Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
24f96b50
Commit
24f96b50
authored
Jan 29, 2023
by
fsx950223
Browse files
add grouped backward
parent
ac07f2cd
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
1231 additions
and
17 deletions
+1231
-17
example/32_batched_gemm_scale_softmax_gemm/batched_multihead_attention_backward_pt1_fp16.cpp
...ax_gemm/batched_multihead_attention_backward_pt1_fp16.cpp
+2
-2
example/32_batched_gemm_scale_softmax_gemm/grouped_multihead_attention_backward_fp16.cpp
...oftmax_gemm/grouped_multihead_attention_backward_fp16.cpp
+72
-4
include/ck/tensor_operation/gpu/device/impl/device_batched_multihead_attention_backward_xdl_cshuffle_v2.hpp
..._batched_multihead_attention_backward_xdl_cshuffle_v2.hpp
+2
-2
include/ck/tensor_operation/gpu/device/impl/device_grouped_multihead_attention_backward_xdl_cshuffle.hpp
...ice_grouped_multihead_attention_backward_xdl_cshuffle.hpp
+0
-8
include/ck/tensor_operation/gpu/device/impl/device_grouped_multihead_attention_backward_xdl_cshuffle_v2.hpp
..._grouped_multihead_attention_backward_xdl_cshuffle_v2.hpp
+1154
-0
include/ck/tensor_operation/gpu/grid/gridwise_batched_multihead_attention_backward_xdl_cshuffle_v2.hpp
..._batched_multihead_attention_backward_xdl_cshuffle_v2.hpp
+1
-1
No files found.
example/32_batched_gemm_scale_softmax_gemm/batched_multihead_attention_backward_pt1_fp16.cpp
View file @
24f96b50
...
...
@@ -248,8 +248,8 @@ int run(int argc, char* argv[])
ck
::
index_t
N
=
512
;
ck
::
index_t
K
=
64
;
ck
::
index_t
O
=
64
;
ck
::
index_t
G0
=
54
;
//54
ck
::
index_t
G1
=
16
;
//16
ck
::
index_t
G0
=
2
;
//54
ck
::
index_t
G1
=
2
;
//16
float
alpha
=
1.
f
/
std
::
sqrt
(
K
);
...
...
example/32_batched_gemm_scale_softmax_gemm/grouped_multihead_attention_backward_fp16.cpp
View file @
24f96b50
...
...
@@ -35,6 +35,7 @@ Kernel outputs:
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_multihead_attention_backward_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_multihead_attention_backward_xdl_cshuffle_v2.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
...
...
@@ -44,6 +45,8 @@ Kernel outputs:
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#define FLASH_ATTN_IMPLENTATION 0
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
...
@@ -83,6 +86,7 @@ static constexpr auto TensorSpecK = ck::tensor_operation::device::TensorSpeciali
static
constexpr
auto
TensorSpecV
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecY
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
#if FLASH_ATTN_IMPLENTATION
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle
<
NumDimG
,
...
...
@@ -147,7 +151,72 @@ using DeviceGemmInstance =
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
,
// CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec
>
;
// MaskingSpecialization
#else
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
DataType
,
LSEDataType
,
Acc0BiasDataType
,
Acc1BiasDataType
,
AccDataType
,
ShuffleDataType
,
QKVElementOp
,
QKVElementOp
,
Scale
,
QKVElementOp
,
YElementOp
,
GemmSpec
,
TensorSpecQ
,
TensorSpecK
,
TensorSpecV
,
TensorSpecY
,
1
,
256
,
128
,
// MPerBlock
128
,
// NPerBlock
64
,
// KPerBlock
64
,
// Gemm1NPerBlock
32
,
// Gemm1KPerBlock
8
,
// AK1
8
,
// BK1
2
,
// B1K1
32
,
// MPerXDL
32
,
// NPerXDL
1
,
// MXdlPerWave
4
,
// NXdlPerWave
2
,
// Gemm1NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
// BBlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
// B1BlockTransfer
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
// CShuffleMXdlPerWavePerShuffle
2
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
,
// CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec
>
;
// MaskingSpecialization
#endif
// Ref Gemm0: S = alpha * Q * K^T
// fp16 in, fp32 out
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
DataType
,
...
...
@@ -327,11 +396,10 @@ int run(int argc, char* argv[])
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
){
int
M
=
128
*
(
rand
()
%
4
+
1
);
int
N
=
128
*
(
rand
()
%
4
+
1
);
int
K
=
128
;
int
O
=
128
;
int
K
=
64
;
int
O
=
64
;
int
G0
=
rand
()
%
3
+
1
;
int
G1
=
rand
()
%
2
+
1
;
std
::
vector
<
ck
::
index_t
>
q_gs_ms_ks_lengths
{
G0
,
G1
,
M
,
K
};
std
::
vector
<
ck
::
index_t
>
q_gs_ms_ks_strides
=
input_permute
...
...
include/ck/tensor_operation/gpu/device/impl/device_batched_multihead_attention_backward_xdl_cshuffle_v2.hpp
View file @
24f96b50
...
...
@@ -15,7 +15,7 @@
#include "ck/tensor_operation/gpu/device/masking_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_multihead_attention_backward_xdl_cshuffle_v
3
.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_multihead_attention_backward_xdl_cshuffle_v
2
.hpp"
#include "ck/tensor_operation/operator_transform/transform_contraction_to_gemm.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
...
...
@@ -554,7 +554,7 @@ struct DeviceBatchedMultiheadAttentionBackward_Xdl_CShuffle_V2
};
// GridwiseGemm
using
GridwiseGemm
=
GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
<
using
GridwiseGemm
=
GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
_V2
<
DataType
,
// TODO: distinguish A/B datatype
LSEDataType
,
GemmAccDataType
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_multihead_attention_backward_xdl_cshuffle.hpp
View file @
24f96b50
...
...
@@ -952,8 +952,6 @@ struct DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle
{
return
false
;
}
bool
all_has_main_k_block_loop
=
true
;
bool
some_has_main_k_block_loop
=
false
;
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
group_count_
;
i
++
)
{
...
...
@@ -972,12 +970,6 @@ struct DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle
return
false
;
}
// Check if having main loop
const
auto
K
=
kernel_arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
kernel_arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
const
bool
y
=
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
);
all_has_main_k_block_loop
&=
y
;
some_has_main_k_block_loop
|=
y
;
// Note: we need raw lengths since threadwise copy can not handle vector load when part
// of vector is out of bounds Note: need lowest dim in Ms/Ns/Ks/Os, not merged M/N/K/O
const
auto
MzRaw
=
device_arg
.
raw_lengths_mz_nz_kz_gemm1nz_
[
0
];
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_multihead_attention_backward_xdl_cshuffle_v2.hpp
0 → 100644
View file @
24f96b50
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
// #include "ck/tensor_operation/gpu/device/device_batched_multihead_attention_backward.hpp" // TODO
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/masking_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_multihead_attention_backward_xdl_cshuffle_v2.hpp"
#include "ck/tensor_operation/operator_transform/transform_contraction_to_gemm.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
GridwiseGemm
,
typename
GroupKernelArg
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
AccElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_grouped_multihead_attention_backward_xdl_cshuffle_v2
(
const
void
CK_CONSTANT_ADDRESS_SPACE
*
group_kernel_args
,
const
index_t
group_count
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
AccElementwiseOperation
acc_element_op
,
const
B1ElementwiseOperation
b1_element_op
,
const
CElementwiseOperation
c_element_op
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
block_id
=
get_block_1d_id
();
const
auto
arg_ptr
=
reinterpret_cast
<
const
GroupKernelArg
*>
(
cast_pointer_to_generic_address_space
(
group_kernel_args
));
index_t
left
=
0
;
index_t
right
=
group_count
;
index_t
group_id
=
index_t
((
left
+
right
)
/
2
);
while
(
(
!
(
block_id
>=
arg_ptr
[
group_id
].
block_start_
&&
block_id
<
arg_ptr
[
group_id
].
block_end_
)))
{
if
(
block_id
<
arg_ptr
[
group_id
].
block_start_
)
{
right
=
group_id
;
}
else
{
left
=
group_id
;
}
group_id
=
index_t
((
left
+
right
)
/
2
);
}
// per-group batch offset
const
index_t
num_blocks_per_batch
=
arg_ptr
[
group_id
].
num_blocks_per_batch_
;
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
(
block_id
-
arg_ptr
[
group_id
].
block_start_
)
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetABasePtr
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetBBasePtr
(
g_idx
)));
const
long_index_t
b1_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetB1BasePtr
(
g_idx
)));
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetCBasePtr
(
g_idx
)));
const
long_index_t
lse_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetLSEBasePtr
(
g_idx
)));
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
arg_ptr
[
group_id
].
p_a_grid_
+
a_batch_offset
,
arg_ptr
[
group_id
].
p_b_grid_
+
b_batch_offset
,
arg_ptr
[
group_id
].
p_b1_grid_
+
b1_batch_offset
,
arg_ptr
[
group_id
].
p_c_grid_
+
c_batch_offset
,
arg_ptr
[
group_id
].
p_lse_grid_
+
lse_batch_offset
,
arg_ptr
[
group_id
].
p_ygrad_grid_
+
c_batch_offset
,
arg_ptr
[
group_id
].
p_qgrad_grid_
+
a_batch_offset
,
arg_ptr
[
group_id
].
p_kgrad_grid_
+
b_batch_offset
,
arg_ptr
[
group_id
].
p_vgrad_grid_
+
b1_batch_offset
,
p_shared
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
,
arg_ptr
[
group_id
].
a_grid_desc_ak0_m_ak1_
,
arg_ptr
[
group_id
].
b_grid_desc_bk0_n_bk1_
,
arg_ptr
[
group_id
].
b1_grid_desc_bk0_n_bk1_
,
arg_ptr
[
group_id
].
y_grid_desc_mblock_mperblock_oblock_operblock_
,
arg_ptr
[
group_id
].
lse_grid_desc_m_
,
arg_ptr
[
group_id
].
vgrad_grid_desc_n_o_
,
arg_ptr
[
group_id
].
ygrad_grid_desc_o0_m_o1_
,
arg_ptr
[
group_id
].
block_2_ctile_map_
,
arg_ptr
[
group_id
].
c0_matrix_mask_
);
#else
ignore
=
group_kernel_args
;
ignore
=
group_count
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
acc_element_op
;
ignore
=
b1_element_op
;
ignore
=
c_element_op
;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
// Computes C = A * B0 * B1
// ^^^^^^ (Acc0)
// ^^^^^^^^^^^ (Acc1)
template
<
index_t
NumDimG
,
index_t
NumDimM
,
index_t
NumDimN
,
index_t
NumDimK
,
index_t
NumDimO
,
// NumDimGemm1N
typename
DataType
,
typename
LSEDataType
,
typename
Acc0BiasDataType
,
typename
Acc1BiasDataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
AccElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
TensorSpecialization
ASpec
,
TensorSpecialization
BSpec
,
TensorSpecialization
B1Spec
,
TensorSpecialization
CSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
// Gemm0NPerBlock
index_t
KPerBlock
,
// Gemm0KPerBlock
index_t
Gemm1NPerBlock
,
index_t
Gemm1KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
B1K1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
index_t
Gemm1NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
typename
B1BlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
B1BlockTransferThreadClusterArrangeOrder
,
typename
B1BlockTransferSrcAccessOrder
,
index_t
B1BlockTransferSrcVectorDim
,
index_t
B1BlockTransferSrcScalarPerVector
,
index_t
B1BlockTransferDstScalarPerVector_BK1
,
bool
B1BlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
MaskingSpecialization
MaskingSpec
,
LoopScheduler
LoopSched
=
LoopScheduler
::
Default
>
struct
DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2
:
public
BaseOperator
// TODO inherit atten bwd op once API stablizes
{
static_assert
(
NumDimG
>
0
&&
NumDimM
>
0
&&
NumDimN
>
0
&&
NumDimK
>
0
&&
NumDimO
>
0
,
"Number of dimension must be greater than 0"
);
static
constexpr
index_t
NumAcc0Bias
=
Acc0BiasDataType
::
Size
();
static
constexpr
index_t
NumAcc1Bias
=
Acc1BiasDataType
::
Size
();
// TODO: implement bias combination
static_assert
(
NumAcc0Bias
==
0
&&
NumAcc0Bias
==
0
,
"Bias addition is unimplemented"
);
using
DeviceOp
=
DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2
;
struct
ProblemDesc
{
std
::
vector
<
index_t
>
a_gs_ms_ks_lengths
;
std
::
vector
<
index_t
>
a_gs_ms_ks_strides
;
std
::
vector
<
index_t
>
b_gs_ns_ks_lengths
;
std
::
vector
<
index_t
>
b_gs_ns_ks_strides
;
std
::
vector
<
index_t
>
b1_gs_gemm1ns_gemm1ks_lengths
;
std
::
vector
<
index_t
>
b1_gs_gemm1ns_gemm1ks_strides
;
std
::
vector
<
index_t
>
c_gs_ms_gemm1ns_lengths
;
std
::
vector
<
index_t
>
c_gs_ms_gemm1ns_strides
;
std
::
vector
<
index_t
>
lse_gs_ms_lengths
;
std
::
vector
<
index_t
>
lse_gs_ms_strides
;
std
::
vector
<
std
::
vector
<
index_t
>>
acc0_biases_gs_ms_ns_lengths
;
std
::
vector
<
std
::
vector
<
index_t
>>
acc0_biases_gs_ms_ns_strides
;
std
::
vector
<
std
::
vector
<
index_t
>>
acc1_biases_gs_ms_os_lengths
;
std
::
vector
<
std
::
vector
<
index_t
>>
acc1_biases_gs_ms_os_strides
;
};
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
index_t
Q_K1
=
8
;
static
constexpr
index_t
K_K1
=
8
;
static
constexpr
index_t
V_N1
=
2
;
static
constexpr
index_t
Q_M1
=
2
;
static
constexpr
index_t
K_N1
=
2
;
static
constexpr
index_t
V_O1
=
8
;
static
constexpr
index_t
Y_O1
=
8
;
static
constexpr
index_t
Y_M1
=
2
;
static
constexpr
auto
padder
=
GemmGemmPadder
<
GemmSpec
,
Number
<
MPerBlock
>
,
Number
<
NPerBlock
>
,
Number
<
KPerBlock
>
,
Number
<
Gemm1NPerBlock
>>
{};
using
Transform
=
TransformBatchedContractionContractionToBatchedGemmGemm
<
Sequence
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
>
,
Sequence
<
MPerBlock
,
NPerBlock
,
KPerBlock
,
Gemm1NPerBlock
>
,
GemmSpec
,
ASpec
,
BSpec
,
B1Spec
,
CSpec
>
;
/*
Descriptors for inputs:
Q, K, V, Y, dY, per-row softmax stats
Descriptors for outputs:
dQ, dK, dV
*/
// Q in Gemm A position
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides_vec
)
{
return
Transform
::
MakeAGridDescriptor_AK0_M_AK1
(
Transform
::
MakeAGridDescriptor_M_K
(
a_gs_ms_ks_lengths_vec
,
a_gs_ms_ks_strides_vec
),
Number
<
AK1
>
{});
}
// K in Gemm B0 position
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides_vec
)
{
return
Transform
::
MakeB0GridDescriptor_BK0_N_BK1
(
Transform
::
MakeB0GridDescriptor_N_K
(
b_gs_ns_ks_lengths_vec
,
b_gs_ns_ks_strides_vec
),
Number
<
BK1
>
{});
}
// V in Gemm B1 position
static
auto
MakeB1GridDescriptor_BK0_N_BK1
(
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_strides_vec
)
{
return
Transform
::
MakeB1GridDescriptor_BK0_N_BK1
(
Transform
::
MakeB1GridDescriptor_N_K
(
b1_gs_gemm1ns_gemm1ks_lengths_vec
,
b1_gs_gemm1ns_gemm1ks_strides_vec
),
Number
<
B1K1
>
{});
}
//
// dV = P^T * dY
//
// VGrad in Gemm C position
static
auto
MakeVGradGridDescriptor_N_O
(
const
std
::
vector
<
index_t
>&
v_gs_os_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
v_gs_os_ns_strides_vec
)
{
// v_gs_os_ns -> vgrad_gs_ns_os. O dims last because output is row-major.
// Here directly rearrange lengths/strides before constructing tensor descriptor to reduce
// transformation overhead
// TODO: This will be much easier when inputs are Gs, Ms, Ns, Os. So there's no need to
// extract subsequence and shuffle them.
const
index_t
num_dims
=
NumDimG
+
NumDimN
+
NumDimO
;
// 0, 1, .. NumDimG - 1
std
::
vector
<
index_t
>
gs_ids
(
NumDimG
);
std
::
iota
(
gs_ids
.
begin
(),
gs_ids
.
end
(),
0
);
// NumDimG, NumDimG + 1, ... NumDimG + NumDimO - 1
std
::
vector
<
index_t
>
os_ids
(
NumDimO
);
std
::
iota
(
os_ids
.
begin
(),
os_ids
.
end
(),
NumDimG
);
// NumDimG + NumDimO, NumDimG + NumDimO + 1, ... NumDimG + NumDimO + NumDimN - 1
std
::
vector
<
index_t
>
ns_ids
(
NumDimN
);
std
::
iota
(
ns_ids
.
begin
(),
ns_ids
.
end
(),
NumDimG
+
NumDimO
);
std
::
vector
<
index_t
>
ids_old2new
;
ids_old2new
.
insert
(
ids_old2new
.
end
(),
gs_ids
.
begin
(),
gs_ids
.
end
());
ids_old2new
.
insert
(
ids_old2new
.
end
(),
ns_ids
.
begin
(),
ns_ids
.
end
());
ids_old2new
.
insert
(
ids_old2new
.
end
(),
os_ids
.
begin
(),
os_ids
.
end
());
std
::
vector
<
index_t
>
v_gs_ns_os_lengths_vec
(
num_dims
),
v_gs_ns_os_strides_vec
(
num_dims
);
for
(
int
i
=
0
;
i
<
num_dims
;
i
++
)
{
index_t
id_new
=
ids_old2new
[
i
];
v_gs_ns_os_lengths_vec
[
i
]
=
v_gs_os_ns_lengths_vec
[
id_new
];
v_gs_ns_os_strides_vec
[
i
]
=
v_gs_os_ns_strides_vec
[
id_new
];
}
const
auto
vgrad_desc_nraw_oraw
=
MakeGridDescriptorPair
<
NumDimG
,
NumDimN
,
NumDimO
,
TensorSpecialization
::
Default
>
(
v_gs_ns_os_lengths_vec
,
v_gs_ns_os_strides_vec
)
.
second
;
return
PadTensorDescriptor
(
vgrad_desc_nraw_oraw
,
make_tuple
(
NPerBlock
,
Gemm1NPerBlock
),
Sequence
<
padder
.
PadN
,
padder
.
PadO
>
{});
}
template
<
typename
YGridDesc_M_O
>
static
auto
MakeYGradGridDescriptor_M0_O_M1
(
const
YGridDesc_M_O
&
ygrad_grid_desc_m_o
)
{
const
auto
M
=
ygrad_grid_desc_m_o
.
GetLength
(
I0
);
const
auto
O
=
ygrad_grid_desc_m_o
.
GetLength
(
I1
);
const
auto
Y_M0
=
M
/
Y_M1
;
return
transform_tensor_descriptor
(
ygrad_grid_desc_m_o
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Y_M0
,
Y_M1
)),
make_pass_through_transform
(
O
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
//
// dP = dY * V^T
//
// YGrad in Gemm A position
static
auto
MakeYGradGridDescriptor_O0_M_O1
(
const
std
::
vector
<
index_t
>&
y_gs_ms_os_lengths_vec
,
const
std
::
vector
<
index_t
>&
y_gs_ms_os_strides_vec
)
{
return
Transform
::
MakeAGridDescriptor_AK0_M_AK1
(
Transform
::
MakeAGridDescriptor_M_K
(
y_gs_ms_os_lengths_vec
,
y_gs_ms_os_strides_vec
),
Number
<
Y_O1
>
{});
}
// V in Gemm B position
static
auto
MakeVGridDescriptor_O0_N_O1
(
const
std
::
vector
<
index_t
>&
v_gs_os_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
v_gs_os_ns_strides_vec
)
{
// v_gs_os_ns -> vgrad_gs_ns_os. O dims last because output is row-major.
// Here directly rearrange lengths/strides before constructing tensor descriptor to reduce
// transformation overhead
// TODO: This will be much easier when inputs are Gs, Ms, Ns, Os. So there's no need to
// extract subsequence and shuffle them.
const
index_t
num_dims
=
NumDimG
+
NumDimN
+
NumDimO
;
// 0, 1, .. NumDimG - 1
std
::
vector
<
index_t
>
gs_ids
(
NumDimG
);
std
::
iota
(
gs_ids
.
begin
(),
gs_ids
.
end
(),
0
);
// NumDimG, NumDimG + 1, ... NumDimG + NumDimO - 1
std
::
vector
<
index_t
>
os_ids
(
NumDimO
);
std
::
iota
(
os_ids
.
begin
(),
os_ids
.
end
(),
NumDimG
);
// NumDimG + NumDimO, NumDimG + NumDimO + 1, ... NumDimG + NumDimO + NumDimN - 1
std
::
vector
<
index_t
>
ns_ids
(
NumDimN
);
std
::
iota
(
ns_ids
.
begin
(),
ns_ids
.
end
(),
NumDimG
+
NumDimO
);
std
::
vector
<
index_t
>
ids_old2new
;
ids_old2new
.
insert
(
ids_old2new
.
end
(),
gs_ids
.
begin
(),
gs_ids
.
end
());
ids_old2new
.
insert
(
ids_old2new
.
end
(),
ns_ids
.
begin
(),
ns_ids
.
end
());
ids_old2new
.
insert
(
ids_old2new
.
end
(),
os_ids
.
begin
(),
os_ids
.
end
());
std
::
vector
<
index_t
>
v_gs_ns_os_lengths_vec
(
num_dims
),
v_gs_ns_os_strides_vec
(
num_dims
);
for
(
int
i
=
0
;
i
<
num_dims
;
i
++
)
{
index_t
id_new
=
ids_old2new
[
i
];
v_gs_ns_os_lengths_vec
[
i
]
=
v_gs_os_ns_lengths_vec
[
id_new
];
v_gs_ns_os_strides_vec
[
i
]
=
v_gs_os_ns_strides_vec
[
id_new
];
}
const
auto
v_grid_desc_nraw_oraw
=
MakeGridDescriptorPair
<
NumDimG
,
NumDimN
,
NumDimO
,
TensorSpecialization
::
Default
>
(
v_gs_ns_os_lengths_vec
,
v_gs_ns_os_strides_vec
)
.
second
;
const
auto
v_grid_desc_n_o
=
PadTensorDescriptor
(
v_grid_desc_nraw_oraw
,
make_tuple
(
NPerBlock
,
Gemm1NPerBlock
),
Sequence
<
padder
.
PadN
,
padder
.
PadO
>
{});
// N_O to O0_N_O1; to refactor
return
Transform
::
MakeB0GridDescriptor_BK0_N_BK1
(
v_grid_desc_n_o
,
Number
<
V_O1
>
{});
}
//
// dS_i_j = P_i_j .* (dP_i_j - dY_i dot Y_i)
//
//
// dQ = alpha * dS * K
//
// QGrad in Gemm C position
static
auto
MakeQGradGridDescriptor_M_K
(
const
std
::
vector
<
index_t
>&
q_gs_ms_ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
q_gs_ms_ks_strides_vec
)
{
return
Transform
::
MakeCGridDescriptor_M_N
(
q_gs_ms_ks_lengths_vec
,
q_gs_ms_ks_strides_vec
);
}
//
// dK = alpha * dS^T * Q
//
// KGrad in Gemm C position
static
auto
MakeKGradGridDescriptor_N_K
(
const
std
::
vector
<
index_t
>&
k_gs_ns_ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
k_gs_ns_ks_strides_vec
)
{
return
Transform
::
MakeCGridDescriptor_M_N
(
k_gs_ns_ks_lengths_vec
,
k_gs_ns_ks_strides_vec
);
}
static
auto
MakeLSEGridDescriptor_M
(
index_t
MRaw
)
{
const
auto
lse_grid_desc_mraw
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
MRaw
));
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad M
return
transform_tensor_descriptor
(
lse_grid_desc_mraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
}
else
{
// not pad M
return
lse_grid_desc_mraw
;
}
}
using
AGridDesc_AK0_M_AK1
=
decltype
(
MakeAGridDescriptor_AK0_M_AK1
({},
{}));
using
BGridDesc_BK0_N_BK1
=
decltype
(
MakeBGridDescriptor_BK0_N_BK1
({},
{}));
using
B1GridDesc_BK0_N_BK1
=
decltype
(
MakeBGridDescriptor_BK0_N_BK1
({},
{}));
using
YGridDesc_M_O
=
decltype
(
Transform
::
MakeCGridDescriptor_M_N
({},
{}));
using
LSEGridDesc_M
=
decltype
(
MakeLSEGridDescriptor_M
(
1
));
using
AGridDesc_G_M_K
=
decltype
(
Transform
::
MakeAGridDescriptor_G_M_K
({},
{}));
using
BGridDesc_G_N_K
=
decltype
(
Transform
::
MakeB0GridDescriptor_G_N_K
({},
{}));
using
B1GridDesc_G_N_K
=
decltype
(
Transform
::
MakeB1GridDescriptor_G_N_K
({},
{}));
using
CGridDesc_G_M_N
=
decltype
(
Transform
::
MakeCGridDescriptor_G_M_N
({},
{}));
using
VGradGridDesc_N_O
=
decltype
(
MakeVGradGridDescriptor_N_O
({},
{}));
using
YGradGridDesc_O0_M_O1
=
decltype
(
MakeYGradGridDescriptor_O0_M_O1
({},
{}));
constexpr
static
auto
make_MaskOutPredicate
()
{
if
constexpr
(
MaskingSpec
==
MaskingSpecialization
::
MaskDisabled
)
{
return
MaskDisabledPredicate
{};
}
else
if
constexpr
(
MaskingSpec
==
MaskingSpecialization
::
MaskOutUpperTriangle
)
{
return
MaskOutUpperTrianglePredicate
{};
}
}
using
C0MatrixMask
=
C0MatrixMask_impl
<
decltype
(
make_MaskOutPredicate
())
>
;
struct
ComputeBasePtrOfStridedBatch
{
ComputeBasePtrOfStridedBatch
(
const
AGridDesc_G_M_K
&
a_grid_desc_g_m_k
,
const
BGridDesc_G_N_K
&
b_grid_desc_g_n_k
,
const
B1GridDesc_G_N_K
&
b1_grid_desc_g_n_k
,
const
CGridDesc_G_M_N
&
c_grid_desc_g_m_n
,
index_t
BatchStrideLSE
)
:
a_grid_desc_g_m_k_
(
a_grid_desc_g_m_k
),
b_grid_desc_g_n_k_
(
b_grid_desc_g_n_k
),
b1_grid_desc_g_n_k_
(
b1_grid_desc_g_n_k
),
c_grid_desc_g_m_n_
(
c_grid_desc_g_m_n
),
BatchStrideLSE_
(
BatchStrideLSE
)
{
}
__host__
__device__
constexpr
long_index_t
GetABasePtr
(
index_t
g_idx
)
const
{
return
a_grid_desc_g_m_k_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetBBasePtr
(
index_t
g_idx
)
const
{
return
b_grid_desc_g_n_k_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetB1BasePtr
(
index_t
g_idx
)
const
{
return
b1_grid_desc_g_n_k_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetCBasePtr
(
index_t
g_idx
)
const
{
return
c_grid_desc_g_m_n_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetLSEBasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideLSE_
);
}
private:
AGridDesc_G_M_K
a_grid_desc_g_m_k_
;
BGridDesc_G_N_K
b_grid_desc_g_n_k_
;
B1GridDesc_G_N_K
b1_grid_desc_g_n_k_
;
CGridDesc_G_M_N
c_grid_desc_g_m_n_
;
index_t
BatchStrideLSE_
;
};
// GridwiseGemm
using
GridwiseGemm
=
GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle_V2
<
DataType
,
// TODO: distinguish A/B datatype
LSEDataType
,
GemmAccDataType
,
CShuffleDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_AK0_M_AK1
,
BGridDesc_BK0_N_BK1
,
B1GridDesc_BK0_N_BK1
,
YGridDesc_M_O
,
LSEGridDesc_M
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
Gemm1NPerBlock
,
Gemm1KPerBlock
,
AK1
,
BK1
,
B1K1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
Gemm1NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
true
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
true
,
BBlockLdsExtraN
,
B1BlockTransferThreadClusterLengths_BK0_N_BK1
,
B1BlockTransferThreadClusterArrangeOrder
,
B1BlockTransferSrcAccessOrder
,
B1BlockTransferSrcVectorDim
,
B1BlockTransferSrcScalarPerVector
,
B1BlockTransferDstScalarPerVector_BK1
,
false
,
B1BlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopSched
,
Transform
::
matrix_padder
.
PadN
,
MaskingSpec
==
MaskingSpecialization
::
MaskOutUpperTriangle
>
;
using
Block2CTileMap
=
OffsettedBlockToCTileMap
<
typename
GridwiseGemm
::
DefaultBlock2CTileMap
>
;
struct
GroupKernelArg
{
// pointers
const
DataType
*
p_a_grid_
;
const
DataType
*
p_b_grid_
;
const
DataType
*
p_b1_grid_
;
const
DataType
*
p_c_grid_
;
const
LSEDataType
*
p_lse_grid_
;
const
DataType
*
p_ygrad_grid_
;
DataType
*
p_qgrad_grid_
;
DataType
*
p_kgrad_grid_
;
DataType
*
p_vgrad_grid_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
B1GridDesc_BK0_N_BK1
b1_grid_desc_bk0_n_bk1_
;
YGridDesc_M_O
y_grid_desc_m_o_
;
typename
GridwiseGemm
::
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
y_grid_desc_mblock_mperblock_oblock_operblock_
;
LSEGridDesc_M
lse_grid_desc_m_
;
VGradGridDesc_N_O
vgrad_grid_desc_n_o_
;
YGradGridDesc_O0_M_O1
ygrad_grid_desc_o0_m_o1_
;
// block-to-c-tile map
Block2CTileMap
block_2_ctile_map_
;
index_t
num_blocks_per_batch_
;
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch_
;
// check C0 masking and padding
C0MatrixMask
c0_matrix_mask_
;
index_t
block_start_
,
block_end_
;
};
struct
GroupDeviceArg
{
// lengths for the last dimensions of overall problem for sanity check of vector load/store
std
::
vector
<
index_t
>
raw_lengths_mz_nz_kz_gemm1nz_
;
// strides for the last dimensions of each tensor for sanity check of vector load/store
std
::
vector
<
index_t
>
a_mz_kz_strides_
;
std
::
vector
<
index_t
>
b_nz_kz_strides_
;
std
::
vector
<
index_t
>
b1_nz_kz_strides_
;
std
::
vector
<
index_t
>
c_mz_gemm1nz_strides_
;
// for gridwise gemm check
CGridDesc_G_M_N
c_grid_desc_g_m_n_
;
index_t
batch_count_
;
};
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
std
::
vector
<
const
void
*>&
p_As
,
const
std
::
vector
<
const
void
*>&
p_Bs
,
const
std
::
vector
<
const
void
*>&
p_B1s
,
const
std
::
vector
<
const
void
*>&
p_Cs
,
// for dS
const
std
::
vector
<
const
void
*>&
p_LSEs
,
const
std
::
vector
<
const
void
*>&
p_Ygrads
,
std
::
vector
<
void
*>&
p_Qgrads
,
std
::
vector
<
void
*>&
p_Kgrads
,
std
::
vector
<
void
*>&
p_Vgrads
,
const
std
::
array
<
void
*
,
NumAcc0Bias
>&
p_acc0_biases
,
const
std
::
array
<
void
*
,
NumAcc1Bias
>&
p_acc1_biases
,
const
std
::
vector
<
ProblemDesc
>&
problem_desc_vec
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
:
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
acc_element_op_
{
acc_element_op
},
b1_element_op_
{
b1_element_op
},
c_element_op_
{
c_element_op
}
{
group_count_
=
ck
::
type_convert
<
ck
::
index_t
>
(
problem_desc_vec
.
size
());
if
(
!
(
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_As
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Bs
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_B1s
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Cs
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Ygrads
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Qgrads
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Kgrads
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Vgrads
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_LSEs
.
size
())))
{
throw
std
::
runtime_error
(
"wrong! group_count_ != p_As/b/b1/c.size"
);
}
if
(
!
(
p_acc0_biases
.
size
()
==
p_acc1_biases
.
size
()))
{
throw
std
::
runtime_error
(
"wrong! acc0_bias_vec.size != acc1_bias_vec.size"
);
}
grid_size_
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
group_count_
;
i
++
)
{
const
auto
p_a_grid
=
static_cast
<
const
DataType
*>
(
p_As
[
i
]);
const
auto
p_b_grid
=
static_cast
<
const
DataType
*>
(
p_Bs
[
i
]);
const
auto
p_b1_grid
=
static_cast
<
const
DataType
*>
(
p_B1s
[
i
]);
const
auto
p_c_grid
=
static_cast
<
const
DataType
*>
(
p_Cs
[
i
]);
const
auto
p_lse_grid
=
static_cast
<
const
LSEDataType
*>
(
p_LSEs
[
i
]);
const
auto
p_ygrad_grid
=
static_cast
<
const
DataType
*>
(
p_Ygrads
[
i
]);
auto
p_qgrad_grid
=
static_cast
<
DataType
*>
(
p_Qgrads
[
i
]);
auto
p_kgrad_grid
=
static_cast
<
DataType
*>
(
p_Kgrads
[
i
]);
auto
p_vgrad_grid
=
static_cast
<
DataType
*>
(
p_Vgrads
[
i
]);
const
auto
&
problem_desc
=
problem_desc_vec
[
i
];
const
auto
a_grid_desc_ak0_m_ak1
=
DeviceOp
::
MakeAGridDescriptor_AK0_M_AK1
(
problem_desc
.
a_gs_ms_ks_lengths
,
problem_desc
.
a_gs_ms_ks_strides
);
const
auto
b_grid_desc_bk0_n_bk1
=
DeviceOp
::
MakeBGridDescriptor_BK0_N_BK1
(
problem_desc
.
b_gs_ns_ks_lengths
,
problem_desc
.
b_gs_ns_ks_strides
);
const
auto
b1_grid_desc_bk0_n_bk1
=
DeviceOp
::
MakeVGridDescriptor_O0_N_O1
(
problem_desc
.
b1_gs_gemm1ns_gemm1ks_lengths
,
problem_desc
.
b1_gs_gemm1ns_gemm1ks_strides
);
const
auto
y_grid_desc_m_o
=
Transform
::
MakeCGridDescriptor_M_N
(
problem_desc
.
c_gs_ms_gemm1ns_lengths
,
problem_desc
.
c_gs_ms_gemm1ns_strides
);
const
auto
lse_grid_desc_m
=
DeviceOp
::
MakeLSEGridDescriptor_M
(
problem_desc
.
lse_gs_ms_lengths
[
NumDimG
]);
const
auto
vgrad_grid_desc_n_o
=
DeviceOp
::
MakeVGradGridDescriptor_N_O
(
problem_desc
.
b1_gs_gemm1ns_gemm1ks_lengths
,
problem_desc
.
b1_gs_gemm1ns_gemm1ks_strides
);
const
auto
ygrad_grid_desc_o0_m_o1
=
DeviceOp
::
MakeYGradGridDescriptor_O0_M_O1
(
problem_desc
.
c_gs_ms_gemm1ns_lengths
,
problem_desc
.
c_gs_ms_gemm1ns_strides
);
const
auto
a_grid_desc_g_m_k
=
Transform
::
MakeAGridDescriptor_G_M_K
(
problem_desc
.
a_gs_ms_ks_lengths
,
problem_desc
.
a_gs_ms_ks_strides
);
const
auto
b_grid_desc_g_n_k
=
Transform
::
MakeB0GridDescriptor_G_N_K
(
problem_desc
.
b_gs_ns_ks_lengths
,
problem_desc
.
b_gs_ns_ks_strides
);
const
auto
b1_grid_desc_g_n_k
=
Transform
::
MakeB1GridDescriptor_G_N_K
(
problem_desc
.
b1_gs_gemm1ns_gemm1ks_lengths
,
problem_desc
.
b1_gs_gemm1ns_gemm1ks_strides
);
const
auto
c_grid_desc_g_m_n
=
Transform
::
MakeCGridDescriptor_G_M_N
(
problem_desc
.
c_gs_ms_gemm1ns_lengths
,
problem_desc
.
c_gs_ms_gemm1ns_strides
);
typename
GridwiseGemm
::
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
y_grid_desc_mblock_mperblock_oblock_operblock
;
const
index_t
BlockStart
=
grid_size_
;
const
auto
block_2_ctile_map
=
Block2CTileMap
(
y_grid_desc_m_o
,
BlockStart
);
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
b1_grid_desc_bk0_n_bk1
,
y_grid_desc_m_o
,
block_2_ctile_map
))
{
y_grid_desc_mblock_mperblock_oblock_operblock
=
GridwiseGemm
::
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
y_grid_desc_m_o
);
}
const
index_t
batch_count
=
c_grid_desc_g_m_n
.
GetLength
(
I0
);
const
index_t
grid_size_grp
=
block_2_ctile_map
.
CalculateGridSize
(
y_grid_desc_m_o
)
*
batch_count
;
const
index_t
BlockEnd
=
grid_size_
+
grid_size_grp
;
// batch stride
const
auto
compute_base_ptr_of_batch
=
ComputeBasePtrOfStridedBatch
(
a_grid_desc_g_m_k
,
b_grid_desc_g_n_k
,
b1_grid_desc_g_n_k
,
c_grid_desc_g_m_n
,
type_convert
<
index_t
>
(
lse_grid_desc_m
.
GetElementSpaceSize
()));
// C0 mask
const
auto
c0_matrix_mask
=
C0MatrixMask
(
b_grid_desc_g_n_k
.
GetLength
(
I1
));
grid_size_
+=
grid_size_grp
;
// for each group, make sure acc0_biases_gs_ms_ns_lengths.size() == NumAcc0Bias and
// so on
if
(
!
(
problem_desc
.
acc0_biases_gs_ms_ns_lengths
.
size
()
==
NumAcc0Bias
&&
problem_desc
.
acc0_biases_gs_ms_ns_strides
.
size
()
==
NumAcc0Bias
&&
problem_desc
.
acc1_biases_gs_ms_os_lengths
.
size
()
==
NumAcc1Bias
&&
problem_desc
.
acc1_biases_gs_ms_os_strides
.
size
()
==
NumAcc1Bias
))
{
throw
std
::
runtime_error
(
"wrong! number of biases in function argument does not "
"match that in template argument"
);
}
group_kernel_args_
.
push_back
({
p_a_grid
,
p_b_grid
,
p_b1_grid
,
p_c_grid
,
p_lse_grid
,
p_ygrad_grid
,
p_qgrad_grid
,
p_kgrad_grid
,
p_vgrad_grid
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
b1_grid_desc_bk0_n_bk1
,
y_grid_desc_m_o
,
y_grid_desc_mblock_mperblock_oblock_operblock
,
lse_grid_desc_m
,
vgrad_grid_desc_n_o
,
ygrad_grid_desc_o0_m_o1
,
block_2_ctile_map
,
block_2_ctile_map
.
CalculateGridSize
(
y_grid_desc_m_o
),
compute_base_ptr_of_batch
,
c0_matrix_mask
,
BlockStart
,
BlockEnd
});
group_device_args_
.
push_back
(
{{
problem_desc
.
a_gs_ms_ks_lengths
[
NumDimG
+
NumDimM
-
1
],
problem_desc
.
b_gs_ns_ks_lengths
[
NumDimG
+
NumDimN
-
1
],
problem_desc
.
b_gs_ns_ks_lengths
[
NumDimG
+
NumDimN
+
NumDimK
-
1
],
problem_desc
.
b1_gs_gemm1ns_gemm1ks_lengths
[
NumDimG
+
NumDimO
-
1
]},
{
problem_desc
.
a_gs_ms_ks_strides
[
NumDimG
+
NumDimM
-
1
],
problem_desc
.
a_gs_ms_ks_strides
[
NumDimG
+
NumDimM
+
NumDimK
-
1
]},
{
problem_desc
.
b_gs_ns_ks_strides
[
NumDimG
+
NumDimN
-
1
],
problem_desc
.
b_gs_ns_ks_strides
[
NumDimG
+
NumDimN
+
NumDimK
-
1
]},
{
problem_desc
.
b1_gs_gemm1ns_gemm1ks_strides
[
NumDimG
+
NumDimO
-
1
],
problem_desc
.
b1_gs_gemm1ns_gemm1ks_strides
[
NumDimG
+
NumDimO
+
NumDimN
-
1
]},
{
problem_desc
.
c_gs_ms_gemm1ns_strides
[
NumDimG
+
NumDimM
-
1
],
problem_desc
.
c_gs_ms_gemm1ns_strides
[
NumDimG
+
NumDimM
+
NumDimO
-
1
]},
c_grid_desc_g_m_n
,
batch_count
});
}
// TODO: implement bias addition
// ignore = p_acc0_biases;
// ignore = p_acc1_biases;
// ignore = acc0_biases_gs_ms_ns_lengths;
// ignore = acc0_biases_gs_ms_ns_strides;
// ignore = acc1_biases_gs_ms_gemm1ns_lengths;
// ignore = acc1_biases_gs_ms_gemm1ns_strides;
}
// element-wise op
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
AccElementwiseOperation
acc_element_op_
;
B1ElementwiseOperation
b1_element_op_
;
CElementwiseOperation
c_element_op_
;
index_t
grid_size_
;
index_t
group_count_
;
std
::
vector
<
GroupKernelArg
>
group_kernel_args_
;
std
::
vector
<
GroupDeviceArg
>
group_device_args_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
!
DeviceOp
::
IsSupportedArgument
(
arg
))
{
throw
std
::
runtime_error
(
"wrong! unsupported argument"
);
}
// bool all_has_main_k_block_loop = true;
// bool some_has_main_k_block_loop = false;
// for(std::size_t i = 0; i < arg.group_count_; i++)
// {
// const auto K = arg.group_kernel_args_[i].a_grid_desc_ak0_m_ak1_.GetLength(I0) *
// arg.group_kernel_args_[i].a_grid_desc_ak0_m_ak1_.GetLength(I2);
// const bool y = GridwiseGemm::CalculateHasMainKBlockLoop(K);
// all_has_main_k_block_loop &= y;
// some_has_main_k_block_loop |= y;
// }
hipGetErrorString
(
hipMemcpy
(
arg
.
p_workspace_
,
arg
.
group_kernel_args_
.
data
(),
arg
.
group_kernel_args_
.
size
()
*
sizeof
(
GroupKernelArg
),
hipMemcpyHostToDevice
));
float
ave_time
=
0
;
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop_
)
{
const
auto
kernel
=
kernel_grouped_multihead_attention_backward_xdl_cshuffle_v2
<
GridwiseGemm
,
GroupKernelArg
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
,
has_main_k_block_loop_
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
grid_size_
),
dim3
(
BlockSize
),
0
,
cast_pointer_to_constant_address_space
(
arg
.
p_workspace_
),
arg
.
group_count_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
acc_element_op_
,
arg
.
b1_element_op_
,
arg
.
c_element_op_
);
};
// Gemm1_K is split into Gemm1_K0/K1 where K1 is known at compile time, so we only need
// to concern Gemm0's loop
// if(all_has_main_k_block_loop)
// {
// ave_time = launch_kernel(integral_constant<bool, true>{});
// }
// else if(!some_has_main_k_block_loop)
// {
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
// }
// else
// {
// throw std::runtime_error("wrong! all gemm problems have to simultaneously meet "
// "has_main_k_block_loop or no_main_k_block_loop");
// }
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
))
{
return
false
;
}
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
group_count_
;
i
++
)
{
// TODO: Check if tensor specialization & strides mismatch
const
auto
&
kernel_arg
=
arg
.
group_kernel_args_
[
i
];
const
auto
&
device_arg
=
arg
.
group_device_args_
[
i
];
// Check if C permute dimension matches GEMM + GEMM shape
const
index_t
c_g
=
device_arg
.
c_grid_desc_g_m_n_
.
GetLength
(
I0
);
// unpadded
const
index_t
c_m
=
kernel_arg
.
y_grid_desc_m_o_
.
GetLength
(
I0
);
const
index_t
c_gemm1n
=
kernel_arg
.
y_grid_desc_m_o_
.
GetLength
(
I1
);
const
index_t
a_m
=
kernel_arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I1
);
const
index_t
b1_gemm1n
=
kernel_arg
.
b1_grid_desc_bk0_n_bk1_
.
GetLength
(
I0
)
*
kernel_arg
.
b1_grid_desc_bk0_n_bk1_
.
GetLength
(
I2
);
if
(
!
(
c_g
==
device_arg
.
batch_count_
&&
c_m
==
a_m
&&
c_gemm1n
==
b1_gemm1n
))
{
return
false
;
}
// Note: we need raw lengths since threadwise copy can not handle vector load when part
// of vector is out of bounds Note: need lowest dim in Ms/Ns/Ks/Os, not merged M/N/K/O
const
auto
MzRaw
=
device_arg
.
raw_lengths_mz_nz_kz_gemm1nz_
[
0
];
const
auto
NzRaw
=
device_arg
.
raw_lengths_mz_nz_kz_gemm1nz_
[
1
];
const
auto
KzRaw
=
device_arg
.
raw_lengths_mz_nz_kz_gemm1nz_
[
2
];
const
auto
Gemm1NzRaw
=
device_arg
.
raw_lengths_mz_nz_kz_gemm1nz_
[
3
];
// Check scalar per vector requirement
const
auto
a_extent_lowest
=
ABlockTransferSrcVectorDim
==
2
?
KzRaw
:
MzRaw
;
const
auto
b_extent_lowest
=
BBlockTransferSrcVectorDim
==
2
?
KzRaw
:
NzRaw
;
const
auto
b1_extent_lowest
=
B1BlockTransferSrcVectorDim
==
2
?
NzRaw
:
Gemm1NzRaw
;
const
auto
c_extent_lowest
=
Gemm1NzRaw
;
if
(
!
(
a_extent_lowest
%
ABlockTransferSrcScalarPerVector
==
0
&&
b_extent_lowest
%
BBlockTransferSrcScalarPerVector
==
0
&&
b1_extent_lowest
%
B1BlockTransferSrcScalarPerVector
==
0
&&
c_extent_lowest
%
CShuffleBlockTransferScalarPerVector_NPerBlock
==
0
))
{
return
false
;
}
// Check vector load/store requirement
const
auto
a_stride_lowest
=
ABlockTransferSrcVectorDim
==
2
?
device_arg
.
a_mz_kz_strides_
[
1
]
:
device_arg
.
a_mz_kz_strides_
[
0
];
const
auto
b_stride_lowest
=
BBlockTransferSrcVectorDim
==
2
?
device_arg
.
b_nz_kz_strides_
[
1
]
:
device_arg
.
b_nz_kz_strides_
[
0
];
const
auto
b1_stride_lowest
=
B1BlockTransferSrcVectorDim
==
2
?
device_arg
.
b1_nz_kz_strides_
[
1
]
:
device_arg
.
b1_nz_kz_strides_
[
0
];
const
auto
c_stride_lowest
=
device_arg
.
c_mz_gemm1nz_strides_
[
1
];
// cshuffle assumes lowest dim in Gemm1Ns to be
// contiguous
if
(
!
(
a_stride_lowest
==
1
||
b_stride_lowest
==
1
||
b1_stride_lowest
==
1
||
c_stride_lowest
==
1
))
{
return
false
;
}
if
(
!
GridwiseGemm
::
CheckValidity
(
kernel_arg
.
a_grid_desc_ak0_m_ak1_
,
kernel_arg
.
b_grid_desc_bk0_n_bk1_
,
kernel_arg
.
b1_grid_desc_bk0_n_bk1_
,
kernel_arg
.
y_grid_desc_m_o_
,
kernel_arg
.
block_2_ctile_map_
))
{
return
false
;
}
}
return
true
;
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
p_arg
)
const
override
{
return
dynamic_cast
<
const
Argument
*>
(
p_arg
)
->
group_count_
*
sizeof
(
GroupKernelArg
);
}
static
auto
MakeArgument
(
const
std
::
vector
<
const
void
*>&
p_As
,
const
std
::
vector
<
const
void
*>&
p_Bs
,
const
std
::
vector
<
const
void
*>&
p_B1s
,
const
std
::
vector
<
const
void
*>&
p_Cs
,
// for dS
const
std
::
vector
<
const
void
*>&
p_LSEs
,
const
std
::
vector
<
const
void
*>&
p_Ygrads
,
std
::
vector
<
void
*>&
p_Qgrads
,
std
::
vector
<
void
*>&
p_Kgrads
,
std
::
vector
<
void
*>&
p_Vgrads
,
const
std
::
array
<
void
*
,
NumAcc0Bias
>&
p_acc0_biases
,
const
std
::
array
<
void
*
,
NumAcc1Bias
>&
p_acc1_biases
,
const
std
::
vector
<
ProblemDesc
>&
problem_desc_vec
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
p_As
,
p_Bs
,
p_B1s
,
p_Cs
,
p_LSEs
,
p_Ygrads
,
p_Qgrads
,
p_Kgrads
,
p_Vgrads
,
p_acc0_biases
,
p_acc1_biases
,
problem_desc_vec
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
// FIXME: constness
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
const
void
*>&
p_As
,
const
std
::
vector
<
const
void
*>&
p_Bs
,
const
std
::
vector
<
const
void
*>&
p_B1s
,
const
std
::
vector
<
const
void
*>&
p_Cs
,
// for dS
const
std
::
vector
<
const
void
*>&
p_LSEs
,
const
std
::
vector
<
const
void
*>&
p_Ygrads
,
std
::
vector
<
void
*>&
p_Qgrads
,
std
::
vector
<
void
*>&
p_Kgrads
,
std
::
vector
<
void
*>&
p_Vgrads
,
const
std
::
array
<
void
*
,
NumAcc0Bias
>&
p_acc0_biases
,
const
std
::
array
<
void
*
,
NumAcc1Bias
>&
p_acc1_biases
,
const
std
::
vector
<
ProblemDesc
>&
problem_desc_vec
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
// override
{
return
std
::
make_unique
<
Argument
>
(
p_As
,
p_Bs
,
p_B1s
,
p_Cs
,
p_LSEs
,
p_Ygrads
,
p_Qgrads
,
p_Kgrads
,
p_Vgrads
,
p_acc0_biases
,
// cast in struct Argument
p_acc1_biases
,
// cast in struct Argument
problem_desc_vec
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
// override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
MPerBlock
<<
", "
<<
Gemm1NPerBlock
<<
", "
<<
Gemm1KPerBlock
<<
", "
<<
B1K1
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
", "
<<
"ASpec"
<<
getTensorSpecializationString
(
ASpec
)
<<
", "
<<
"B0Spec"
<<
getTensorSpecializationString
(
BSpec
)
<<
", "
<<
"B1Spec"
<<
getTensorSpecializationString
(
B1Spec
)
<<
", "
<<
"CSpec"
<<
getTensorSpecializationString
(
CSpec
)
<<
", "
<<
getMaskingSpecializationString
(
MaskingSpec
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_batched_multihead_attention_backward_xdl_cshuffle_v2.hpp
View file @
24f96b50
...
...
@@ -80,7 +80,7 @@ template <typename DataType,
bool
PadN
,
bool
MaskOutUpperTriangle
,
PipelineVersion
PipelineVer
=
PipelineVersion
::
v1
>
struct
GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
struct
GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle
_V2
{
static_assert
(
LoopSched
==
LoopScheduler
::
Default
,
"Non-default loop scheduler is currently not supported"
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment