Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
29c6b47c
Commit
29c6b47c
authored
Dec 06, 2021
by
Chao Liu
Browse files
adding conv+bias+relu
parent
63bca518
Changes
15
Show whitespace changes
Inline
Side-by-side
Showing
15 changed files
with
1236 additions
and
7 deletions
+1236
-7
device_operation/device_conv2d_fwd_xdl_bias_relu_nhwc_kyxc_nhwk_f16_instance.cpp
..._conv2d_fwd_xdl_bias_relu_nhwc_kyxc_nhwk_f16_instance.cpp
+62
-0
device_operation/include/device_conv2d_fwd_xdl_bias_activation_nhwc_kyxc_nhwk.hpp
.../device_conv2d_fwd_xdl_bias_activation_nhwc_kyxc_nhwk.hpp
+690
-0
device_operation/include/device_conv_fwd_bias_activation.hpp
device_operation/include/device_conv_fwd_bias_activation.hpp
+50
-0
example/3_gemm_xdl_bias_relu_add/README.md
example/3_gemm_xdl_bias_relu_add/README.md
+0
-0
example/3_gemm_xdl_bias_relu_add/gemm_xdl_bias_relu_add.cpp
example/3_gemm_xdl_bias_relu_add/gemm_xdl_bias_relu_add.cpp
+0
-0
example/3_gemm_xdl_bias_relu_add/include/device_gemm_xdl_two_extra_source_reduce.hpp
...u_add/include/device_gemm_xdl_two_extra_source_reduce.hpp
+0
-0
example/4_conv2d_fwd_xdl/README.md
example/4_conv2d_fwd_xdl/README.md
+0
-0
example/4_conv2d_fwd_xdl/conv2d_fwd_xdl.cpp
example/4_conv2d_fwd_xdl/conv2d_fwd_xdl.cpp
+0
-0
example/5_conv2d_fwd_xdl_bias_relu/README.md
example/5_conv2d_fwd_xdl_bias_relu/README.md
+0
-0
example/5_conv2d_fwd_xdl_bias_relu/conv2d_fwd_xdl_bias_relu.cpp
...e/5_conv2d_fwd_xdl_bias_relu/conv2d_fwd_xdl_bias_relu.cpp
+302
-0
example/5_conv2d_fwd_xdl_bias_relu/include/device_conv_fwd_xdl_bias_activation_add.hpp
..._relu/include/device_conv_fwd_xdl_bias_activation_add.hpp
+0
-0
example/6_conv2d_fwd_xdl_bias_relu_add/README.md
example/6_conv2d_fwd_xdl_bias_relu_add/README.md
+61
-0
example/6_conv2d_fwd_xdl_bias_relu_add/conv2d_fwd_xdl_bias_relu_add.cpp
...2d_fwd_xdl_bias_relu_add/conv2d_fwd_xdl_bias_relu_add.cpp
+0
-0
example/6_conv2d_fwd_xdl_bias_relu_add/include/device_conv_fwd_xdl_bias_activation_add.hpp
...u_add/include/device_conv_fwd_xdl_bias_activation_add.hpp
+61
-0
example/CMakeLists.txt
example/CMakeLists.txt
+10
-7
No files found.
device_operation/device_conv2d_fwd_xdl_bias_relu_nhwc_kyxc_nhwk_f16_instance.cpp
0 → 100644
View file @
29c6b47c
#include <stdlib.h>
#include "config.hpp"
#include "device_conv2d_fwd_xdl_bias_activation_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_conv2d_fwd_bias_activation_instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddReluAdd
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
using
device_conv2d_fwd_xdl_bias_relu_nhwc_kyxc_nhwk_f16_instances
=
std
::
tuple
<
// clang-format off
//################################################################################| InData| WeiData| OutData| AccData| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
//################################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| SrcDstVectorDim| DstScalar| AddExtraM| AddExtraN|
//################################################################################| | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| | |
//################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceConv2dFwdXdl_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddReluAdd
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
S
<
1
,
2
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
7
,
1
,
true
,
true
>
,
DeviceConv2dFwdXdl_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddReluAdd
,
256
,
128
,
256
,
4
,
8
,
32
,
32
,
2
,
4
,
S
<
1
,
2
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
S
<
1
,
4
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
7
,
1
,
true
,
true
>
,
DeviceConv2dFwdXdl_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddReluAdd
,
128
,
128
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
8
>
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
S
<
1
,
4
,
8
>
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
7
,
1
,
true
,
true
>
,
DeviceConv2dFwdXdl_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddReluAdd
,
256
,
128
,
128
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
2
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
S
<
1
,
2
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
7
,
1
,
true
,
true
>
,
DeviceConv2dFwdXdl_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddReluAdd
,
128
,
128
,
64
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
8
>
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
S
<
1
,
2
,
8
>
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
7
,
1
,
true
,
true
>
,
DeviceConv2dFwdXdl_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddReluAdd
,
128
,
64
,
128
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
2
,
8
>
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
S
<
1
,
4
,
8
>
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
7
,
1
,
true
,
true
>
,
DeviceConv2dFwdXdl_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddReluAdd
,
64
,
64
,
64
,
4
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
8
>
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
S
<
1
,
4
,
8
>
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
7
,
1
,
true
,
true
>
,
DeviceConv2dFwdXdl_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddReluAdd
,
256
,
128
,
64
,
4
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
2
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
S
<
1
,
1
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
7
,
1
,
true
,
true
>
,
DeviceConv2dFwdXdl_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddReluAdd
,
256
,
64
,
128
,
4
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
1
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
S
<
1
,
2
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
7
,
1
,
true
,
true
>
,
DeviceConv2dFwdXdl_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddReluAdd
,
128
,
128
,
32
,
4
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
8
>
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
S
<
1
,
1
,
8
>
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
7
,
1
,
true
,
true
>
,
DeviceConv2dFwdXdl_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddReluAdd
,
128
,
32
,
128
,
4
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
1
,
8
>
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
S
<
1
,
4
,
8
>
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
7
,
1
,
true
,
true
>
,
DeviceConv2dFwdXdl_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddReluAdd
,
64
,
64
,
32
,
4
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
8
>
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
S
<
1
,
2
,
8
>
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
7
,
1
,
true
,
true
>
,
DeviceConv2dFwdXdl_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
AddReluAdd
,
64
,
32
,
64
,
4
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
2
,
8
>
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
S
<
1
,
4
,
8
>
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
7
,
1
,
true
,
true
>
// clang-format on
>
;
void
add_device_conv2d_fwd_bias_relu_xdl_nhwc_kyxc_nhwk_fp16_instances
(
std
::
vector
<
DeviceConvFwdBiasActivationPtr
<
PassThrough
,
PassThrough
,
AddReluAdd
>>&
instance_container
)
{
using
Instances
=
device_conv2d_fwd_xdl_bias_relu_nhwc_kyxc_nhwk_f16_instances
;
const
auto
instances
=
Instances
{};
ck
::
static_for
<
0
,
std
::
tuple_size_v
<
Instances
>
,
1
>
{}([
&
](
auto
i
)
{
using
Instance
=
remove_cvref_t
<
decltype
(
std
::
get
<
i
>
(
instances
))
>
;
auto
instance
=
Instance
{};
instance_container
.
push_back
(
std
::
make_unique
<
Instance
>
(
instance
));
});
}
}
// namespace device_conv2d_fwd_bias_activation_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
device_operation/include/device_conv2d_fwd_xdl_bias_activation_nhwc_kyxc_nhwk.hpp
0 → 100644
View file @
29c6b47c
#ifndef DEVICE_CONV2D_FWD_XDL_BIAS_ACTIVATION_NHWC_KYXC_NHWK_HPP
#define DEVICE_CONV2D_FWD_XDL_BIAS_ACTIVATION_NHWC_KYXC_NHWK_HPP
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_conv_fwd_bias_activation.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r5.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// out[N, Ho, Wo, K] =
// activate(in[N, Hi, Wi, C] * wei[K, Y, X, C] + bias[K]) + residual[N, Ho, Wo, K]
template
<
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
InElementwiseOperation
,
typename
WeiElementwiseOperation
,
typename
OutElementwiseOperation
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
K0PerBlock
,
ck
::
index_t
K1
,
ck
::
index_t
MPerXDL
,
ck
::
index_t
NPerXDL
,
ck
::
index_t
MXdlPerWave
,
ck
::
index_t
NXdlPerWave
,
typename
ABlockTransferThreadSliceLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
ck
::
index_t
ABlockTransferSrcVectorDim
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
ABlockTransferDstScalarPerVector_K1
,
typename
BBlockTransferThreadSliceLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
ck
::
index_t
BBlockTransferSrcVectorDim
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferDstScalarPerVector_K1
,
ck
::
index_t
CThreadTransferSrcDstVectorDim
,
ck
::
index_t
CThreadTransferDstScalarPerVector
,
bool
ABlockLdsAddExtraM
,
bool
BBlockLdsAddExtraN
>
struct
DeviceConv2dFwdXdl_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
:
public
DeviceConvFwdBiasActivation
<
InElementwiseOperation
,
WeiElementwiseOperation
,
OutElementwiseOperation
>
{
using
DeviceOp
=
DeviceConv2dFwdXdl_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
;
using
ADataType
=
InDataType
;
using
BDataType
=
WeiDataType
;
using
CDataType
=
OutDataType
;
// TODO make A/B datatype different
using
ABDataType
=
InDataType
;
// TODO make it support any # of spatial dimensions
static
constexpr
index_t
NDimSpatial
=
2
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
K1Number
=
Number
<
K1
>
{};
static
constexpr
auto
GemmK1Number
=
K1Number
;
static
auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
(
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
)
{
using
namespace
ck
;
const
index_t
Hi
=
input_spatial_lengths
[
0
];
const
index_t
Wi
=
input_spatial_lengths
[
1
];
const
index_t
Ho
=
output_spatial_lengths
[
0
];
const
index_t
Wo
=
output_spatial_lengths
[
1
];
const
index_t
Y
=
filter_spatial_lengths
[
0
];
const
index_t
X
=
filter_spatial_lengths
[
1
];
const
index_t
ConvStrideH
=
conv_filter_strides
[
0
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
1
];
const
index_t
ConvDilationH
=
conv_filter_dilations
[
0
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
1
];
const
index_t
InLeftPadH
=
input_left_pads
[
0
];
const
index_t
InLeftPadW
=
input_left_pads
[
1
];
const
index_t
InRightPadH
=
input_right_pads
[
0
];
const
index_t
InRightPadW
=
input_right_pads
[
1
];
const
index_t
GemmMRaw
=
N
*
Ho
*
Wo
;
const
index_t
GemmN
=
K
;
const
index_t
GemmK
=
Y
*
X
*
C
;
const
auto
GemmMPad
=
math
::
integer_least_multiple
(
GemmMRaw
,
MPerBlock
)
-
GemmMRaw
;
const
auto
GemmM
=
GemmMRaw
+
GemmMPad
;
assert
(
GemmK
%
GemmK1Number
==
0
);
const
index_t
GemmK0
=
GemmK
/
GemmK1Number
;
// A: input tensor
const
auto
in_n_hi_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Hi
,
Wi
,
C
));
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_gemmk_gemmmraw_grid_desc
=
transform_tensor_descriptor
(
in_n_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
Y
,
X
,
C
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
3
,
5
>
{},
Sequence
<
0
,
2
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmk0_gemmmraw_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmk_gemmmraw_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmMRaw
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmk0_gemmmraw_gemmk1_grid_desc
,
make_tuple
(
make_pass_through_transform
(
GemmK0
),
make_right_pad_transform
(
GemmMRaw
,
GemmMPad
),
make_pass_through_transform
(
GemmK1Number
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
// B: weight tensor
const
auto
wei_k_yxc_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
Y
*
X
*
C
));
const
auto
wei_gemmk_gemmn_grid_desc
=
transform_tensor_descriptor
(
wei_k_yxc_grid_desc
,
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
Y
*
X
*
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
wei_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
wei_gemmk_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
// C: output tensor
const
auto
out_nhowo_k_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
));
const
auto
out_gemmmraw_gemmn_grid_desc
=
transform_tensor_descriptor
(
out_nhowo_k_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
*
Ho
*
Wo
),
make_pass_through_transform
(
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
out_gemmmraw_gemmn_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmMRaw
,
GemmMPad
),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
// C0: bias tensor: assume a contiguous vector
const
auto
bias_grid_desc_gemmm_gemmn
=
make_naive_tensor_descriptor
(
make_tuple
(
GemmM
,
GemmN
),
make_tuple
(
I0
,
I1
));
// C1: residual tensor: assume same layout as output tensor
const
auto
resi_grid_desc_gemmm_gemmn
=
out_gemmm_gemmn_grid_desc
;
return
make_tuple
(
in_gemmk0_gemmm_gemmk1_grid_desc
,
wei_gemmk0_gemmn_gemmk1_grid_desc
,
out_gemmm_gemmn_grid_desc
,
bias_grid_desc_gemmm_gemmn
,
resi_grid_desc_gemmm_gemmn
);
}
using
ABCGridDescs
=
decltype
(
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
(
1
,
1
,
1
,
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}));
using
AGridDesc_K0_M_K1
=
remove_cvref_t
<
decltype
(
ABCGridDescs
{}[
I0
])
>
;
using
BGridDesc_K0_N_K1
=
remove_cvref_t
<
decltype
(
ABCGridDescs
{}[
I1
])
>
;
using
CGridDesc_M_N
=
remove_cvref_t
<
decltype
(
ABCGridDescs
{}[
I2
])
>
;
using
C0GridDesc_M_N
=
remove_cvref_t
<
decltype
(
ABCGridDescs
{}[
I3
])
>
;
using
C1GridDesc_M_N
=
remove_cvref_t
<
decltype
(
ABCGridDescs
{}[
I4
])
>
;
// TODO remove these hacks
static
constexpr
auto
a_k0_m_k1_grid_step_hacks
=
make_tuple
(
make_tuple
(
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 0+: K0
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
0
,
0
,
0
,
0
,
0
>
{},
// 1+: M
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
>
{}),
// 2+: K1
make_tuple
(
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
2
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 0-: K0
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
2
,
0
,
0
,
0
,
0
,
0
>
{},
// 1-: M
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
2
,
0
,
0
,
0
,
0
,
0
,
0
>
{}));
// 2-: K1
static
constexpr
auto
b_k0_n_k1_grid_step_hacks
=
make_tuple
(
make_tuple
(
Sequence
<
0
,
0
,
0
,
0
,
0
>
{},
// 0+: K0
Sequence
<
0
,
0
,
0
,
0
,
0
>
{},
// 1+: N
Sequence
<
0
,
0
,
0
,
0
,
0
>
{}),
// 2+: K1
make_tuple
(
Sequence
<
0
,
0
,
0
,
0
,
0
>
{},
// 0-: K0
Sequence
<
0
,
0
,
0
,
0
,
0
>
{},
// 1-: N
Sequence
<
0
,
0
,
0
,
0
,
0
>
{}));
// 2-: K1
static
constexpr
auto
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks
=
make_tuple
(
make_tuple
(
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 0+: M0
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 1+: N0
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 2+: M1
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 3+: N1
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 4+: M2
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 5+: M3
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 6+: M4
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{}),
// 7+: N2
make_tuple
(
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 0-: M0
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 1-: N0
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 2-: M1
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 3-: N1
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 4-: M2
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 5-: M3
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{},
// 6-: M4
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
>
{}));
// 7-: N2
static
constexpr
auto
a_k0_m_k1_grid_move_slice_window_step_hacks
=
Sequence
<
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
2
,
0
,
0
,
0
,
0
,
0
>
{};
static
constexpr
auto
b_k0_n_k1_grid_move_slice_window_step_hacks
=
Sequence
<
0
,
0
,
0
,
0
,
0
>
{};
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r5
<
BlockSize
,
ABDataType
,
// TODO: distinguish A/B datatype
AccDataType
,
CDataType
,
InMemoryDataOperationEnum_t
::
Set
,
AGridDesc_K0_M_K1
,
BGridDesc_K0_N_K1
,
CGridDesc_M_N
,
C0GridDesc_M_N
,
C1GridDesc_M_N
,
InElementwiseOperation
,
WeiElementwiseOperation
,
OutElementwiseOperation
,
MPerBlock
,
NPerBlock
,
K0PerBlock
,
MPerXDL
,
NPerXDL
,
K1
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadSliceLengths_K0_M_K1
,
ABlockTransferThreadClusterLengths_K0_M_K1
,
Sequence
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder,
Sequence
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder,
2
,
// ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
,
false
,
// AThreadTransferSrcResetCoordinateAfterRun,
BBlockTransferThreadSliceLengths_K0_N_K1
,
BBlockTransferThreadClusterLengths_K0_N_K1
,
Sequence
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder,
Sequence
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder,
2
,
// BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
Sequence
<
2
,
3
,
0
,
1
,
7
,
5
,
4
,
6
>
,
// CThreadTransferSrcDstAccessOrder,
7
,
// CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector
,
decltype
(
a_k0_m_k1_grid_step_hacks
),
// AGridStepHacks,
decltype
(
b_k0_n_k1_grid_step_hacks
),
// BGridStepHacks,
decltype
(
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks
),
// CGridStepHacks,
decltype
(
a_k0_m_k1_grid_move_slice_window_step_hacks
),
// AGridMoveSliceWindowStepHacks,
decltype
(
b_k0_n_k1_grid_move_slice_window_step_hacks
),
// BGridMoveSliceWindowStepHacks,
false
,
// CAccessOrderMRepeatNRepeat,
ABlockLdsAddExtraM
,
BBlockLdsAddExtraN
>
;
using
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
=
decltype
(
GridwiseGemm
::
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
CGridDesc_M_N
{}));
using
C0GridDesc_M0_N0_M1_N1_M2_M3_M4_N2
=
decltype
(
GridwiseGemm
::
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
C0GridDesc_M_N
{}));
using
C1GridDesc_M0_N0_M1_N1_M2_M3_M4_N2
=
decltype
(
GridwiseGemm
::
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
C1GridDesc_M_N
{}));
using
Block2CTileMap
=
decltype
(
GridwiseGemm
::
MakeBlock2CTileMap
(
CGridDesc_M_N
{},
1
,
1
));
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
InDataType
*
p_in_grid
,
const
WeiDataType
*
p_wei_grid
,
OutDataType
*
p_out_grid
,
const
OutDataType
*
p_bias_grid
,
const
OutDataType
*
p_resi_grid
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
ck
::
index_t
M01
,
ck
::
index_t
N01
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
)
:
p_a_grid_
{
p_in_grid
},
p_b_grid_
{
p_wei_grid
},
p_c_grid_
{
p_out_grid
},
p_c0_grid_
{
p_bias_grid
},
p_c1_grid_
{
p_resi_grid
},
a_grid_desc_k0_m_k1_
{},
b_grid_desc_k0_n_k1_
{},
c_grid_desc_m_n_
{},
c0_grid_desc_m_n_
{},
c1_grid_desc_m_n_
{},
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
{},
c0_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
{},
c1_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
{},
block_2_ctile_map_
{},
M01_
{
M01
},
N01_
{
N01
},
in_element_op_
{
in_element_op
},
wei_element_op_
{
wei_element_op
},
out_element_op_
{
out_element_op
}
{
const
auto
descs
=
DeviceOp
::
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
(
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
a_grid_desc_k0_m_k1_
=
descs
[
I0
];
b_grid_desc_k0_n_k1_
=
descs
[
I1
];
c_grid_desc_m_n_
=
descs
[
I2
];
c0_grid_desc_m_n_
=
descs
[
I3
];
c1_grid_desc_m_n_
=
descs
[
I4
];
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_k0_m_k1_
,
b_grid_desc_k0_n_k1_
,
c_grid_desc_m_n_
,
M01_
,
N01_
))
{
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
=
GridwiseGemm
::
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
c_grid_desc_m_n_
);
c0_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
=
GridwiseGemm
::
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
c0_grid_desc_m_n_
);
c1_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
=
GridwiseGemm
::
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
c1_grid_desc_m_n_
);
block_2_ctile_map_
=
GridwiseGemm
::
MakeBlock2CTileMap
(
c_grid_desc_m_n_
,
M01
,
N01
);
}
}
// private:
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
CDataType
*
p_c_grid_
;
const
CDataType
*
p_c0_grid_
;
const
CDataType
*
p_c1_grid_
;
AGridDesc_K0_M_K1
a_grid_desc_k0_m_k1_
;
BGridDesc_K0_N_K1
b_grid_desc_k0_n_k1_
;
CGridDesc_M_N
c_grid_desc_m_n_
;
C0GridDesc_M_N
c0_grid_desc_m_n_
;
C1GridDesc_M_N
c1_grid_desc_m_n_
;
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
;
C0GridDesc_M0_N0_M1_N1_M2_M3_M4_N2
c0_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
;
C1GridDesc_M0_N0_M1_N1_M2_M3_M4_N2
c1_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
;
Block2CTileMap
block_2_ctile_map_
;
index_t
M01_
;
index_t
N01_
;
InElementwiseOperation
in_element_op_
;
WeiElementwiseOperation
wei_element_op_
;
OutElementwiseOperation
out_element_op_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
int
nrepeat
=
1
)
{
{
std
::
cout
<<
"arg.a_grid_desc_k0_m_k1_{"
<<
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I1
)
<<
", "
<<
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I2
)
<<
"}"
<<
std
::
endl
;
std
::
cout
<<
"arg.b_grid_desc_k0_n_k1_{"
<<
arg
.
b_grid_desc_k0_n_k1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
b_grid_desc_k0_n_k1_
.
GetLength
(
I1
)
<<
", "
<<
arg
.
b_grid_desc_k0_n_k1_
.
GetLength
(
I2
)
<<
"}"
<<
std
::
endl
;
std
::
cout
<<
"arg.c_grid_desc_m_n_{ "
<<
arg
.
c_grid_desc_m_n_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
c_grid_desc_m_n_
.
GetLength
(
I1
)
<<
"}"
<<
std
::
endl
;
std
::
cout
<<
"arg.c0_grid_desc_m_n_{ "
<<
arg
.
c0_grid_desc_m_n_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
c0_grid_desc_m_n_
.
GetLength
(
I1
)
<<
"}"
<<
std
::
endl
;
std
::
cout
<<
"arg.c1_grid_desc_m_n_{ "
<<
arg
.
c1_grid_desc_m_n_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
c1_grid_desc_m_n_
.
GetLength
(
I1
)
<<
"}"
<<
std
::
endl
;
}
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m_n_
,
arg
.
M01_
,
arg
.
N01_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r5 has invalid setting"
);
}
const
index_t
grid_size
=
GridwiseGemm
::
CalculateGridSize
(
arg
.
c_grid_desc_m_n_
);
const
auto
K0
=
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I0
);
const
bool
has_main_k0_block_loop
=
GridwiseGemm
::
CalculateHasMainK0BlockLoop
(
K0
);
float
ave_time
=
0
;
if
(
has_main_k0_block_loop
)
{
const
auto
kernel
=
kernel_gemm_xdlops_v2r5
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
remove_reference_t
<
DeviceOp
::
AGridDesc_K0_M_K1
>
,
remove_reference_t
<
DeviceOp
::
BGridDesc_K0_N_K1
>
,
remove_reference_t
<
DeviceOp
::
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
>
,
remove_reference_t
<
DeviceOp
::
C0GridDesc_M0_N0_M1_N1_M2_M3_M4_N2
>
,
remove_reference_t
<
DeviceOp
::
C1GridDesc_M0_N0_M1_N1_M2_M3_M4_N2
>
,
InElementwiseOperation
,
WeiElementwiseOperation
,
OutElementwiseOperation
,
remove_reference_t
<
DeviceOp
::
Block2CTileMap
>
,
true
>
;
ave_time
=
launch_and_time_kernel
(
kernel
,
nrepeat
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
p_c0_grid_
,
arg
.
p_c1_grid_
,
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
,
arg
.
c0_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
,
arg
.
c1_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
,
arg
.
in_element_op_
,
arg
.
wei_element_op_
,
arg
.
out_element_op_
,
arg
.
block_2_ctile_map_
);
}
else
{
const
auto
kernel
=
kernel_gemm_xdlops_v2r5
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
remove_reference_t
<
DeviceOp
::
AGridDesc_K0_M_K1
>
,
remove_reference_t
<
DeviceOp
::
BGridDesc_K0_N_K1
>
,
remove_reference_t
<
DeviceOp
::
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
>
,
remove_reference_t
<
DeviceOp
::
C0GridDesc_M0_N0_M1_N1_M2_M3_M4_N2
>
,
remove_reference_t
<
DeviceOp
::
C1GridDesc_M0_N0_M1_N1_M2_M3_M4_N2
>
,
InElementwiseOperation
,
WeiElementwiseOperation
,
OutElementwiseOperation
,
remove_reference_t
<
DeviceOp
::
Block2CTileMap
>
,
false
>
;
ave_time
=
launch_and_time_kernel
(
kernel
,
nrepeat
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
p_c0_grid_
,
arg
.
p_c1_grid_
,
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
,
arg
.
c0_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
,
arg
.
c1_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
,
arg
.
in_element_op_
,
arg
.
wei_element_op_
,
arg
.
out_element_op_
,
arg
.
block_2_ctile_map_
);
}
return
ave_time
;
}
float
Run
(
const
BaseArgument
*
p_arg
,
int
nrepeat
=
1
)
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
nrepeat
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m_n_
,
arg
.
M01_
,
arg
.
N01_
);
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
InDataType
*
p_in_grid
,
const
WeiDataType
*
p_wei_grid
,
OutDataType
*
p_out_grid
,
const
OutDataType
*
p_bias_grid
,
const
OutDataType
*
p_resi_grid
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
)
{
return
Argument
{
p_in_grid
,
p_wei_grid
,
p_out_grid
,
p_bias_grid
,
p_resi_grid
,
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
1
,
1
,
in_element_op
,
wei_element_op
,
out_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_in_grid
,
const
void
*
p_wei_grid
,
void
*
p_out_grid
,
const
void
*
p_bias_grid
,
const
void
*
p_resi_grid
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
InDataType
*>
(
p_in_grid
),
static_cast
<
const
WeiDataType
*>
(
p_wei_grid
),
static_cast
<
OutDataType
*>
(
p_out_grid
),
static_cast
<
const
OutDataType
*>
(
p_bias_grid
),
static_cast
<
const
OutDataType
*>
(
p_resi_grid
),
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
1
,
1
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceConv2dFwdXdl_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
K0PerBlock
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
device_operation/include/device_conv_fwd_bias_activation.hpp
0 → 100644
View file @
29c6b47c
#ifndef DEVICE_CONV_FWD_BIAS_ACTIVATION_HPP
#define DEVICE_CONV_FWD_BIAS_ACTIVATION_HPP
#include <iostream>
#include "device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
InElementwiseOperation
,
typename
WeiElementwiseOperation
,
typename
OutElementwiseOperation
>
struct
DeviceConvFwdBiasActivation
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_in
,
const
void
*
p_wei
,
void
*
p_out
,
const
void
*
p_bias
,
const
void
*
p_resi
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
typename
InElementwiseOperation
,
typename
WeiElementwiseOperation
,
typename
OutElementwiseOperation
>
using
DeviceConvFwdBiasActivationPtr
=
std
::
unique_ptr
<
DeviceConvFwdBiasActivation
<
InElementwiseOperation
,
WeiElementwiseOperation
,
OutElementwiseOperation
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
example/
2
_gemm_xdl_bias_relu_add/README.md
→
example/
3
_gemm_xdl_bias_relu_add/README.md
View file @
29c6b47c
File moved
example/
2
_gemm_xdl_bias_relu_add/gemm_xdl_bias_relu_add.cpp
→
example/
3
_gemm_xdl_bias_relu_add/gemm_xdl_bias_relu_add.cpp
View file @
29c6b47c
File moved
example/
2
_gemm_xdl_bias_relu_add/include/device_gemm_xdl_two_extra_source_reduce.hpp
→
example/
3
_gemm_xdl_bias_relu_add/include/device_gemm_xdl_two_extra_source_reduce.hpp
View file @
29c6b47c
File moved
example/
3
_conv_xdl/README.md
→
example/
4
_conv
2d_fwd
_xdl/README.md
View file @
29c6b47c
File moved
example/
3
_conv_xdl/conv_xdl.cpp
→
example/
4
_conv
2d_fwd
_xdl/conv
2d_fwd
_xdl.cpp
View file @
29c6b47c
File moved
example/
4
_conv_xdl_bias_relu
_add
/README.md
→
example/
5
_conv
2d_fwd
_xdl_bias_relu/README.md
View file @
29c6b47c
File moved
example/5_conv2d_fwd_xdl_bias_relu/conv2d_fwd_xdl_bias_relu.cpp
0 → 100644
View file @
29c6b47c
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "device_conv2d_fwd_xdl_bias_activation_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
KYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NHWK
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
// clang-format off
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceConv2dFwdXdl_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
// | InData| WeiData| OutData| AccData| In| Wei| Out| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
// | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| SrcDstVectorDim| DstScalar| AddExtraM| AddExtraN|
// | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| | |
// | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
256
,
128
,
256
,
4
,
8
,
32
,
32
,
2
,
4
,
S
<
1
,
2
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
S
<
1
,
4
,
8
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
7
,
1
,
true
,
true
>
;
// clang-format on
template
<
typename
TIn
,
typename
TWei
,
typename
TOut
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
>
void
host_reference_calculation
(
const
Tensor
<
TIn
>&
in_n_c_hi_wi
,
const
Tensor
<
TWei
>&
wei_k_c_y_x
,
Tensor
<
TOut
>&
out_n_k_ho_wo
,
const
Tensor
<
TOut
>&
bias_k
,
const
Tensor
<
TOut
>&
resi_n_k_ho_wo
,
const
std
::
vector
<
ck
::
index_t
>&
conv_strides
,
const
std
::
vector
<
ck
::
index_t
>&
conv_dilations
,
const
std
::
vector
<
ck
::
index_t
>&
in_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
/* in_right_pads */
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
{
auto
f_nchw
=
[
&
](
auto
n
,
auto
k
,
auto
ho
,
auto
wo
)
{
double
v
=
0
;
for
(
int
c
=
0
;
c
<
wei_k_c_y_x
.
mDesc
.
GetLengths
()[
1
];
++
c
)
{
for
(
int
y
=
0
;
y
<
wei_k_c_y_x
.
mDesc
.
GetLengths
()[
2
];
++
y
)
{
int
hi
=
ho
*
conv_strides
[
0
]
+
y
*
conv_dilations
[
0
]
-
in_left_pads
[
0
];
for
(
int
x
=
0
;
x
<
wei_k_c_y_x
.
mDesc
.
GetLengths
()[
3
];
++
x
)
{
int
wi
=
wo
*
conv_strides
[
1
]
+
x
*
conv_dilations
[
1
]
-
in_left_pads
[
1
];
if
(
hi
>=
0
&&
hi
<
in_n_c_hi_wi
.
mDesc
.
GetLengths
()[
2
]
&&
wi
>=
0
&&
wi
<
in_n_c_hi_wi
.
mDesc
.
GetLengths
()[
3
])
{
v
+=
in_element_op
(
static_cast
<
const
double
>
(
in_n_c_hi_wi
(
n
,
c
,
hi
,
wi
)))
*
wei_element_op
(
static_cast
<
const
double
>
(
wei_k_c_y_x
(
k
,
c
,
y
,
x
)));
}
}
}
}
out_n_k_ho_wo
(
n
,
k
,
ho
,
wo
)
=
out_element_op
(
v
,
bias_k
(
k
),
resi_n_k_ho_wo
(
n
,
k
,
ho
,
wo
));
};
make_ParallelTensorFunctor
(
f_nchw
,
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
0
],
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
1
],
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
2
],
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
// Conv shape
ck
::
index_t
N
=
128
;
ck
::
index_t
K
=
256
;
ck
::
index_t
C
=
192
;
ck
::
index_t
Y
=
3
;
ck
::
index_t
X
=
3
;
ck
::
index_t
Hi
=
71
;
ck
::
index_t
Wi
=
71
;
ck
::
index_t
conv_stride_h
=
2
;
ck
::
index_t
conv_stride_w
=
2
;
ck
::
index_t
conv_dilation_h
=
1
;
ck
::
index_t
conv_dilation_w
=
1
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
19
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
N
=
std
::
stoi
(
argv
[
4
]);
K
=
std
::
stoi
(
argv
[
5
]);
C
=
std
::
stoi
(
argv
[
6
]);
Y
=
std
::
stoi
(
argv
[
7
]);
X
=
std
::
stoi
(
argv
[
8
]);
Hi
=
std
::
stoi
(
argv
[
9
]);
Wi
=
std
::
stoi
(
argv
[
10
]);
conv_stride_h
=
std
::
stoi
(
argv
[
11
]);
conv_stride_w
=
std
::
stoi
(
argv
[
12
]);
conv_dilation_h
=
std
::
stoi
(
argv
[
13
]);
conv_dilation_w
=
std
::
stoi
(
argv
[
14
]);
in_left_pad_h
=
std
::
stoi
(
argv
[
15
]);
in_left_pad_w
=
std
::
stoi
(
argv
[
16
]);
in_right_pad_h
=
std
::
stoi
(
argv
[
17
]);
in_right_pad_w
=
std
::
stoi
(
argv
[
18
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
printf
(
"arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx
\n
"
);
exit
(
0
);
}
const
ck
::
index_t
YEff
=
(
Y
-
1
)
*
conv_dilation_h
+
1
;
const
ck
::
index_t
XEff
=
(
X
-
1
)
*
conv_dilation_w
+
1
;
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
YEff
)
/
conv_stride_h
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
XEff
)
/
conv_stride_w
+
1
;
const
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
{{
conv_stride_h
,
conv_stride_w
}};
const
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
{{
conv_dilation_h
,
conv_dilation_w
}};
const
std
::
vector
<
ck
::
index_t
>
input_left_pads
{{
in_left_pad_h
,
in_left_pad_w
}};
const
std
::
vector
<
ck
::
index_t
>
input_right_pads
{{
in_right_pad_h
,
in_right_pad_w
}};
// tensor layout
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
,
auto
layout
)
{
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCHW
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KCYX
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NKHW
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
H
*
W
,
W
,
1
}));
}
else
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NHWC
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KYXC
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NHWK
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
1
,
W
*
C_
,
C_
}));
}
};
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
,
InLayout
{}));
Tensor
<
WeiDataType
>
wei_k_c_y_x
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
,
WeiLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo_host_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo_device_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
// bias: assume contiguous 1d vector
Tensor
<
OutDataType
>
bias_k
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
K
)})));
// residual: assume same layout as output tensor
Tensor
<
OutDataType
>
resi_n_k_ho_wo
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias_k: "
<<
bias_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"resi_n_k_ho_wo: "
<<
resi_n_k_ho_wo
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
resi_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
break
;
default:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
resi_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
bias_device_buf
(
sizeof
(
OutDataType
)
*
bias_k
.
mDesc
.
GetElementSpace
());
DeviceMem
resi_device_buf
(
sizeof
(
OutDataType
)
*
resi_n_k_ho_wo
.
mDesc
.
GetElementSpace
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_k
.
mData
.
data
());
resi_device_buf
.
ToDevice
(
resi_n_k_ho_wo
.
mData
.
data
());
auto
conv
=
DeviceConvFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
static_cast
<
const
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
OutDataType
*>
(
bias_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
OutDataType
*>
(
resi_device_buf
.
GetDeviceBuffer
()),
N
,
K
,
C
,
std
::
vector
<
ck
::
index_t
>
{{
Hi
,
Wi
}},
std
::
vector
<
ck
::
index_t
>
{{
Y
,
X
}},
std
::
vector
<
ck
::
index_t
>
{{
Ho
,
Wo
}},
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device operator with the specified compilation parameters does "
"not support this problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
nrepeat
);
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
std
::
size_t
num_btype
=
sizeof
(
InDataType
)
*
(
N
*
C
*
Hi
*
Wi
)
+
sizeof
(
WeiDataType
)
*
(
K
*
C
*
Y
*
X
)
+
sizeof
(
OutDataType
)
*
(
N
*
K
*
Ho
*
Wo
)
+
sizeof
(
OutDataType
)
*
(
K
)
+
sizeof
(
OutDataType
)
*
(
N
*
K
*
Ho
*
Wo
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
do_verification
)
{
host_reference_calculation
(
in_n_c_hi_wi
,
wei_k_c_y_x
,
out_n_k_ho_wo_host_result
,
bias_k
,
resi_n_k_ho_wo
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
out_device_buf
.
FromDevice
(
out_n_k_ho_wo_device_result
.
mData
.
data
());
check_error
(
out_n_k_ho_wo_host_result
,
out_n_k_ho_wo_device_result
);
}
}
example/
4
_conv_xdl_bias_relu
_add
/include/device_conv_fwd_xdl_bias_activation_add.hpp
→
example/
5
_conv
2d_fwd
_xdl_bias_relu/include/device_conv_fwd_xdl_bias_activation_add.hpp
View file @
29c6b47c
File moved
example/6_conv2d_fwd_xdl_bias_relu_add/README.md
0 → 100644
View file @
29c6b47c
# Instructions for ```conv_xdl_bias_relu_add``` Example
## Docker script
```
bash
docker run
\
-it
\
--rm
\
--privileged
\
--group-add
sudo
\
-w
/root/workspace
\
-v
${
PATH_TO_LOCAL_WORKSPACE
}
:/root/workspace
\
rocm/tensorflow:rocm4.3.1-tf2.6-dev
\
/bin/bash
```
## Build ```conv_xdl_bias_relu_add```
```
bash
mkdir
build
&&
cd
build
```
```
bash
# Need to specify target ID, example below is gfx908
cmake
\
-D
BUILD_DEV
=
OFF
\
-D
CMAKE_BUILD_TYPE
=
Release
\
-D
CMAKE_CXX_FLAGS
=
"-DCK_AMD_GPU_GFX908 --amdgpu-target=gfx908 -O3 "
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_PREFIX_PATH
=
/opt/rocm
\
..
```
```
bash
make
-j
conv_xdl_bias_relu_add
```
## Run ```conv_xdl_bias_relu_add```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx
./example/conv_xdl_bias_relu_add 0 1 5
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
wei_k_c_y_x: dim 4, lengths {256, 192, 3, 3}, strides {1728, 1, 576, 192}
out_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
bias_k: dim 1, lengths {256}, strides {1}
resi_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
arg.a_grid_desc_k0_m_k1_{216, 165888, 8}
arg.b_grid_desc_k0_n_k1_{216, 256, 8}
arg.c_grid_desc_m_n_{ 165888, 256}
arg.c0_grid_desc_m_n_{ 165888, 256}
arg.c1_grid_desc_m_n_{ 165888, 256}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 1.71779 ms, 85.4396 TFlops, 194.2 GB/s
```
example/
4
_conv_xdl_bias_relu_add/conv_xdl_bias_relu_add.cpp
→
example/
6
_conv
2d_fwd
_xdl_bias_relu_add/conv
2d_fwd
_xdl_bias_relu_add.cpp
View file @
29c6b47c
File moved
example/6_conv2d_fwd_xdl_bias_relu_add/include/device_conv_fwd_xdl_bias_activation_add.hpp
0 → 100644
View file @
29c6b47c
#ifndef DEVICE_CONV_FWD_XDL_BIAS_ACTIVATION_ADD_HPP
#define DEVICE_CONV_FWD_XDL_BIAS_ACTIVATION_ADD_HPP
#include <iostream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_conv.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r3.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
typename
InElementwiseOperation
,
typename
WeiElementwiseOperation
,
typename
OutElementwiseOperation
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
K0PerBlock
,
ck
::
index_t
K1
,
ck
::
index_t
MPerXDL
,
ck
::
index_t
NPerXDL
,
ck
::
index_t
MXdlPerWave
,
ck
::
index_t
NXdlPerWave
,
typename
ABlockTransferThreadSliceLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
ck
::
index_t
ABlockTransferSrcVectorDim
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
ABlockTransferDstScalarPerVector_K1
,
typename
BBlockTransferThreadSliceLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
ck
::
index_t
BBlockTransferSrcVectorDim
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferDstScalarPerVector_K1
,
ck
::
index_t
CThreadTransferSrcDstVectorDim
,
ck
::
index_t
CThreadTransferDstScalarPerVector
,
bool
ABlockLdsAddExtraM
,
bool
BBlockLdsAddExtraN
>
struct
DeviceConvFwdXdl_bias_activation_add
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
example/CMakeLists.txt
View file @
29c6b47c
...
...
@@ -12,16 +12,19 @@ include_directories(BEFORE
)
set
(
GEMM_XDL_SOURCE 1_gemm_xdl/gemm_xdl.cpp
)
set
(
GEMM_XDL_BIAS_RELU_ADD_SOURCE 2_gemm_xdl_bias_relu_add/gemm_xdl_bias_relu_add.cpp
)
set
(
CONV_XDL_SOURCE 3_conv_xdl/conv_xdl.cpp
)
set
(
CONV_XDL_BIAS_RELU_ADD_SOURCE 4_conv_xdl_bias_relu_add/conv_xdl_bias_relu_add.cpp
)
set
(
GEMM_XDL_BIAS_RELU_ADD_SOURCE 3_gemm_xdl_bias_relu_add/gemm_xdl_bias_relu_add.cpp
)
set
(
CONV2D_FWD_XDL_SOURCE 4_conv2d_fwd_xdl/conv2d_fwd_xdl.cpp
)
set
(
CONV2D_FWD_XDL_BIAS_RELU_SOURCE 5_conv2d_fwd_xdl_bias_relu/conv2d_fwd_xdl_bias_relu.cpp
)
set
(
CONV2D_FWD_XDL_BIAS_RELU_ADD_SOURCE 6_conv2d_fwd_xdl_bias_relu_add/conv2d_fwd_xdl_bias_relu_add.cpp
)
add_executable
(
gemm_xdl
${
GEMM_XDL_SOURCE
}
)
add_executable
(
gemm_xdl_bias_relu_add
${
GEMM_XDL_BIAS_RELU_ADD_SOURCE
}
)
add_executable
(
conv_xdl
${
CONV_XDL_SOURCE
}
)
add_executable
(
conv_xdl_bias_relu_add
${
CONV_XDL_BIAS_RELU_ADD_SOURCE
}
)
add_executable
(
conv2d_fwd_xdl
${
CONV2D_FWD_XDL_SOURCE
}
)
add_executable
(
conv2d_fwd_xdl_bias_relu
${
CONV2D_FWD_XDL_BIAS_RELU_SOURCE
}
)
add_executable
(
conv2d_fwd_xdl_bias_relu_add
${
CONV2D_FWD_XDL_BIAS_RELU_ADD_SOURCE
}
)
target_link_libraries
(
gemm_xdl PRIVATE host_tensor
)
target_link_libraries
(
gemm_xdl_bias_relu_add PRIVATE host_tensor
)
target_link_libraries
(
conv_xdl PRIVATE host_tensor
)
target_link_libraries
(
conv_xdl_bias_relu_add PRIVATE host_tensor
)
target_link_libraries
(
conv2d_fwd_xdl PRIVATE host_tensor
)
target_link_libraries
(
conv2d_fwd_xdl_bias_relu PRIVATE host_tensor
)
target_link_libraries
(
conv2d_fwd_xdl_bias_relu_add PRIVATE host_tensor
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment