd_step = make_multi_index(0, -K_BlockTileSize);
constexpr auto in_thread_copy_fwd_step =
make_multi_index(0, SweepOnce ? 0 : K_BlockTileSize);
constexpr auto in_thread_copy_bwd_step =
make_multi_index(0, SweepOnce ? 0 : -K_BlockTileSize);
///
/// max(x)
///
const auto in_global_val_buf_oob_non_zero = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_in_value_global,
in_grid_desc_m_k.GetElementSpaceSize(),
reduce::Max::template GetIdentityValue<InDataType>());
using BlockwiseMaxReduce = PartitionedBlockwiseReduction<
AccDataType,
BlockSize,
ThreadClusterLengths_M_K,
ThreadClusterArrangeOrder,
reduce::Max,
false, // param ignored
detail::AccumulateWithNanIgnore<reduce::Max, AccDataType>>;
using ThreadwiseMaxReduce =
ThreadwiseReduction<AccDataType,
ThreadReduceSrcDesc_M_K,
ThreadReduceDstDesc_M,
reduce::Max,
false, // param ignored
detail::AccumulateWithNanIgnore<reduce::Max, AccDataType>>;
const auto in_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_in_value_global, in_grid_desc_m_k.GetElementSpaceSize());
index_t reducedTiles = 0;
do
{
threadwise_src_load.Run(in_grid_desc_m_k,
in_global_val_buf_oob_non_zero,
in_global_val_buf,
thread_buffer_desc,
make_tuple(I0, I0),
in_thread_buf);
......@@ -232,26 +258,6 @@ struct GridwiseSoftmax_mk_to_mk
///
/// sum(exp(x - max(x)))
///
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
accu_value_buf(I) = reduce::Add::template GetIdentityValue<AccDataType>();
});
// Normally, 0 as invalid element value is adequate since 0 makes no contribution to
// accumulated result. However, in stable softmax, all values 0s or not are subtracted by
// another value_max. As numbers become non-zero, effectively it allows invalid values to
// slip through and contribute to the accumulated result.
//
// The trick here is leveraging the fact that many math functions (add, sub, exp, ...)
// propagate NaNs when operands have NaNs involved. By initialiing invalid element value
// with NaN, an invalid value doing math manipulations is still NaN, which in turn can still
// be identified as an invalid value. We can then discard the invalid values which
// originally failed the bound check during accumulation. This allows to ignore values that
// failed bound check even after multiple math manipulations.
const auto in_global_val_buf_oob_nan =
make_dynamic_buffer<AddressSpaceEnum::Global>(p_in_value_global,
in_grid_desc_m_k.GetElementSpaceSize(),
NumericLimits<InDataType>::QuietNaN());
using BlockwiseSumReduce = PartitionedBlockwiseReduction<
AccDataType,
BlockSize,
......@@ -272,22 +278,25 @@ struct GridwiseSoftmax_mk_to_mk
reducedTiles = 0;
do
{
threadwise_src_load.Run(in_grid_desc_m_k,
in_global_val_buf_oob_nan,
thread_buffer_desc,
make_tuple(I0, I0),
in_thread_buf);
if constexpr(!SweepOnce)
{
threadwise_src_load.Run(in_grid_desc_m_k,
in_global_val_buf,
thread_buffer_desc,
make_tuple(I0, I0),
in_thread_buf);
}
// do element-wise pre-reduction operation
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
static_for<0, KThreadSliceSize, 1>{}([&](auto iK) {
constexpr auto offset = thread_buffer_desc.CalculateOffset(make_tuple(iM, iK));
in_thread_buf(Number<offset>{}) =
out_thread_buf(Number<offset>{}) =
math::exp(in_thread_buf(Number<offset>{}) - max_value_buf(iM));
});
});
ThreadwiseSumReduce::Reduce(in_thread_buf, accu_value_buf);
ThreadwiseSumReduce::Reduce(out_thread_buf, accu_value_buf);
threadwise_src_load.MoveSrcSliceWindow(in_grid_desc_m_k, in_thread_copy_bwd_step);
......@@ -309,11 +318,14 @@ struct GridwiseSoftmax_mk_to_mk
{
do
{
threadwise_src_load.Run(in_grid_desc_m_k,
in_global_val_buf_oob_nan,
thread_buffer_desc,
make_tuple(I0, I0),
in_thread_buf);
if constexpr(!SweepOnce)
{
threadwise_src_load.Run(in_grid_desc_m_k,
in_global_val_buf,
thread_buffer_desc,
make_tuple(I0, I0),
in_thread_buf);
}
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
// out = alpha * exp(x - max(x)) / sum(exp(x - max(x)))
......@@ -340,18 +352,27 @@ struct GridwiseSoftmax_mk_to_mk
}
else
{
StaticBuffer<AddressSpaceEnum::Vgpr,
AccDataType,
MThreadSliceSize * KThreadSliceSize,
true>
in_prior_dst_buf;
do
{
threadwise_src_load.Run(in_grid_desc_m_k,
in_global_val_buf_oob_nan,
thread_buffer_desc,
make_tuple(I0, I0),
in_thread_buf);
if constexpr(!SweepOnce)
{
threadwise_src_load.Run(in_grid_desc_m_k,
in_global_val_buf,
thread_buffer_desc,
make_tuple(I0, I0),
in_thread_buf);
}
threadwise_dst_load.Run(out_grid_desc_m_k,
out_global_val_buf,
thread_buffer_desc,
make_tuple(I0, I0),
out_thread_buf);
in_prior_dst_buf);
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
// out = alpha * exp(x - max(x)) / sum(exp(x - max(x))) + beta * prior_out
static_for<0, KThreadSliceSize, 1>{}([&](auto iK) {
......@@ -360,7 +381,7 @@ struct GridwiseSoftmax_mk_to_mk
out_thread_buf(Number<offset>{}) =
alpha * math::exp(in_thread_buf(Number<offset>{}) - max_value_buf(iM)) /
accu_value_buf(iM) +
beta * out_thread_buf(Number<offset>{});
beta * in_prior_dst_buf(Number<offset>{});
});
});
......
......@@ -236,9 +236,14 @@ template <typename SrcData,
index_t SrcScalarPerVector,
index_t SrcScalarStrideInVector,
bool SrcResetCoordinateAfterRun,
bool InvalidElementAsNaN = false,
typename enable_if<DstDesc::IsKnownAtCompileTime(), bool>::type = false>
struct ThreadwiseTensorSliceTransfer_v2
{
static_assert((InvalidElementAsNaN && !std::is_integral<DstData>::value) ||
(!InvalidElementAsNaN),
"Filling invalid element as NaN is only for floating point types");
static constexpr index_t nDim = SliceLengths::Size();
using Index = MultiIndex<nDim>;
......@@ -318,8 +323,18 @@ struct ThreadwiseTensorSliceTransfer_v2
dst_desc.CalculateOffset(to_multi_index(dst_slice_origin_idx) + src_data_idx +
i * src_scalar_step_in_vector);
dst_buf(Number<dst_offset>{}) =
type_convert<DstData>(src_vector.template AsType<SrcData>()[i]);
if constexpr(InvalidElementAsNaN)
{
dst_buf(Number<dst_offset>{}) =
is_src_valid
? type_convert<DstData>(src_vector.template AsType<SrcData>()[i])
: NumericLimits<DstData>::QuietNaN();
}
else
{
dst_buf(Number<dst_offset>{}) =
type_convert<DstData>(src_vector.template AsType<SrcData>()[i]);
}
});
if constexpr(idx_1d.value != num_access - 1)
......
......@@ -148,6 +148,8 @@ __host__ __device__ constexpr auto min(X x, Ys... ys)
template <typename T>
__device__ T exp(T x);
// TODO: add f16 support using v_exp_f16
template <>
__device__ float exp<float>(float x)
{
......
......@@ -17,7 +17,7 @@ struct AccumulateWithNanIgnore
{
__device__ static inline void Calculate(AccDataType& accuVal, AccDataType currVal)
{
if(!isnan(currVal))
if(!ck::math::isnan(currVal))
{
ReduceOperation{}(accuVal, currVal);
}
......
add_subdirectory(src/host_tensor)
add_subdirectory(src/tensor_operation_instance/gpu)
add_subdirectory(src/host_tensor)
add_subdirectory(src/utility)
......@@ -382,13 +382,8 @@ HostTensorDescriptor::HostTensorDescriptor(const std::vector<X>& lens,
{
}
void ostream_HostTensorDescriptor(const HostTensorDescriptor& desc, std::ostream& os = std::cout);
#if 1
// FIXME: remove
void bf16_to_f32_(const Tensor<ck::bhalf_t>& src, Tensor<float>& dst);
#endif
template <typename T>
float check_error(const Tensor<T>& ref, const Tensor<T>& result)
{
......@@ -434,3 +429,4 @@ float check_error(const Tensor<T>& ref, const Tensor<T>& result)
return linf_error;
}
#endif
......@@ -62,20 +62,20 @@ struct ReferenceBatchedGemm : public device::BaseOperator
for(int k = 0; k < K; ++k)
{
float v_a;
float v_b;
ADataType v_a;
BDataType v_b;
arg.a_element_op_(v_a, static_cast<const float>(arg.a_g_m_k_(g, m, k)));
arg.b_element_op_(v_b, static_cast<const float>(arg.b_g_k_n_(g, k, n)));
arg.a_element_op_(v_a, arg.a_g_m_k_(g, m, k));
arg.b_element_op_(v_b, arg.b_g_k_n_(g, k, n));
v_acc += v_a * v_b;
v_acc += ck::type_convert<float>(v_a) * ck::type_convert<float>(v_b);
}
float v_c;
arg.c_element_op_(v_c, v_acc);
arg.c_g_m_n_(g, m, n) = v_c;
arg.c_g_m_n_(g, m, n) = ck::type_convert<CDataType>(v_c);
};
make_ParallelTensorFunctor(f_gmk_gkn_gmn,
......
......@@ -63,20 +63,21 @@ struct ReferenceGemm : public device::BaseOperator
for(int k = 0; k < K; ++k)
{
AccDataType v_a;
AccDataType v_b;
ADataType v_a;
BDataType v_b;
arg.a_element_op_(v_a, static_cast<const AccDataType>(arg.a_m_k_(m, k)));
arg.b_element_op_(v_b, static_cast<const AccDataType>(arg.b_k_n_(k, n)));
arg.a_element_op_(v_a, arg.a_m_k_(m, k));
arg.b_element_op_(v_b, arg.b_k_n_(k, n));
v_acc += v_a * v_b;
v_acc +=
ck::type_convert<AccDataType>(v_a) * ck::type_convert<AccDataType>(v_b);
}
AccDataType v_c;
arg.c_element_op_(v_c, v_acc);
arg.c_m_n_(m, n) = v_c;
arg.c_m_n_(m, n) = ck::type_convert<CDataType>(v_c);
};
make_ParallelTensorFunctor(
......
......@@ -26,12 +26,11 @@ struct ReferenceSoftmax : public device::BaseOperator
Tensor<OutDataType>& out,
AccDataType alpha,
AccDataType beta,
const index_t rank,
const std::vector<index_t> sm_reduce_dims)
: in_(in), out_(out), alpha_(alpha), beta_(beta), sm_reduce_dims_(sm_reduce_dims)
{
// std::cout << "debug: scalar dims: ";
for(int i = 0; i < rank; i++)
for(size_t i = 0; i < in.mDesc.GetNumOfDimension(); i++)
{
if(std::find(sm_reduce_dims.begin(), sm_reduce_dims.end(), i) ==
sm_reduce_dims.end())
......@@ -47,7 +46,6 @@ struct ReferenceSoftmax : public device::BaseOperator
Tensor<OutDataType>& out_;
AccDataType alpha_;
AccDataType beta_;
index_t rank_;
std::vector<index_t> sm_reduce_dims_;
std::vector<index_t> sm_scalar_dims_; // dim after internal max/sum reduction
};
......@@ -136,10 +134,9 @@ struct ReferenceSoftmax : public device::BaseOperator
Tensor<OutDataType>& out,
AccDataType alpha,
AccDataType beta,
const index_t rank,
const std::vector<index_t> sm_reduce_dims)
{
return Argument{in, out, alpha, beta, rank, sm_reduce_dims};
return Argument{in, out, alpha, beta, sm_reduce_dims};
}
static auto MakeInvoker() { return Invoker{}; }
......
......@@ -4,6 +4,7 @@
#pragma once
#include <vector>
#include "ck/utility/functional2.hpp"
namespace ck {
namespace tensor_operation {
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_batched_gemm_instance {
using DeviceBatchedGemmNoOpPtr = ck::tensor_operation::device::DeviceBatchedGemmPtr<
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gkn_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gnk_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gkn_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gnk_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gmk_gnk_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gkm_gkn_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gkm_gnk_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f32_f32_f32_gmk_gkn_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f32_f32_f32_gmk_gnk_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f32_f32_f32_gkm_gkn_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f32_f32_f32_gkm_gnk_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_int8_int8_int8_gmk_gkn_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_int8_int8_int8_gmk_gnk_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_int8_int8_int8_gkm_gkn_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_int8_int8_int8_gkm_gnk_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
template <typename ADataType,
typename BDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout>
auto get_device_batched_gemm_instances()
{
std::vector<DeviceBatchedGemmNoOpPtr> op_ptrs;
if constexpr(is_same<ADataType, float>::value && is_same<BDataType, float>::value &&
is_same<CDataType, float>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f32_f32_f32_gmk_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f32_f32_f32_gmk_gnk_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f32_f32_f32_gkm_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f32_f32_f32_gkm_gnk_gmn_instances(op_ptrs);
}
}
else if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
is_same<CDataType, half_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f16_f16_f16_gmk_gnk_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f16_f16_f16_gkm_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f16_f16_f16_gkm_gnk_gmn_instances(op_ptrs);
}
}
else if constexpr(is_same<ADataType, bhalf_t>::value && is_same<BDataType, bhalf_t>::value &&
is_same<CDataType, bhalf_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gnk_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gnk_gmn_instances(op_ptrs);
}
}
else if constexpr(is_same<ADataType, int8_t>::value && is_same<BDataType, int8_t>::value &&
is_same<CDataType, int8_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_int8_int8_int8_gmk_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_int8_int8_int8_gmk_gnk_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_int8_int8_int8_gkm_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_int8_int8_int8_gkm_gnk_gmn_instances(op_ptrs);
}
}
return op_ptrs;
}
} // namespace device_batched_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
using Normalize = ck::tensor_operation::element_wise::Normalize;
using DeviceNormalizeFromMeanMeanSquarePtr =
ck::tensor_operation::device::DeviceElementwisePtr<5, 1, 2, Normalize>;
void add_device_normalize_from_mean_squaremean_f16_f32_f32_f16_f16_instances(
std::vector<DeviceNormalizeFromMeanMeanSquarePtr>& instances);
template <typename InputType,
typename MeanType,
typename MeanSquareType,
typename GammaDataType,
typename BetaDataType,
typename OutputType>
auto get_device_normalize_from_mean_meansquare_instances()
{
std::vector<DeviceNormalizeFromMeanMeanSquarePtr> op_ptrs;
if constexpr(is_same<InputType, half_t>::value && is_same<MeanType, float>::value &&
is_same<MeanSquareType, float>::value && is_same<GammaDataType, half_t>::value &&
is_same<BetaDataType, half_t>::value && is_same<OutputType, half_t>::value)
{
ck::tensor_operation::device::
add_device_normalize_from_mean_squaremean_f16_f32_f32_f16_f16_instances(op_ptrs);
}
return op_ptrs;
}
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using DeviceGemmAddAddFastGeluPtr = ck::tensor_operation::device::DeviceGemmMultipleDPtr<
2,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::AddAddFastGelu>;
void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
std::vector<DeviceGemmAddAddFastGeluPtr>&);
void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
std::vector<DeviceGemmAddAddFastGeluPtr>&);
void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(
std::vector<DeviceGemmAddAddFastGeluPtr>&);
void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(
std::vector<DeviceGemmAddAddFastGeluPtr>&);
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename D0DataType,
typename D1DataType,
typename EDataType,
typename ALayout,
typename BLayout,
typename D0Layout,
typename D1Layout,
typename ELayout>
auto get_device_gemm_add_add_fastgelu_instances()
{
std::vector<DeviceGemmAddAddFastGeluPtr> op_ptrs;
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, tensor_layout::gemm::RowMajor> &&
is_same_v<BLayout, tensor_layout::gemm::RowMajor> &&
is_same_v<ELayout, tensor_layout::gemm::RowMajor>)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, tensor_layout::gemm::RowMajor> &&
is_same_v<BLayout, tensor_layout::gemm::ColumnMajor> &&
is_same_v<ELayout, tensor_layout::gemm::RowMajor>)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, tensor_layout::gemm::ColumnMajor> &&
is_same_v<BLayout, tensor_layout::gemm::RowMajor> &&
is_same_v<ELayout, tensor_layout::gemm::RowMajor>)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, tensor_layout::gemm::ColumnMajor> &&
is_same_v<BLayout, tensor_layout::gemm::ColumnMajor> &&
is_same_v<ELayout, tensor_layout::gemm::RowMajor>)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(
op_ptrs);
}
}
return op_ptrs;
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using DeviceGemmNoOpPtr =
ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
void add_device_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f16_f16_f16_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_nk_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_kn_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_nk_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_f16_f16_f16_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_f16_f16_f16_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_f16_f16_f16_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_f16_f16_f16_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_i8_i8_i8_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_i8_i8_i8_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_i8_i8_i8_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_dl_i8_i8_i8_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
template <typename ADataType,
typename BDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout>
auto get_device_gemm_instances()
{
std::vector<DeviceGemmNoOpPtr> op_ptrs;
if constexpr(is_same<ADataType, float>::value && is_same<BDataType, float>::value &&
is_same<CDataType, float>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f32_f32_f32_mk_kn_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f32_f32_f32_mk_kn_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f32_f32_f32_mk_nk_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_nk_mn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f32_f32_f32_km_kn_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f32_f32_f32_km_kn_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f32_f32_f32_km_nk_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f32_f32_f32_km_nk_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_nk_mn_instances(op_ptrs);
}
}
else if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
is_same<CDataType, half_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f16_f16_f16_km_kn_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f16_f16_f16_km_nk_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_f16_f16_f16_km_nk_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(op_ptrs);
}
}
else if constexpr(is_same<ADataType, ck::bhalf_t>::value &&
is_same<BDataType, ck::bhalf_t>::value &&
is_same<CDataType, ck::bhalf_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_nk_mn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_nk_mn_instances(op_ptrs);
}
}
else if constexpr(is_same<ADataType, int8_t>::value && is_same<BDataType, int8_t>::value &&
is_same<CDataType, int8_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_i8_i8_i8_mk_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_i8_i8_i8_mk_nk_mn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_i8_i8_i8_km_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instances(op_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dl_i8_i8_i8_km_nk_mn_instances(op_ptrs);
}
}
return op_ptrs;
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_reduce.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using DeviceGemmAddAddMeanSquareMeanPtr = ck::tensor_operation::device::DeviceGemmReducePtr<1, 2>;
void add_device_gemm_bias_add_mean_squaremean_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_mk_kn_mn_instances(
std::vector<DeviceGemmAddAddMeanSquareMeanPtr>&);
void add_device_gemm_bias_add_mean_squaremean_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_mk_nk_mn_instances(
std::vector<DeviceGemmAddAddMeanSquareMeanPtr>&);
void add_device_gemm_bias_add_mean_squaremean_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_km_kn_mn_instances(
std::vector<DeviceGemmAddAddMeanSquareMeanPtr>&);
void add_device_gemm_bias_add_mean_squaremean_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_km_nk_mn_instances(
std::vector<DeviceGemmAddAddMeanSquareMeanPtr>&);
template <typename ADataType,
typename BDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout>
auto get_device_gemm_add_add_mean_squaremean_instances()
{
std::vector<DeviceGemmAddAddMeanSquareMeanPtr> op_ptrs;
if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
is_same<CDataType, half_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_bias_add_mean_squaremean_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_mk_kn_mn_instances(
op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_bias_add_mean_squaremean_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_mk_nk_mn_instances(
op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_bias_add_mean_squaremean_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_km_kn_mn_instances(
op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_bias_add_mean_squaremean_xdl_cshuffle_f16_f16_f16_f16_f16_f32_f32_km_nk_mn_instances(
op_ptrs);
}
}
return op_ptrs;
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_splitk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using DeviceGemmSplitKNoOpPtr = ck::tensor_operation::device::DeviceGemmSplitKPtr<
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
void add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(
std::vector<DeviceGemmSplitKNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(
std::vector<DeviceGemmSplitKNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(
std::vector<DeviceGemmSplitKNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(
std::vector<DeviceGemmSplitKNoOpPtr>&);
void add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances(
std::vector<DeviceGemmSplitKNoOpPtr>&);
void add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(
std::vector<DeviceGemmSplitKNoOpPtr>&);
void add_device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instances(
std::vector<DeviceGemmSplitKNoOpPtr>&);
void add_device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instances(
std::vector<DeviceGemmSplitKNoOpPtr>&);
template <typename ADataType,
typename BDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout>
auto get_device_gemm_splitk_instances()
{
std::vector<DeviceGemmSplitKNoOpPtr> op_ptrs;
if constexpr(is_same<ADataType, float>::value && is_same<BDataType, float>::value &&
is_same<CDataType, float>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(op_ptrs);
}
}
else if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
is_same<CDataType, half_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instances(op_ptrs);
}
}
return op_ptrs;
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -159,7 +159,7 @@ check_err(const std::vector<T>& out,
const std::vector<T>& ref,
const std::string& msg = "Error: Incorrect results!",
double = 0,
double = 0)
double atol = 0)
{
if(out.size() != ref.size())
{
......@@ -179,7 +179,7 @@ check_err(const std::vector<T>& out,
int64_t r = ref[i];
err = std::abs(o - r);
if(err > 0)
if(err > atol)
{
max_err = err > max_err ? err : max_err;
err_count++;
......
......@@ -54,25 +54,3 @@ std::ostream& operator<<(std::ostream& os, const HostTensorDescriptor& desc)
return os;
}
void ostream_HostTensorDescriptor(const HostTensorDescriptor& desc, std::ostream& os)
{
os << "dim " << desc.GetNumOfDimension() << ", ";
os << "lengths {";
LogRange(os, desc.GetLengths(), ", ");
os << "}, ";
os << "strides {";
LogRange(os, desc.GetStrides(), ", ");
os << "}" << std::endl;
}
#if 1
// FIXME: remove
void bf16_to_f32_(const Tensor<ck::bhalf_t>& src, Tensor<float>& dst)
{
for(std::size_t i = 0; i < src.mData.size(); ++i)
dst.mData[i] = ck::type_convert<float>(src.mData[i]);
}
#endif
......@@ -5,44 +5,51 @@ function(add_instance_library INSTANCE_NAME)
set_target_properties(${INSTANCE_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endfunction(add_instance_library INSTANCE_NAME)
add_subdirectory(elementwise)
add_subdirectory(gemm)
add_subdirectory(gemm_splitk)
add_subdirectory(gemm_bias2d)
add_subdirectory(gemm_bias_relu)
add_subdirectory(gemm_bias_relu_add)
add_subdirectory(gemm_reduce)
add_subdirectory(gemm_bias_add_reduce)
add_subdirectory(gemm_add_add_fastgelu)
add_subdirectory(batched_gemm)
add_subdirectory(batched_gemm_reduce)
add_subdirectory(grouped_gemm)
add_subdirectory(conv1d_fwd)
add_subdirectory(conv2d_fwd)
add_subdirectory(conv3d_fwd)
add_subdirectory(conv2d_fwd_bias_relu)
add_subdirectory(conv2d_fwd_bias_relu_add)
add_subdirectory(conv2d_bwd_data)
add_subdirectory(reduce)
add_subdirectory(convnd_bwd_data)
add_subdirectory(grouped_gemm)
add_subdirectory(conv2d_bwd_weight)
add_subdirectory(batched_gemm_reduce)
add_subdirectory(gemm_add_add_fastgelu)
add_subdirectory(normalization)
add_subdirectory(reduce)
add_library(device_operations STATIC
$<TARGET_OBJECTS:device_conv1d_fwd_instance>
$<TARGET_OBJECTS:device_batched_gemm_instance>
$<TARGET_OBJECTS:device_conv2d_bwd_data_instance>
$<TARGET_OBJECTS:device_conv2d_fwd_instance>
$<TARGET_OBJECTS:device_conv2d_fwd_bias_relu_instance>
$<TARGET_OBJECTS:device_conv2d_fwd_bias_relu_add_instance>
$<TARGET_OBJECTS:device_gemm_instance>
$<TARGET_OBJECTS:device_gemm_splitk_instance>
$<TARGET_OBJECTS:device_gemm_bias_relu_instance>
$<TARGET_OBJECTS:device_gemm_bias_relu_add_instance>
$<TARGET_OBJECTS:device_gemm_bias_add_reduce_instance>
$<TARGET_OBJECTS:device_gemm_bias2d_instance>
$<TARGET_OBJECTS:device_reduce_instance>
$<TARGET_OBJECTS:device_convnd_bwd_data_instance>
$<TARGET_OBJECTS:device_grouped_gemm_instance>
$<TARGET_OBJECTS:device_conv2d_bwd_weight_instance>
$<TARGET_OBJECTS:device_gemm_add_add_fastgelu_instance>
$<TARGET_OBJECTS:device_batched_gemm_instance>
$<TARGET_OBJECTS:device_batched_gemm_reduce_instance>
$<TARGET_OBJECTS:device_grouped_gemm_instance>
$<TARGET_OBJECTS:device_conv1d_fwd_instance>
$<TARGET_OBJECTS:device_conv2d_fwd_instance>
$<TARGET_OBJECTS:device_conv3d_fwd_instance>
$<TARGET_OBJECTS:device_conv2d_fwd_bias_relu_instance>
$<TARGET_OBJECTS:device_conv2d_fwd_bias_relu_add_instance>
$<TARGET_OBJECTS:device_conv2d_bwd_data_instance>
$<TARGET_OBJECTS:device_convnd_bwd_data_instance>
$<TARGET_OBJECTS:device_conv2d_bwd_weight_instance>
$<TARGET_OBJECTS:device_elementwise_instance>
$<TARGET_OBJECTS:device_gemm_add_add_fastgelu_instance>
$<TARGET_OBJECTS:device_reduce_instance>
)
add_library(composablekernels::device_operations ALIAS device_operations)
......@@ -67,8 +74,8 @@ target_include_directories(device_operations PUBLIC
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/thread>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/tensor_operation/gpu/element>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/host_tensor>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/host>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/tensor_operation_instance>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/tensor_operation_instance/gpu>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}/ck/library/tensor_operation_instance/gpu/reduce>
)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment