Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
2732d06c
Commit
2732d06c
authored
Sep 06, 2022
by
rocking
Browse files
Merge commit '
75891161
' into gemm_layernorm_welford
parents
dd0255ba
75891161
Changes
74
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2966 additions
and
585 deletions
+2966
-585
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_bf16.cpp
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_bf16.cpp
+167
-0
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_fp16.cpp
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_fp16.cpp
+100
-160
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_fp32.cpp
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_fp32.cpp
+166
-0
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_int4.cpp
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_int4.cpp
+172
-0
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_int8.cpp
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_int8.cpp
+166
-0
example/16_gemm_multi_d_multi_reduces/gemm_mean_meansquare_xdl_bf16.cpp
...m_multi_d_multi_reduces/gemm_mean_meansquare_xdl_bf16.cpp
+174
-0
example/16_gemm_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp16.cpp
...m_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp16.cpp
+102
-182
example/16_gemm_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp32.cpp
...m_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp32.cpp
+174
-0
example/16_gemm_multi_d_multi_reduces/gemm_reduce_xdl_common.hpp
.../16_gemm_multi_d_multi_reduces/gemm_reduce_xdl_common.hpp
+498
-0
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp
...as_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp
+3
-3
example/31_batched_gemm_gemm/CMakeLists.txt
example/31_batched_gemm_gemm/CMakeLists.txt
+7
-0
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_bf16.cpp
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_bf16.cpp
+135
-0
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_fp16.cpp
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_fp16.cpp
+3
-240
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_fp32.cpp
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_fp32.cpp
+134
-0
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_int4.cpp
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_int4.cpp
+145
-0
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_int8.cpp
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_int8.cpp
+132
-0
example/31_batched_gemm_gemm/run_batched_gemm_gemm_example.inc
...le/31_batched_gemm_gemm/run_batched_gemm_gemm_example.inc
+277
-0
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
+1
-0
example/32_batched_gemm_scale_softmax_gemm/padded_batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
..._gemm/padded_batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
+402
-0
example/41_grouped_conv_conv_fwd/CMakeLists.txt
example/41_grouped_conv_conv_fwd/CMakeLists.txt
+8
-0
No files found.
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_bf16.cpp
0 → 100644
View file @
2732d06c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_reduce_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
// DataType
using
ADataType
=
BF16
;
using
BDataType
=
BF16
;
using
GemmAccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
BF16
;
using
ReduceAccDataType
=
F32
;
using
R0DataType
=
F32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
>
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
// Elementwise op
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
using
RsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
// ReduceOp
using
RsThreadReduceOp
=
ck
::
Tuple
<
ck
::
reduce
::
Max
>
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicMax
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
<
ALayout
,
// ALayout
BLayout
,
// BLayout
ELayout
,
// ELayout
ADataType
,
// ADataType
BDataType
,
// BDataType
GemmAccDataType
,
// GemmAccDataType
CShuffleDataType
,
// CShuffleDataType
DsDataType
,
// DsDataType
EDataType
,
// EDataType
ReduceAccDataType
,
// ReduceAccDataType
RsDataType
,
// RsDataType
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CDEElementOp
,
// CDE ElementwiseOperation
QsElementOp
,
// Qs Elementwise Operation
RsElementOp
,
// Rs Elementwise Operation
RsThreadReduceOp
,
// Thread Reduce Operation
RsGlobalReduceOp
,
// Global Reduce Operation
GemmDefault
,
// GEMM Specialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
8
,
// ABlockTransfer SrcScalarPerVector
8
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
8
,
// BBlockTransfer SrcScalarPerVector
8
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
64
,
4
>
,
// CD Reduce Thread Transfer ClusterLengths _MPerBlock_NPerBlock
4
,
// CDE ReduceThreadTransfer ScalarPerVector _NPerBlock
1
>
;
// RThread DstScalarPerVector _MPerBlock
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
ReduceAccDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1152
;
ck
::
index_t
K
=
256
;
ck
::
index_t
StrideA
=
256
;
ck
::
index_t
StrideB
=
256
;
ck
::
index_t
StrideE
=
1152
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideE
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
" arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
" arg3: Measure kernel execution time (1=ON, 0=Off)
\n
"
<<
" arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
\n
"
<<
std
::
endl
;
exit
(
EXIT_SUCCESS
);
}
return
run_gemm_reduce_max_xdl
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
ALayout
,
BLayout
,
ELayout
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
ReduceAccDataType
,
DeviceOpInstance
,
ReferenceGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideE
,
do_verification
,
init_method
,
time_kernel
);
}
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_fp16.cpp
View file @
2732d06c
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "gemm_reduce_xdl_common.hpp"
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F64
=
double
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
// DataType
// DataType
using
ADataType
=
F16
;
using
ADataType
=
F16
;
...
@@ -45,7 +24,6 @@ using BLayout = Col;
...
@@ -45,7 +24,6 @@ using BLayout = Col;
using
ELayout
=
Row
;
using
ELayout
=
Row
;
// Elementwise op
// Elementwise op
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
...
@@ -54,7 +32,6 @@ using RsElementOp = ck::Tuple<PassThrough>;
...
@@ -54,7 +32,6 @@ using RsElementOp = ck::Tuple<PassThrough>;
// ReduceOp
// ReduceOp
using
RsThreadReduceOp
=
ck
::
Tuple
<
ck
::
reduce
::
Max
>
;
using
RsThreadReduceOp
=
ck
::
Tuple
<
ck
::
reduce
::
Max
>
;
using
RsGlobalReduceOp
=
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicMax
>
;
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicMax
>
;
...
@@ -62,56 +39,72 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
...
@@ -62,56 +39,72 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
// clang-format off
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
//######| ALayout| BLayout| ELayout| AData| BData| GemmAccData| CShuffle| DsData| EData| ReduceAccData| RsData| A| B| CDE| Qs| Rs| Thread| Global| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CDRThreadTransfer| CDE| RThreadTransfer|
<
ALayout
,
// ALayout
//######| | | | Type| Type| Type| DataType| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ReduceThreadTransfer| DstScalarPerVector|
BLayout
,
// BLayout
//######| | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _MPerBlock_NPerBlock| ScalarPerVector| _MPerBlock|
ELayout
,
// ELayout
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _NPerBlock| |
ADataType
,
// ADataType
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ReduceAccDataType
,
RsDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
RsGlobalReduceOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
64
,
4
>
,
4
,
1
>
;
BDataType
,
// BDataType
GemmAccDataType
,
// GemmAccDataType
CShuffleDataType
,
// CShuffleDataType
DsDataType
,
// DsDataType
EDataType
,
// EDataType
ReduceAccDataType
,
// ReduceAccDataType
RsDataType
,
// RsDataType
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CDEElementOp
,
// CDE ElementwiseOperation
QsElementOp
,
// Qs Elementwise Operation
RsElementOp
,
// Rs Elementwise Operation
RsThreadReduceOp
,
// Thread Reduce Operation
RsGlobalReduceOp
,
// Global Reduce Operation
GemmDefault
,
// GEMM Specialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
8
,
// ABlockTransfer SrcScalarPerVector
8
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
8
,
// BBlockTransfer SrcScalarPerVector
8
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
64
,
4
>
,
// CD Reduce Thread Transfer ClusterLengths _MPerBlock_NPerBlock
4
,
// CDE ReduceThreadTransfer ScalarPerVector _NPerBlock
1
>
;
// RThread DstScalarPerVector _MPerBlock
// clang-format on
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
BDataType
,
E
DataType
,
ReduceAcc
DataType
,
GemmAccDataType
,
GemmAccDataType
,
AElementOp
,
AElementOp
,
BElementOp
,
BElementOp
,
CDEElementOp
>
;
CDEElementOp
>
;
template
<
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
R0DataType
>
int
main
(
int
argc
,
char
*
argv
[])
void
DumpPerf
(
float
ave_time
,
int
M
,
int
N
,
int
K
)
{
{
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
bool
do_verification
=
true
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
int
init_method
=
1
;
sizeof
(
EDataType
)
*
M
*
N
+
sizeof
(
R0DataType
)
*
M
;
bool
time_kernel
=
true
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
std
::
vector
<
std
::
size_t
>
({
stride
}));
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
int
main
()
// GEMM shape
{
ck
::
index_t
M
=
1024
;
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
K
=
1024
;
...
@@ -120,108 +113,55 @@ int main()
...
@@ -120,108 +113,55 @@ int main()
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideE
=
1024
;
ck
::
index_t
StrideE
=
1024
;
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
if
(
argc
==
1
)
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
EDataType
>
e_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
R0DataType
>
r0_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
1
,
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
1
,
1
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r0_device_buf
(
sizeof
(
R0DataType
)
*
r0_m
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
qs_element_op
=
QsElementOp
{};
auto
rs_element_op
=
RsElementOp
{};
// Prepare GEMM, max
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
e_device_buf
.
GetDeviceBuffer
(),
{
r0_device_buf
.
GetDeviceBuffer
()},
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
{
throw
std
::
runtime_error
(
"wrong! this device_op instance
do
es
not
support this problem"
);
//
do not
hing
}
}
else
if
(
argc
==
4
)
// [CAUSION]: launch_and_time_kernel will not initialize D.
// If we evaluate kernel multiple time but without initialize D. Verification will fail
r0_device_buf
.
SetValue
(
ck
::
NumericLimits
<
R0DataType
>::
Lowest
());
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
do_verification
=
true
;
bool
pass
=
true
;
if
(
do_verification
)
{
auto
I0
=
ck
::
Number
<
0
>
{};
Tensor
<
EDataType
>
e_m_n_host
(
e_m_n
.
mDesc
);
Tensor
<
R0DataType
>
r0_m_host
(
r0_m
.
mDesc
);
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
e_m_n_host
,
a_element_op
,
b_element_op
,
cde_element_op
);
ref_invoker
.
Run
(
ref_argument
);
auto
reduce0_op
=
RsThreadReduceOp
{}[
I0
];
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
{
auto
reduce0_acc
=
reduce0_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
for
(
int
n
=
0
;
n
<
N
;
++
n
)
time_kernel
=
std
::
stoi
(
argv
[
3
]);
{
auto
e_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
e_m_n_host
(
m
,
n
));
reduce0_op
(
reduce0_acc
,
e_val
);
};
r0_m_host
(
m
)
=
ck
::
type_convert
<
R0DataType
>
(
reduce0_acc
);
}
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
e_device_buf
.
FromDevice
(
e_m_n
.
mData
.
data
());
M
=
std
::
stoi
(
argv
[
4
]);
r0_device_buf
.
FromDevice
(
r0_m
.
mData
.
data
());
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
pass
=
ck
::
utils
::
check_err
(
StrideA
=
std
::
stoi
(
argv
[
7
]);
e_m_n
.
mData
,
e_m_n_host
.
mData
,
"Error: Incorrect results e"
,
1e-2
,
1e-2
);
StrideB
=
std
::
stoi
(
argv
[
8
]);
pass
&=
ck
::
utils
::
check_err
(
StrideE
=
std
::
stoi
(
argv
[
9
]);
r0_m
.
mData
,
r0_m_host
.
mData
,
"Error: Incorrect results d0"
,
1e-2
,
1e-2
);
}
}
else
bool
time_kernel
=
true
;
if
(
time_kernel
)
{
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
DumpPerf
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
>
(
ave_time
,
M
,
N
,
K
);
<<
" arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
" arg3: Measure kernel execution time (1=ON, 0=Off)
\n
"
<<
" arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
\n
"
<<
std
::
endl
;
exit
(
EXIT_SUCCESS
);
}
}
return
pass
?
0
:
1
;
return
run_gemm_reduce_max_xdl
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
ALayout
,
BLayout
,
ELayout
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
ReduceAccDataType
,
DeviceOpInstance
,
ReferenceGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideE
,
do_verification
,
init_method
,
time_kernel
);
}
}
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_fp32.cpp
0 → 100644
View file @
2732d06c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_reduce_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
// DataType
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
GemmAccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F32
;
using
ReduceAccDataType
=
F32
;
using
R0DataType
=
F32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
>
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
// Elementwise op
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
using
RsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
// ReduceOp
using
RsThreadReduceOp
=
ck
::
Tuple
<
ck
::
reduce
::
Max
>
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicMax
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
<
ALayout
,
// ALayout
BLayout
,
// BLayout
ELayout
,
// ELayout
ADataType
,
// ADataType
BDataType
,
// BDataType
GemmAccDataType
,
// GemmAccDataType
CShuffleDataType
,
// CShuffleDataType
DsDataType
,
// DsDataType
EDataType
,
// EDataType
ReduceAccDataType
,
// ReduceAccDataType
RsDataType
,
// RsDataType
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CDEElementOp
,
// CDE ElementwiseOperation
QsElementOp
,
// Qs Elementwise Operation
RsElementOp
,
// Rs Elementwise Operation
RsThreadReduceOp
,
// Thread Reduce Operation
RsGlobalReduceOp
,
// Global Reduce Operation
GemmDefault
,
// GEMM Specialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
16
,
// KPerBlock
4
,
// AK1
4
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
4
,
// ABlockTransfer SrcScalarPerVector
4
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
4
,
// BBlockTransfer SrcScalarPerVector
4
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
64
,
4
>
,
// CD Reduce Thread Transfer ClusterLengths _MPerBlock_NPerBlock
4
,
// CDE ReduceThreadTransfer ScalarPerVector _NPerBlock
1
>
;
// RThread DstScalarPerVector _MPerBlock
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
ReduceAccDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
StrideA
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideE
=
1024
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideE
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: Measure kernel execution time (1=ON, 0=Off)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
\n
"
);
exit
(
0
);
}
return
run_gemm_reduce_max_xdl
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
ALayout
,
BLayout
,
ELayout
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
ReduceAccDataType
,
DeviceOpInstance
,
ReferenceGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideE
,
do_verification
,
init_method
,
time_kernel
);
}
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_int4.cpp
0 → 100644
View file @
2732d06c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_reduce_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
using
ADataType
=
INT4
;
using
ADataKernelType
=
INT8
;
using
BDataType
=
INT4
;
using
BDataKernelType
=
INT8
;
using
GemmAccDataType
=
INT32
;
using
CShuffleDataType
=
INT32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
INT4
;
using
EDataKernelType
=
INT8
;
using
ReduceAccDataType
=
INT32
;
using
R0DataType
=
INT32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
>
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
// Elementwise op
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
using
RsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
// ReduceOp
using
RsThreadReduceOp
=
ck
::
Tuple
<
ck
::
reduce
::
Max
>
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicMax
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
<
ALayout
,
// ALayout
BLayout
,
// BLayout
ELayout
,
// ELayout
ADataKernelType
,
// ADataType
BDataKernelType
,
// BDataType
GemmAccDataType
,
// GemmAccDataType
CShuffleDataType
,
// CShuffleDataType
DsDataType
,
// DsDataType
EDataKernelType
,
// EDataType
ReduceAccDataType
,
// ReduceAccDataType
RsDataType
,
// RsDataType
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CDEElementOp
,
// CDE ElementwiseOperation
QsElementOp
,
// Qs Elementwise Operation
RsElementOp
,
// Rs Elementwise Operation
RsThreadReduceOp
,
// Thread Reduce Operation
RsGlobalReduceOp
,
// Global Reduce Operation
GemmDefault
,
// GEMM Specialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
64
,
// KPerBlock
16
,
// AK1
16
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
16
,
// ABlockTransfer SrcScalarPerVector
16
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
16
,
// BBlockTransfer SrcScalarPerVector
16
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
64
,
4
>
,
// CD Reduce Thread Transfer ClusterLengths _MPerBlock_NPerBlock
4
,
// CDE ReduceThreadTransfer ScalarPerVector _NPerBlock
1
>
;
// RThread DstScalarPerVector _MPerBlock
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
ReduceAccDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1152
;
ck
::
index_t
K
=
256
;
ck
::
index_t
StrideA
=
256
;
ck
::
index_t
StrideB
=
256
;
ck
::
index_t
StrideE
=
1152
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideE
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
" arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
" arg3: Measure kernel execution time (1=ON, 0=Off)
\n
"
<<
" arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
\n
"
<<
std
::
endl
;
exit
(
EXIT_SUCCESS
);
}
return
run_gemm_reduce_max_xdl
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
ALayout
,
BLayout
,
ELayout
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
ReduceAccDataType
,
DeviceOpInstance
,
ReferenceGemmInstance
,
ADataKernelType
,
BDataKernelType
,
EDataKernelType
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideE
,
do_verification
,
init_method
,
time_kernel
);
}
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_int8.cpp
0 → 100644
View file @
2732d06c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_reduce_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
using
ADataType
=
INT8
;
using
BDataType
=
INT8
;
using
GemmAccDataType
=
INT32
;
using
CShuffleDataType
=
INT32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
INT8
;
using
ReduceAccDataType
=
INT32
;
using
R0DataType
=
INT32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
>
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
// Elementwise op
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
using
RsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
// ReduceOp
using
RsThreadReduceOp
=
ck
::
Tuple
<
ck
::
reduce
::
Max
>
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicMax
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
<
ALayout
,
// ALayout
BLayout
,
// BLayout
ELayout
,
// ELayout
ADataType
,
// ADataType
BDataType
,
// BDataType
GemmAccDataType
,
// GemmAccDataType
CShuffleDataType
,
// CShuffleDataType
DsDataType
,
// DsDataType
EDataType
,
// EDataType
ReduceAccDataType
,
// ReduceAccDataType
RsDataType
,
// RsDataType
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CDEElementOp
,
// CDE ElementwiseOperation
QsElementOp
,
// Qs Elementwise Operation
RsElementOp
,
// Rs Elementwise Operation
RsThreadReduceOp
,
// Thread Reduce Operation
RsGlobalReduceOp
,
// Global Reduce Operation
GemmDefault
,
// GEMM Specialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
64
,
// KPerBlock
16
,
// AK1
16
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
16
,
// ABlockTransfer SrcScalarPerVector
16
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
16
,
// BBlockTransfer SrcScalarPerVector
16
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
64
,
4
>
,
// CD Reduce Thread Transfer ClusterLengths _MPerBlock_NPerBlock
4
,
// CDE ReduceThreadTransfer ScalarPerVector _NPerBlock
1
>
;
// RThread DstScalarPerVector _MPerBlock
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
ReduceAccDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1152
;
ck
::
index_t
K
=
512
;
ck
::
index_t
StrideA
=
512
;
ck
::
index_t
StrideB
=
512
;
ck
::
index_t
StrideE
=
1152
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideE
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
" arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
" arg3: Measure kernel execution time (1=ON, 0=Off)
\n
"
<<
" arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
\n
"
<<
std
::
endl
;
exit
(
EXIT_SUCCESS
);
}
return
run_gemm_reduce_max_xdl
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
ALayout
,
BLayout
,
ELayout
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
ReduceAccDataType
,
DeviceOpInstance
,
ReferenceGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideE
,
do_verification
,
init_method
,
time_kernel
);
}
example/16_gemm_multi_d_multi_reduces/gemm_mean_meansquare_xdl_bf16.cpp
0 → 100644
View file @
2732d06c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_reduce_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
// DataType
using
ADataType
=
BF16
;
using
BDataType
=
BF16
;
using
GemmAccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
BF16
;
using
ReduceAccDataType
=
F32
;
using
R0DataType
=
F32
;
using
R1DataType
=
F32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
,
R1DataType
>
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
// Elementwise op
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
,
Square
>
;
using
RsElementOp
=
ck
::
Tuple
<
Div
,
Div
>
;
// ReduceOp
using
R0ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
R1ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
RsThreadReduceOp
=
ck
::
Tuple
<
R0ThreadReduceOp
,
R1ThreadReduceOp
>
;
static
constexpr
auto
R0GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
static
constexpr
auto
R1GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
R0GlobalReduceOp
,
R1GlobalReduceOp
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
<
ALayout
,
// ALayout
BLayout
,
// BLayout
ELayout
,
// ELayout
ADataType
,
// ADataType
BDataType
,
// BDataType
GemmAccDataType
,
// GemmAccDataType
CShuffleDataType
,
// CShuffleDataType
DsDataType
,
// DsDataType
EDataType
,
// EDataType
ReduceAccDataType
,
// ReduceAccDataType
RsDataType
,
// RsDataType
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CDEElementOp
,
// CDE ElementwiseOperation
QsElementOp
,
// Qs Elementwise Operation
RsElementOp
,
// Rs Elementwise Operation
RsThreadReduceOp
,
// Thread Reduce Operation
RsGlobalReduceOp
,
// Global Reduce Operation
GemmDefault
,
// GEMM Specialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
8
,
// ABlockTransfer SrcScalarPerVector
8
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
8
,
// BBlockTransfer SrcScalarPerVector
8
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
64
,
4
>
,
// CD Reduce Thread Transfer ClusterLengths _MPerBlock_NPerBlock
4
,
// CDE ReduceThreadTransfer ScalarPerVector _NPerBlock
1
>
;
// RThread DstScalarPerVector _MPerBlock
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
ReduceAccDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1152
;
ck
::
index_t
K
=
192
;
ck
::
index_t
StrideA
=
192
;
ck
::
index_t
StrideB
=
192
;
ck
::
index_t
StrideE
=
1152
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideE
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
" arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
" arg3: Measure kernel execution time (1=ON, 0=Off)
\n
"
<<
" arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
\n
"
<<
std
::
endl
;
exit
(
EXIT_SUCCESS
);
}
return
!
run_gemm_reduce_mean_meansquare_xdl
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
R1DataType
,
ALayout
,
BLayout
,
ELayout
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
ReduceAccDataType
,
DeviceOpInstance
,
ReferenceGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideE
,
do_verification
,
init_method
,
time_kernel
);
}
example/16_gemm_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp16.cpp
View file @
2732d06c
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "gemm_reduce_xdl_common.hpp"
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
// DataType
// DataType
using
ADataType
=
F16
;
using
ADataType
=
F16
;
...
@@ -45,7 +25,6 @@ using BLayout = Col;
...
@@ -45,7 +25,6 @@ using BLayout = Col;
using
ELayout
=
Row
;
using
ELayout
=
Row
;
// Elementwise op
// Elementwise op
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
AElementOp
=
PassThrough
;
using
AElementOp
=
PassThrough
;
...
@@ -67,61 +46,71 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
...
@@ -67,61 +46,71 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
// clang-format off
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
//######| ALayout| BLayout| ELayout| AData| BData| GemmAccData| CShuffle| DsData| EData| ReduceAccData| RsData| A| B| CDE| Qs| Rs| Thread| Global| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CDRThreadTransfer| CDE| RThreadTransfer|
<
ALayout
,
// ALayout
//######| | | | Type| Type| Type| DataType| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ReduceThreadTransfer| DstScalarPerVector|
BLayout
,
// BLayout
//######| | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _MPerBlock_NPerBlock| ScalarPerVector| _MPerBlock|
ELayout
,
// ELayout
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _NPerBlock| |
ADataType
,
// ADataType
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ReduceAccDataType
,
RsDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
RsGlobalReduceOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
64
,
4
>
,
4
,
1
>
;
BDataType
,
// BDataType
GemmAccDataType
,
// GemmAccDataType
CShuffleDataType
,
// CShuffleDataType
DsDataType
,
// DsDataType
EDataType
,
// EDataType
ReduceAccDataType
,
// ReduceAccDataType
RsDataType
,
// RsDataType
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CDEElementOp
,
// CDE ElementwiseOperation
QsElementOp
,
// Qs Elementwise Operation
RsElementOp
,
// Rs Elementwise Operation
RsThreadReduceOp
,
// Thread Reduce Operation
RsGlobalReduceOp
,
// Global Reduce Operation
GemmDefault
,
// GEMM Specialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
8
,
// ABlockTransfer SrcScalarPerVector
8
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
8
,
// BBlockTransfer SrcScalarPerVector
8
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
64
,
4
>
,
// CD Reduce Thread Transfer ClusterLengths _MPerBlock_NPerBlock
4
,
// CDE ReduceThreadTransfer ScalarPerVector _NPerBlock
1
>
;
// RThread DstScalarPerVector _MPerBlock
// clang-format on
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
BDataType
,
E
DataType
,
ReduceAcc
DataType
,
GemmAccDataType
,
GemmAccDataType
,
AElementOp
,
AElementOp
,
BElementOp
,
BElementOp
,
CDEElementOp
>
;
CDEElementOp
>
;
template
<
typename
ADataType
,
int
main
(
int
argc
,
char
*
argv
[])
typename
BDataType
,
typename
EDataType
,
typename
R0DataType
,
typename
R1DataType
>
void
DumpPerf
(
float
ave_time
,
int
M
,
int
N
,
int
K
)
{
{
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
bool
do_verification
=
true
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
int
init_method
=
1
;
sizeof
(
EDataType
)
*
M
*
N
+
sizeof
(
R0DataType
)
*
M
+
bool
time_kernel
=
true
;
sizeof
(
R1DataType
)
*
M
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
std
::
vector
<
std
::
size_t
>
({
stride
}));
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
int
main
()
// GEMM shape
{
ck
::
index_t
M
=
1024
;
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
K
=
1024
;
...
@@ -130,125 +119,56 @@ int main()
...
@@ -130,125 +119,56 @@ int main()
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideE
=
1024
;
ck
::
index_t
StrideE
=
1024
;
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
if
(
argc
==
1
)
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
EDataType
>
e_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
R0DataType
>
r0_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R1DataType
>
r1_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
1
,
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
1
,
1
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r0_device_buf
(
sizeof
(
R0DataType
)
*
r0_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r1_device_buf
(
sizeof
(
R1DataType
)
*
r1_m
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
qs_element_op
=
QsElementOp
{};
auto
rs_element_op
=
RsElementOp
{
N
,
N
};
// Prepare GEMM, mean, mean_square
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
e_device_buf
.
GetDeviceBuffer
(),
{
r0_device_buf
.
GetDeviceBuffer
(),
r1_device_buf
.
GetDeviceBuffer
()},
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
{
throw
std
::
runtime_error
(
"wrong! this device_op instance
do
es
not
support this problem"
);
//
do not
hing
}
}
else
if
(
argc
==
4
)
// init reducetion buffer to 0
r0_device_buf
.
SetZero
();
r1_device_buf
.
SetZero
();
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
do_verification
=
true
;
bool
pass
=
true
;
if
(
do_verification
)
{
auto
I0
=
ck
::
Number
<
0
>
{};
auto
I1
=
ck
::
Number
<
1
>
{};
Tensor
<
EDataType
>
e_m_n_host
(
e_m_n
.
mDesc
);
Tensor
<
R0DataType
>
r0_m_host
(
r0_m
.
mDesc
);
Tensor
<
R1DataType
>
r1_m_host
(
r1_m
.
mDesc
);
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
e_m_n_host
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
auto
reduce0_op
=
R0ThreadReduceOp
{};
auto
reduce1_op
=
R1ThreadReduceOp
{};
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
reduce0_acc
=
reduce0_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
auto
reduce1_acc
=
reduce1_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
{
ReduceAccDataType
square_e_val
;
do_verification
=
std
::
stoi
(
argv
[
1
]);
auto
e_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
e_m_n_host
(
m
,
n
));
init_method
=
std
::
stoi
(
argv
[
2
]);
qs_element_op
[
I1
](
square_e_val
,
e_val
);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
reduce0_op
(
reduce0_acc
,
e_val
);
reduce1_op
(
reduce1_acc
,
square_e_val
);
}
rs_element_op
[
I0
](
reduce0_acc
,
reduce0_acc
);
rs_element_op
[
I1
](
reduce1_acc
,
reduce1_acc
);
r0_m_host
(
m
)
=
ck
::
type_convert
<
R0DataType
>
(
reduce0_acc
);
r1_m_host
(
m
)
=
ck
::
type_convert
<
R1DataType
>
(
reduce1_acc
);
}
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
e_device_buf
.
FromDevice
(
e_m_n
.
mData
.
data
()
);
M
=
std
::
stoi
(
argv
[
4
]
);
r0_device_buf
.
FromDevice
(
r0_m
.
mData
.
data
()
);
N
=
std
::
stoi
(
argv
[
5
]
);
r1_device_buf
.
FromDevice
(
r1_m
.
mData
.
data
()
);
K
=
std
::
stoi
(
argv
[
6
]
);
pass
=
ck
::
utils
::
check_err
(
StrideA
=
std
::
stoi
(
argv
[
7
]);
e_m_n
.
mData
,
e_m_n_host
.
mData
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
StrideB
=
std
::
stoi
(
argv
[
8
]);
pass
&=
ck
::
utils
::
check_err
(
StrideE
=
std
::
stoi
(
argv
[
9
]);
r0_m
.
mData
,
r0_m_host
.
mData
,
"Error: Incorrect results d0"
,
1e-2
,
1e-2
);
pass
&=
ck
::
utils
::
check_err
(
r1_m
.
mData
,
r1_m_host
.
mData
,
"Error: Incorrect results d1"
,
1e-2
,
1e-2
);
}
}
else
bool
time_kernel
=
true
;
if
(
time_kernel
)
{
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
DumpPerf
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
R1DataType
>
(
ave_time
,
M
,
N
,
K
);
<<
" arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
" arg3: Measure kernel execution time (1=ON, 0=Off)
\n
"
<<
" arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
\n
"
<<
std
::
endl
;
exit
(
EXIT_SUCCESS
);
}
}
return
pass
?
0
:
1
;
return
!
run_gemm_reduce_mean_meansquare_xdl
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
R1DataType
,
ALayout
,
BLayout
,
ELayout
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
ReduceAccDataType
,
DeviceOpInstance
,
ReferenceGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideE
,
do_verification
,
init_method
,
time_kernel
);
}
}
example/16_gemm_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp32.cpp
0 → 100644
View file @
2732d06c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_reduce_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
// DataType
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
GemmAccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F32
;
using
ReduceAccDataType
=
F32
;
using
R0DataType
=
F32
;
using
R1DataType
=
F32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
,
R1DataType
>
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
// Elementwise op
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
,
Square
>
;
using
RsElementOp
=
ck
::
Tuple
<
Div
,
Div
>
;
// ReduceOp
using
R0ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
R1ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
RsThreadReduceOp
=
ck
::
Tuple
<
R0ThreadReduceOp
,
R1ThreadReduceOp
>
;
static
constexpr
auto
R0GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
static
constexpr
auto
R1GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
R0GlobalReduceOp
,
R1GlobalReduceOp
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
<
ALayout
,
// ALayout
BLayout
,
// BLayout
ELayout
,
// ELayout
ADataType
,
// ADataType
BDataType
,
// BDataType
GemmAccDataType
,
// GemmAccDataType
CShuffleDataType
,
// CShuffleDataType
DsDataType
,
// DsDataType
EDataType
,
// EDataType
ReduceAccDataType
,
// ReduceAccDataType
RsDataType
,
// RsDataType
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CDEElementOp
,
// CDE ElementwiseOperation
QsElementOp
,
// Qs Elementwise Operation
RsElementOp
,
// Rs Elementwise Operation
RsThreadReduceOp
,
// Thread Reduce Operation
RsGlobalReduceOp
,
// Global Reduce Operation
GemmDefault
,
// GEMM Specialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
16
,
// KPerBlock
4
,
// AK1
4
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
4
,
// ABlockTransfer SrcScalarPerVector
4
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
4
,
// BBlockTransfer SrcScalarPerVector
4
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
64
,
4
>
,
// CD Reduce Thread Transfer ClusterLengths _MPerBlock_NPerBlock
4
,
// CDE ReduceThreadTransfer ScalarPerVector _NPerBlock
1
>
;
// RThread DstScalarPerVector _MPerBlock
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
ReduceAccDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
StrideA
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideE
=
1024
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideE
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
" arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
" arg3: Measure kernel execution time (1=ON, 0=Off)
\n
"
<<
" arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
\n
"
<<
std
::
endl
;
exit
(
EXIT_SUCCESS
);
}
return
!
run_gemm_reduce_mean_meansquare_xdl
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
R1DataType
,
ALayout
,
BLayout
,
ELayout
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
ReduceAccDataType
,
DeviceOpInstance
,
ReferenceGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideE
,
do_verification
,
init_method
,
time_kernel
);
}
example/16_gemm_multi_d_multi_reduces/gemm_reduce_xdl_common.hpp
0 → 100644
View file @
2732d06c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/host_utility/io.hpp"
#include "ck/stream_config.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
F64
=
double
;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
using
INT4
=
ck
::
int4_t
;
#endif
using
INT8
=
std
::
int8_t
;
using
INT32
=
std
::
int32_t
;
template
<
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
R0DataType
>
void
DumpGemmReduceMaxPerf
(
float
ave_time
,
int
M
,
int
N
,
int
K
)
{
using
namespace
ck
::
literals
;
std
::
size_t
flop
=
2
_uz
*
M
*
N
*
K
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
+
sizeof
(
R0DataType
)
*
M
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
template
<
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
R0DataType
,
typename
R1DataType
>
void
DumpGemmReduceMeanSquareMeanPerf
(
float
ave_time
,
int
M
,
int
N
,
int
K
)
{
using
namespace
ck
::
literals
;
std
::
size_t
flop
=
2
_uz
*
M
*
N
*
K
+
M
*
(
3
_uz
*
N
+
2
_uz
);
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
+
sizeof
(
R0DataType
)
*
M
+
sizeof
(
R1DataType
)
*
M
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
template
<
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
R0DataType
,
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
typename
AElementOp
,
typename
BElementOp
,
typename
CDEElementOp
,
typename
QsElementOp
,
typename
RsElementOp
,
typename
RsThreadReduceOp
,
typename
ReduceAccDataType
,
typename
DeviceOpInstance
,
typename
ReferenceGemmInstance
,
typename
ADataKernelType
=
ADataType
,
typename
BDataKernelType
=
BDataType
,
typename
EDataKernelType
=
EDataType
>
auto
run_gemm_reduce_max_xdl
(
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB
,
ck
::
index_t
StrideE
,
bool
do_verification
,
int
init_method
,
bool
time_kernel
)
{
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
static_assert
(
sizeof
(
ck
::
int4_t
)
==
sizeof
(
int8_t
));
static_assert
(
sizeof
(
ADataType
)
==
sizeof
(
ADataKernelType
));
static_assert
(
sizeof
(
BDataType
)
==
sizeof
(
BDataKernelType
));
static_assert
(
sizeof
(
EDataType
)
==
sizeof
(
EDataKernelType
));
#endif
using
namespace
ck
::
literals
;
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
({
len
},
{
stride
});
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
EDataKernelType
>
e_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
R0DataType
>
r0_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
5.
f
,
5.
f
}(
a_m_k
.
begin
(),
a_m_k
.
end
());
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
5.
f
,
5.
f
}(
b_k_n
.
begin
(),
b_k_n
.
end
());
break
;
default:
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
1.
f
,
1.
f
}(
a_m_k
.
begin
(),
a_m_k
.
end
());
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
1.
f
,
1.
f
}(
b_k_n
.
begin
(),
b_k_n
.
end
());
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataKernelType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataKernelType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataKernelType
)
*
e_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r0_device_buf
(
sizeof
(
R0DataType
)
*
r0_m
.
mDesc
.
GetElementSpaceSize
());
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
constexpr
(
std
::
is_same_v
<
ADataType
,
ck
::
int4_t
>
)
{
Tensor
<
ADataKernelType
>
a_m_k_converted
=
a_m_k
.
template
CopyAsType
<
ADataKernelType
>();
Tensor
<
BDataKernelType
>
b_k_n_converted
=
b_k_n
.
template
CopyAsType
<
BDataKernelType
>();
a_device_buf
.
ToDevice
(
a_m_k_converted
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n_converted
.
mData
.
data
());
}
else
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
{
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
qs_element_op
=
QsElementOp
{};
auto
rs_element_op
=
RsElementOp
{};
// Prepare GEMM, max
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
e_device_buf
.
GetDeviceBuffer
(),
{
r0_device_buf
.
GetDeviceBuffer
()},
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
// [CAUTION]: launch_and_time_kernel will not initialize D.
// If we evaluate kernel multiple time but without initialize D. Verification will fail
r0_device_buf
.
SetValue
(
ck
::
NumericLimits
<
R0DataType
>::
Lowest
());
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
if
(
do_verification
)
{
auto
I0
=
ck
::
Number
<
0
>
{};
Tensor
<
ReduceAccDataType
>
e_m_n_host
(
e_m_n
.
mDesc
);
Tensor
<
R0DataType
>
r0_m_host
(
r0_m
.
mDesc
);
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
e_m_n_host
,
a_element_op
,
b_element_op
,
cde_element_op
);
ref_invoker
.
Run
(
ref_argument
);
auto
reduce0_op
=
RsThreadReduceOp
{}[
I0
];
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
reduce0_acc
=
reduce0_op
.
template
GetIdentityValue
<
ReduceAccDataType
>();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
auto
e_val
=
e_m_n_host
(
m
,
n
);
reduce0_op
(
reduce0_acc
,
e_val
);
};
r0_m_host
(
m
)
=
ck
::
type_convert
<
R0DataType
>
(
reduce0_acc
);
}
e_device_buf
.
FromDevice
(
e_m_n
.
mData
.
data
());
Tensor
<
EDataType
>
e_m_n_host_converted
(
e_m_n_host
);
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
constexpr
(
std
::
is_same_v
<
ADataType
,
ck
::
int4_t
>
)
{
Tensor
<
EDataType
>
e_m_n_device_converted
(
e_m_n
);
pass
=
ck
::
utils
::
check_err
(
e_m_n_device_converted
.
mData
,
e_m_n_host_converted
.
mData
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
}
else
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
{
pass
=
ck
::
utils
::
check_err
(
e_m_n
.
mData
,
e_m_n_host_converted
.
mData
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
}
r0_device_buf
.
FromDevice
(
r0_m
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
r0_m
.
mData
,
r0_m_host
.
mData
,
"Error: Incorrect results d0"
,
1e-2
,
1e-2
);
if
(
pass
)
{
std
::
cout
<<
"Success!"
<<
std
::
endl
;
}
}
if
(
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
DumpGemmReduceMaxPerf
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
>
(
ave_time
,
M
,
N
,
K
);
}
return
pass
?
0
:
1
;
}
template
<
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
R0DataType
,
typename
R1DataType
,
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
typename
AElementOp
,
typename
BElementOp
,
typename
CDEElementOp
,
typename
QsElementOp
,
typename
RsElementOp
,
typename
RsThreadReduceOp
,
typename
ReduceAccDataType
,
typename
DeviceOpInstance
,
typename
ReferenceGemmInstance
,
typename
ADataKernelType
=
ADataType
,
typename
BDataKernelType
=
BDataType
,
typename
EDataKernelType
=
EDataType
>
bool
run_gemm_reduce_mean_meansquare_xdl
(
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB
,
ck
::
index_t
StrideE
,
bool
do_verification
,
int
init_method
,
bool
time_kernel
)
{
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
static_assert
(
sizeof
(
ck
::
int4_t
)
==
sizeof
(
int8_t
));
static_assert
(
sizeof
(
ADataType
)
==
sizeof
(
ADataKernelType
));
static_assert
(
sizeof
(
BDataType
)
==
sizeof
(
BDataKernelType
));
static_assert
(
sizeof
(
EDataType
)
==
sizeof
(
EDataKernelType
));
#endif
using
namespace
ck
::
literals
;
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
({
len
},
{
stride
});
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
EDataKernelType
>
e_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
R0DataType
>
r0_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R1DataType
>
r1_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
5.
f
,
5.
f
}(
a_m_k
.
begin
(),
a_m_k
.
end
());
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
5.
f
,
5.
f
}(
b_k_n
.
begin
(),
b_k_n
.
end
());
break
;
default:
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
1.
f
,
1.
f
}(
a_m_k
.
begin
(),
a_m_k
.
end
());
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
1.
f
,
1.
f
}(
b_k_n
.
begin
(),
b_k_n
.
end
());
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataKernelType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataKernelType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataKernelType
)
*
e_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r0_device_buf
(
sizeof
(
R0DataType
)
*
r0_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r1_device_buf
(
sizeof
(
R1DataType
)
*
r1_m
.
mDesc
.
GetElementSpaceSize
());
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
constexpr
(
std
::
is_same_v
<
ADataType
,
ck
::
int4_t
>
)
{
Tensor
<
ADataKernelType
>
a_m_k_converted
=
a_m_k
.
template
CopyAsType
<
ADataKernelType
>();
Tensor
<
BDataKernelType
>
b_k_n_converted
=
b_k_n
.
template
CopyAsType
<
BDataKernelType
>();
a_device_buf
.
ToDevice
(
a_m_k_converted
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n_converted
.
mData
.
data
());
}
else
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
{
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
qs_element_op
=
QsElementOp
{};
auto
rs_element_op
=
RsElementOp
{
N
,
N
};
// Prepare GEMM, mean, mean_square
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
e_device_buf
.
GetDeviceBuffer
(),
{
r0_device_buf
.
GetDeviceBuffer
(),
r1_device_buf
.
GetDeviceBuffer
()},
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
// init reducetion buffer to 0
r0_device_buf
.
SetZero
();
r1_device_buf
.
SetZero
();
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
if
(
do_verification
)
{
auto
I0
=
ck
::
Number
<
0
>
{};
auto
I1
=
ck
::
Number
<
1
>
{};
Tensor
<
ReduceAccDataType
>
e_m_n_host
(
e_m_n
.
mDesc
);
Tensor
<
R0DataType
>
r0_m_host
(
r0_m
.
mDesc
);
Tensor
<
R1DataType
>
r1_m_host
(
r1_m
.
mDesc
);
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
e_m_n_host
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
auto
reduce0_op
=
RsThreadReduceOp
{}[
I0
];
auto
reduce1_op
=
RsThreadReduceOp
{}[
I1
];
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
reduce0_acc
=
reduce0_op
.
template
GetIdentityValue
<
ReduceAccDataType
>();
auto
reduce1_acc
=
reduce1_op
.
template
GetIdentityValue
<
ReduceAccDataType
>();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ReduceAccDataType
square_e_val
;
auto
e_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
e_m_n_host
(
m
,
n
));
qs_element_op
[
I1
](
square_e_val
,
e_val
);
reduce0_op
(
reduce0_acc
,
e_val
);
reduce1_op
(
reduce1_acc
,
square_e_val
);
}
rs_element_op
[
I0
](
reduce0_acc
,
reduce0_acc
);
rs_element_op
[
I1
](
reduce1_acc
,
reduce1_acc
);
r0_m_host
(
m
)
=
ck
::
type_convert
<
R0DataType
>
(
reduce0_acc
);
r1_m_host
(
m
)
=
ck
::
type_convert
<
R1DataType
>
(
reduce1_acc
);
}
e_device_buf
.
FromDevice
(
e_m_n
.
mData
.
data
());
Tensor
<
EDataType
>
e_m_n_host_converted
(
e_m_n_host
);
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
constexpr
(
std
::
is_same_v
<
ADataType
,
ck
::
int4_t
>
)
{
Tensor
<
EDataType
>
e_m_n_device_converted
(
e_m_n
);
pass
=
ck
::
utils
::
check_err
(
e_m_n_device_converted
.
mData
,
e_m_n_host_converted
.
mData
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
}
else
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
{
pass
=
ck
::
utils
::
check_err
(
e_m_n
.
mData
,
e_m_n_host_converted
.
mData
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
}
r0_device_buf
.
FromDevice
(
r0_m
.
mData
.
data
());
r1_device_buf
.
FromDevice
(
r1_m
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
r0_m
.
mData
,
r0_m_host
.
mData
,
"Error: Incorrect results d0"
,
1e-2
,
1e-2
);
pass
&=
ck
::
utils
::
check_err
(
r1_m
.
mData
,
r1_m_host
.
mData
,
"Error: Incorrect results d1"
,
1e-2
,
1e-2
);
if
(
pass
)
{
std
::
cout
<<
"Success!"
<<
std
::
endl
;
}
}
if
(
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
DumpGemmReduceMeanSquareMeanPerf
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
R1DataType
>
(
ave_time
,
M
,
N
,
K
);
}
return
pass
;
}
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp
View file @
2732d06c
...
@@ -163,9 +163,9 @@ int main(int argc, char* argv[])
...
@@ -163,9 +163,9 @@ int main(int argc, char* argv[])
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
]},
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
]},
{
{
conv_param
.
K_
,
// g
conv_param
.
K_
,
// g
0
,
//
k
0
,
//
n
1
,
//
c
1
,
//
k
0
//
x
0
//
wo
});
});
const
auto
residual_g_n_k_wos_desc
=
HostTensorDescriptor
(
const
auto
residual_g_n_k_wos_desc
=
HostTensorDescriptor
(
...
...
example/31_batched_gemm_gemm/CMakeLists.txt
View file @
2732d06c
add_example_executable
(
example_batched_gemm_gemm_xdl_fp32 batched_gemm_gemm_xdl_fp32.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_fp16 batched_gemm_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_fp16 batched_gemm_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_bf16 batched_gemm_gemm_xdl_bf16.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int8 batched_gemm_gemm_xdl_int8.cpp
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int4 batched_gemm_gemm_xdl_int4.cpp
)
endif
(
USE_BITINT_EXTENSION_INT4
)
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_bf16.cpp
0 → 100644
View file @
2732d06c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Gemm fused operation. Computes C_m_o = A_m_k * B0_k_n * B1_n_o
|------------|
Gemm0
|---------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
BF16
;
using
B0DataType
=
BF16
;
using
B1DataType
=
BF16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
BF16
;
using
ALayout
=
Row
;
using
B0Layout
=
Col
;
using
B1Layout
=
Row
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
PassThrough
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmGemm_Xdl_CShuffle
<
ALayout
,
B0Layout
,
B1Layout
,
CLayout
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
128
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
128
,
// Gemm1NPerBlock
32
,
// Gemm1KPerBlock
8
,
// AK1
8
,
// BK1
2
,
// B1K1
32
,
// MPerXDL
32
,
// NPerXDL
1
,
// MXdlPerWave
4
,
// NXdlPerWave
4
,
// Gemm1NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
// BBlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
// B1BlockTransfer
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
// CShuffleMXdlPerWavePerShuffle
2
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
>
;
// CShuffleBlockTransferScalarPerVector_NPerBlock
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B0DataType
,
ADataType
,
AccDataType
,
AElementOp
,
B0ElementOp
,
CElementOp
>
;
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
AccDataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
#include "run_batched_gemm_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_batched_gemm_gemm_example
(
argc
,
argv
)
?
0
:
1
;
}
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_fp16.cpp
View file @
2732d06c
...
@@ -121,6 +121,7 @@ using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
...
@@ -121,6 +121,7 @@ using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
AElementOp
,
AElementOp
,
B0ElementOp
,
B0ElementOp
,
CElementOp
>
;
CElementOp
>
;
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
B1DataType
,
CDataType
,
CDataType
,
...
@@ -129,244 +130,6 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
...
@@ -129,244 +130,6 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
B1ElementOp
,
B1ElementOp
,
CElementOp
>
;
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
#include "run_batched_gemm_gemm_example.inc"
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
64
;
ck
::
index_t
O
=
128
;
ck
::
index_t
BatchCount
=
4
;
ck
::
index_t
StrideA
=
-
1
;
ck
::
index_t
StrideB0
=
-
1
;
ck
::
index_t
StrideB1
=
-
1
;
ck
::
index_t
StrideC
=
-
1
;
ck
::
index_t
BatchStrideA
=
-
1
;
ck
::
index_t
BatchStrideB0
=
-
1
;
ck
::
index_t
BatchStrideB1
=
-
1
;
ck
::
index_t
BatchStrideC
=
-
1
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
9
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
O
=
std
::
stoi
(
argv
[
7
]);
BatchCount
=
std
::
stoi
(
argv
[
8
]);
}
else
if
(
argc
==
17
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
O
=
std
::
stoi
(
argv
[
7
]);
BatchCount
=
std
::
stoi
(
argv
[
8
]);
StrideA
=
std
::
stoi
(
argv
[
9
]);
StrideB0
=
std
::
stoi
(
argv
[
10
]);
StrideB1
=
std
::
stoi
(
argv
[
11
]);
StrideC
=
std
::
stoi
(
argv
[
12
]);
BatchStrideA
=
std
::
stoi
(
argv
[
13
]);
BatchStrideB0
=
std
::
stoi
(
argv
[
14
]);
BatchStrideB1
=
std
::
stoi
(
argv
[
15
]);
BatchStrideC
=
std
::
stoi
(
argv
[
16
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 17: M, N, K, O, Batch, StrideA, StrideB0, StrideB1, StrideC, BatchStrideA, "
"BatchStrideB0, BatchStrideB1, BatchStrideC
\n
"
);
exit
(
0
);
}
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB0
=
ck
::
is_same_v
<
B0Layout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideB1
=
ck
::
is_same_v
<
B1Layout
,
Row
>
?
O
:
N
;
const
int
DefaultStrideC
=
ck
::
is_same_v
<
CLayout
,
Row
>
?
O
:
M
;
StrideA
=
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
;
StrideB0
=
(
StrideB0
<
0
)
?
DefaultStrideB0
:
StrideB0
;
StrideB1
=
(
StrideB1
<
0
)
?
DefaultStrideB1
:
StrideB1
;
StrideC
=
(
StrideC
<
0
)
?
DefaultStrideC
:
StrideC
;
const
int
DefaultBatchStrideA
=
(
ck
::
is_same_v
<
ALayout
,
Col
>
?
K
:
M
)
*
StrideA
;
const
int
DefaultBatchStrideB0
=
(
ck
::
is_same_v
<
B0Layout
,
Col
>
?
N
:
K
)
*
StrideB0
;
const
int
DefaultBatchStrideB1
=
(
ck
::
is_same_v
<
B1Layout
,
Col
>
?
O
:
N
)
*
StrideB1
;
const
int
DefaultBatchStrideC
=
(
ck
::
is_same_v
<
CLayout
,
Col
>
?
O
:
M
)
*
StrideC
;
BatchStrideA
=
BatchStrideA
<
0
?
DefaultBatchStrideA
:
BatchStrideA
;
BatchStrideB0
=
BatchStrideB0
<
0
?
DefaultBatchStrideB0
:
BatchStrideB0
;
BatchStrideB1
=
BatchStrideB1
<
0
?
DefaultBatchStrideB1
:
BatchStrideB1
;
BatchStrideC
=
BatchStrideC
<
0
?
DefaultBatchStrideC
:
BatchStrideC
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
Row
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
1
,
stride
}));
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
BatchStrideA
,
ALayout
{}));
Tensor
<
B0DataType
>
b0_g_k_n
(
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB0
,
BatchStrideB0
,
B0Layout
{}));
Tensor
<
B1DataType
>
b1_g_n_o
(
f_host_tensor_descriptor
(
BatchCount
,
N
,
O
,
StrideB1
,
BatchStrideB1
,
B1Layout
{}));
Tensor
<
CDataType
>
c_g_m_o_host_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
O
,
StrideC
,
BatchStrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_g_m_o_device_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
O
,
StrideC
,
BatchStrideC
,
CLayout
{}));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_g_k_n: "
<<
b0_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_g_n_o: "
<<
b1_g_n_o
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_g_m_o: "
<<
c_g_m_o_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
5
,
5
});
break
;
case
2
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
DeviceMem
a_g_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_g_k_n_device_buf
(
sizeof
(
B0DataType
)
*
b0_g_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b1_g_n_o_device_buf
(
sizeof
(
B1DataType
)
*
b1_g_n_o
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_g_m_o_device_buf
(
sizeof
(
CDataType
)
*
c_g_m_o_device_result
.
mDesc
.
GetElementSpaceSize
());
a_g_m_k_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b0_g_k_n_device_buf
.
ToDevice
(
b0_g_k_n
.
mData
.
data
());
b1_g_n_o_device_buf
.
ToDevice
(
b1_g_n_o
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
auto
acc0_element_op
=
Acc0ElementOp
{};
auto
b1_element_op
=
B1ElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_g_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B0DataType
*>
(
b0_g_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B1DataType
*>
(
b1_g_n_o_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_g_m_o_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
O
,
BatchCount
,
StrideA
,
StrideB0
,
StrideB1
,
StrideC
,
BatchStrideA
,
BatchStrideB0
,
BatchStrideB1
,
BatchStrideC
,
a_element_op
,
b0_element_op
,
acc0_element_op
,
b1_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
BatchCount
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
+
sizeof
(
CDataType
)
*
M
*
O
)
*
BatchCount
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
c_g_m_o_device_buf
.
FromDevice
(
c_g_m_o_device_result
.
mData
.
data
());
if
(
do_verification
)
{
// Output of Gemm0 is input A of Gemm1
Tensor
<
ADataType
>
a1_g_m_n
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
N
,
M
*
N
,
Row
{}));
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g_m_k
,
b0_g_k_n
,
a1_g_m_n
,
a_element_op
,
b0_element_op
,
PassThrough
{});
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
a1_g_m_n
,
b1_g_n_o
,
c_g_m_o_host_result
,
PassThrough
{},
b1_element_op
,
c_element_op
);
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
return
ck
::
utils
::
check_err
(
c_g_m_o_device_result
.
mData
,
c_g_m_o_host_result
.
mData
)
?
0
:
1
;
}
return
0
;
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_batched_gemm_gemm_example
(
argc
,
argv
)
?
0
:
1
;
}
}
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_fp32.cpp
0 → 100644
View file @
2732d06c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Gemm fused operation. Computes C_m_o = A_m_k * B0_k_n * B1_n_o
|------------|
Gemm0
|---------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F32
;
using
B0DataType
=
F32
;
using
B1DataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
F32
;
using
ALayout
=
Row
;
using
B0Layout
=
Col
;
using
B1Layout
=
Row
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
PassThrough
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmGemm_Xdl_CShuffle
<
ALayout
,
B0Layout
,
B1Layout
,
CLayout
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
128
,
// MPerBlock
128
,
// NPerBlock
16
,
// KPerBlock
128
,
// Gemm1NPerBlock
16
,
// Gemm1KPerBlock
4
,
// AK1
4
,
// BK1
1
,
// B1K1
32
,
// MPerXDL
32
,
// NPerXDL
1
,
// MXdlPerWave
4
,
// NXdlPerWave
4
,
// Gemm1NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
true
,
S
<
4
,
64
,
1
>
,
// BBlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
true
,
S
<
8
,
32
,
1
>
,
// B1BlockTransfer
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
false
,
1
,
// CShuffleMXdlPerWavePerShuffle
2
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
16
,
1
,
16
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
4
>
;
// CShuffleBlockTransferScalarPerVector_NPerBlock
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B0DataType
,
ADataType
,
AccDataType
,
AElementOp
,
B0ElementOp
,
CElementOp
>
;
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
AccDataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
#include "run_batched_gemm_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_batched_gemm_gemm_example
(
argc
,
argv
)
?
0
:
1
;
}
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_int4.cpp
0 → 100644
View file @
2732d06c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Gemm fused operation. Computes C_m_o = A_m_k * B0_k_n * B1_n_o
|------------|
Gemm0
|---------------------|
Gemm1
*/
#ifndef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#error Should compile this file with ck::int4_t support
#endif
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
ck
::
int4_t
;
using
B0DataType
=
ck
::
int4_t
;
using
B1DataType
=
ck
::
int4_t
;
using
KernelADataType
=
int8_t
;
using
KernelB0DataType
=
int8_t
;
using
KernelB1DataType
=
int8_t
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int32_t
;
using
CDataType
=
ck
::
int4_t
;
using
KernelCDataType
=
int8_t
;
using
ALayout
=
Row
;
using
B0Layout
=
Col
;
using
B1Layout
=
Row
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
PassThrough
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmGemm_Xdl_CShuffle
<
ALayout
,
B0Layout
,
B1Layout
,
CLayout
,
KernelADataType
,
KernelB0DataType
,
KernelB1DataType
,
KernelCDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
128
,
// MPerBlock
128
,
// NPerBlock
64
,
// KPerBlock
128
,
// Gemm1NPerBlock
64
,
// Gemm1KPerBlock
16
,
// AK1
16
,
// BK1
4
,
// B1K1
32
,
// MPerXDL
32
,
// NPerXDL
1
,
// MXdlPerWave
4
,
// NXdlPerWave
4
,
// Gemm1NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
true
,
S
<
4
,
64
,
1
>
,
// BBlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
true
,
S
<
8
,
32
,
1
>
,
// B1BlockTransfer
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
false
,
1
,
// CShuffleMXdlPerWavePerShuffle
2
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
>
;
// CShuffleBlockTransferScalarPerVector_NPerBlock
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B0DataType
,
ADataType
,
AccDataType
,
AElementOp
,
B0ElementOp
,
CElementOp
>
;
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
AccDataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
#define BUILD_INT4_EXAMPLE
#include "run_batched_gemm_gemm_example.inc"
#if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
static_assert
(
sizeof
(
ck
::
int4_t
)
==
sizeof
(
int8_t
));
#endif
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_batched_gemm_gemm_example
(
argc
,
argv
)
?
0
:
1
;
}
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_int8.cpp
0 → 100644
View file @
2732d06c
This diff is collapsed.
Click to expand it.
example/31_batched_gemm_gemm/run_batched_gemm_gemm_example.inc
0 → 100644
View file @
2732d06c
This diff is collapsed.
Click to expand it.
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
View file @
2732d06c
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_padded_batched_gemm_scale_softmax_gemm_xdl_fp16 padded_batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
)
example/32_batched_gemm_scale_softmax_gemm/padded_batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
0 → 100644
View file @
2732d06c
This diff is collapsed.
Click to expand it.
example/41_grouped_conv_conv_fwd/CMakeLists.txt
0 → 100644
View file @
2732d06c
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_fp32 grouped_conv_conv_fwd_xdl_fp32.cpp
)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_fp16 grouped_conv_conv_fwd_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_bf16 grouped_conv_conv_fwd_xdl_bf16.cpp
)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_int8 grouped_conv_conv_fwd_xdl_int8.cpp
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_int4 grouped_conv_conv_fwd_xdl_int4.cpp
)
endif
(
USE_BITINT_EXTENSION_INT4
)
Prev
1
2
3
4
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment