Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
24af0144
Unverified
Commit
24af0144
authored
Nov 12, 2022
by
Po Yen Chen
Committed by
GitHub
Nov 12, 2022
Browse files
Merge branch 'develop' into gemm_layernorm_welford
parents
961f5e9e
b79bbbc2
Changes
813
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
813 additions
and
449 deletions
+813
-449
profiler/include/profile_gemm_reduce_impl.hpp
profiler/include/profile_gemm_reduce_impl.hpp
+12
-15
profiler/include/profile_gemm_splitk_impl.hpp
profiler/include/profile_gemm_splitk_impl.hpp
+6
-6
profiler/include/profile_grouped_conv_bwd_weight_impl.hpp
profiler/include/profile_grouped_conv_bwd_weight_impl.hpp
+61
-73
profiler/include/profile_grouped_conv_fwd_impl.hpp
profiler/include/profile_grouped_conv_fwd_impl.hpp
+94
-45
profiler/include/profile_grouped_gemm_impl.hpp
profiler/include/profile_grouped_gemm_impl.hpp
+6
-6
profiler/include/profile_groupnorm_impl.hpp
profiler/include/profile_groupnorm_impl.hpp
+13
-12
profiler/include/profile_layernorm_impl.hpp
profiler/include/profile_layernorm_impl.hpp
+60
-37
profiler/include/profile_reduce_impl.hpp
profiler/include/profile_reduce_impl.hpp
+112
-98
profiler/include/profile_softmax_impl.hpp
profiler/include/profile_softmax_impl.hpp
+219
-0
profiler/src/profile_grouped_conv_bwd_weight.cpp
profiler/src/profile_grouped_conv_bwd_weight.cpp
+48
-47
profiler/src/profile_layernorm.cpp
profiler/src/profile_layernorm.cpp
+6
-25
profiler/src/profile_softmax.cpp
profiler/src/profile_softmax.cpp
+51
-60
profiler/src/profiler.cpp
profiler/src/profiler.cpp
+10
-9
script/cmake-ck-dev.sh
script/cmake-ck-dev.sh
+1
-1
script/cmake-ck-release.sh
script/cmake-ck-release.sh
+1
-1
script/process_perf_data.py
script/process_perf_data.py
+7
-7
test/CMakeLists.txt
test/CMakeLists.txt
+7
-7
test/batched_gemm/CMakeLists.txt
test/batched_gemm/CMakeLists.txt
+11
-0
test/batched_gemm/batched_gemm_bf16.cpp
test/batched_gemm/batched_gemm_bf16.cpp
+44
-0
test/batched_gemm/batched_gemm_fp32.cpp
test/batched_gemm/batched_gemm_fp32.cpp
+44
-0
No files found.
profiler/include/profile_gemm_reduce_impl.hpp
View file @
24af0144
...
@@ -14,6 +14,7 @@
...
@@ -14,6 +14,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
ck
{
...
@@ -75,15 +76,15 @@ bool profile_gemm_reduce_impl(int do_verification,
...
@@ -75,15 +76,15 @@ bool profile_gemm_reduce_impl(int do_verification,
auto
f_host_tensor_descriptor
=
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
}
else
else
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
}
};
};
...
@@ -91,16 +92,12 @@ bool profile_gemm_reduce_impl(int do_verification,
...
@@ -91,16 +92,12 @@ bool profile_gemm_reduce_impl(int do_verification,
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
ReduceDataType
>
reduce0_m_host_result
(
Tensor
<
ReduceDataType
>
reduce0_m_host_result
({
M
});
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
ReduceDataType
>
reduce1_m_host_result
({
M
});
Tensor
<
ReduceDataType
>
reduce1_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
ReduceDataType
>
reduce0_m_device_result
(
Tensor
<
ReduceDataType
>
reduce0_m_device_result
({
M
});
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
ReduceDataType
>
reduce1_m_device_result
({
M
});
Tensor
<
ReduceDataType
>
reduce1_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
...
@@ -313,9 +310,9 @@ bool profile_gemm_reduce_impl(int do_verification,
...
@@ -313,9 +310,9 @@ bool profile_gemm_reduce_impl(int do_verification,
reduce0_device_buf
.
FromDevice
(
reduce0_m_device_result
.
mData
.
data
());
reduce0_device_buf
.
FromDevice
(
reduce0_m_device_result
.
mData
.
data
());
reduce1_device_buf
.
FromDevice
(
reduce1_m_device_result
.
mData
.
data
());
reduce1_device_buf
.
FromDevice
(
reduce1_m_device_result
.
mData
.
data
());
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
);
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
ck
::
utils
::
check_err
(
reduce0_m_device_result
.
mData
,
reduce0_m_host_result
.
mData
);
ck
::
utils
::
check_err
(
reduce0_m_device_result
,
reduce0_m_host_result
);
ck
::
utils
::
check_err
(
reduce1_m_device_result
.
mData
,
reduce1_m_host_result
.
mData
);
ck
::
utils
::
check_err
(
reduce1_m_device_result
,
reduce1_m_host_result
);
if
(
do_log
)
if
(
do_log
)
{
{
...
...
profiler/include/profile_gemm_splitk_impl.hpp
View file @
24af0144
...
@@ -18,6 +18,7 @@
...
@@ -18,6 +18,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
ck
{
...
@@ -46,15 +47,15 @@ bool profile_gemm_splitk_impl(int do_verification,
...
@@ -46,15 +47,15 @@ bool profile_gemm_splitk_impl(int do_verification,
auto
f_host_tensor_descriptor
=
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
}
else
else
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
}
};
};
...
@@ -190,8 +191,7 @@ bool profile_gemm_splitk_impl(int do_verification,
...
@@ -190,8 +191,7 @@ bool profile_gemm_splitk_impl(int do_verification,
{
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
pass
=
pass
=
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
pass
&
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
);
if
(
do_log
)
if
(
do_log
)
{
{
...
...
profiler/include/profile_conv_bwd_weight_impl.hpp
→
profiler/include/profile_
grouped_
conv_bwd_weight_impl.hpp
View file @
24af0144
...
@@ -3,9 +3,10 @@
...
@@ -3,9 +3,10 @@
#pragma once
#pragma once
#include
"ck/ck.hpp"
#include
<algorithm>
#include <iomanip>
#include <iomanip>
#include <iostream>
#include <iostream>
#include <iterator>
#include <typeinfo>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
...
@@ -13,7 +14,7 @@
...
@@ -13,7 +14,7 @@
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/convolution_backward_weight.hpp"
#include "ck/library/tensor_operation_instance/gpu/
grouped_
convolution_backward_weight.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
...
@@ -26,32 +27,6 @@
...
@@ -26,32 +27,6 @@
namespace
ck
{
namespace
ck
{
namespace
profiler
{
namespace
profiler
{
template
<
typename
DataType
>
void
show_data_nhwc_layout
(
Tensor
<
DataType
>&
nhwc
)
{
std
::
cout
<<
"["
;
for
(
int
n
=
0
;
n
<
ck
::
type_convert
<
int
>
(
nhwc
.
mDesc
.
GetLengths
()[
0
]);
n
++
)
{
std
::
cout
<<
"["
;
for
(
int
hi
=
0
;
hi
<
ck
::
type_convert
<
int
>
(
nhwc
.
mDesc
.
GetLengths
()[
2
]);
hi
++
)
{
std
::
cout
<<
"["
;
for
(
int
wi
=
0
;
wi
<
ck
::
type_convert
<
int
>
(
nhwc
.
mDesc
.
GetLengths
()[
3
]);
wi
++
)
{
std
::
cout
<<
"["
;
for
(
int
c
=
0
;
c
<
ck
::
type_convert
<
int
>
(
nhwc
.
mDesc
.
GetLengths
()[
1
]);
c
++
)
{
std
::
cout
<<
static_cast
<
float
>
(
nhwc
(
n
,
c
,
hi
,
wi
))
<<
" "
;
}
std
::
cout
<<
"]"
;
}
std
::
cout
<<
"]"
;
}
std
::
cout
<<
"]"
;
}
std
::
cout
<<
"]"
;
}
template
<
ck
::
index_t
NDimSpatial
,
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
InLayout
,
typename
WeiLayout
,
typename
WeiLayout
,
...
@@ -59,12 +34,12 @@ template <ck::index_t NDimSpatial,
...
@@ -59,12 +34,12 @@ template <ck::index_t NDimSpatial,
typename
InDataType
,
typename
InDataType
,
typename
WeiDataType
,
typename
WeiDataType
,
typename
OutDataType
>
typename
OutDataType
>
bool
profile_conv_bwd_weight_impl
(
int
do_verification
,
bool
profile_
grouped_
conv_bwd_weight_impl
(
int
do_verification
,
int
init_method
,
int
init_method
,
bool
do_log
,
bool
do_log
,
bool
time_kernel
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
ck
::
index_t
split_k
)
ck
::
index_t
split_k
)
{
{
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
...
@@ -114,16 +89,14 @@ bool profile_conv_bwd_weight_impl(int do_verification,
...
@@ -114,16 +89,14 @@ bool profile_conv_bwd_weight_impl(int do_verification,
if
(
do_verification
)
if
(
do_verification
)
{
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvBwdWeight
<
NDimSpatial
,
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvBwdWeight
<
NDimSpatial
,
InDataType
,
InDataType
,
WeiDataType
,
WeiDataType
,
OutDataType
,
OutDataType
,
InElementOp
,
InElementOp
,
WeiElementOp
,
WeiElementOp
,
OutElementOp
>
{};
OutElementOp
>
{};
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
input
,
auto
ref_argument
=
ref_conv
.
MakeArgument
(
input
,
weight_host_result
,
weight_host_result
,
output
,
output
,
...
@@ -138,16 +111,16 @@ bool profile_conv_bwd_weight_impl(int do_verification,
...
@@ -138,16 +111,16 @@ bool profile_conv_bwd_weight_impl(int do_verification,
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
}
}
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceConvBwdWeight
<
NDimSpatial
,
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
Device
Grouped
ConvBwdWeight
<
NDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
OutLayout
,
OutLayout
,
InDataType
,
InDataType
,
WeiDataType
,
WeiDataType
,
OutDataType
,
OutDataType
,
InElementOp
,
InElementOp
,
WeiElementOp
,
WeiElementOp
,
OutElementOp
>
;
OutElementOp
>
;
// get device op instances
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
...
@@ -163,22 +136,41 @@ bool profile_conv_bwd_weight_impl(int do_verification,
...
@@ -163,22 +136,41 @@ bool profile_conv_bwd_weight_impl(int do_verification,
// profile device Conv instances
// profile device Conv instances
bool
all_pass
=
true
;
bool
all_pass
=
true
;
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
range_copy
=
[](
const
auto
&
from
,
auto
to
)
{
std
::
copy
(
begin
(
from
),
end
(
from
),
to
);
};
range_copy
(
conv_param
.
input_spatial_lengths_
,
begin
(
input_spatial_lengths
));
range_copy
(
conv_param
.
filter_spatial_lengths_
,
begin
(
filter_spatial_lengths
));
range_copy
(
conv_param
.
output_spatial_lengths_
,
begin
(
output_spatial_lengths
));
range_copy
(
conv_param
.
conv_filter_strides_
,
begin
(
conv_filter_strides
));
range_copy
(
conv_param
.
conv_filter_dilations_
,
begin
(
conv_filter_dilations
));
range_copy
(
conv_param
.
input_left_pads_
,
begin
(
input_left_pads
));
range_copy
(
conv_param
.
input_right_pads_
,
begin
(
input_right_pads
));
for
(
auto
&
op_ptr
:
op_ptrs
)
for
(
auto
&
op_ptr
:
op_ptrs
)
{
{
auto
argument_ptr
=
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths
_
,
input_spatial_lengths
,
conv_param
.
filter_spatial_lengths
_
,
filter_spatial_lengths
,
conv_param
.
output_spatial_lengths
_
,
output_spatial_lengths
,
conv_param
.
conv_filter_strides
_
,
conv_filter_strides
,
conv_param
.
conv_filter_dilations
_
,
conv_filter_dilations
,
conv_param
.
input_left_pads
_
,
input_left_pads
,
conv_param
.
input_right_pads
_
,
input_right_pads
,
in_element_op
,
in_element_op
,
wei_element_op
,
wei_element_op
,
out_element_op
,
out_element_op
,
...
@@ -217,33 +209,29 @@ bool profile_conv_bwd_weight_impl(int do_verification,
...
@@ -217,33 +209,29 @@ bool profile_conv_bwd_weight_impl(int do_verification,
{
{
wei_device_buf
.
FromDevice
(
weight_device_result
.
mData
.
data
());
wei_device_buf
.
FromDevice
(
weight_device_result
.
mData
.
data
());
bool
pass
=
bool
pass
=
ck
::
utils
::
check_err
(
weight_device_result
,
weight_host_result
);
ck
::
utils
::
check_err
(
weight_host_result
.
mData
,
weight_device_result
.
mData
);
if
(
!
pass
)
if
(
!
pass
)
{
{
std
::
cout
<<
"Fail info:"
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
std
::
cout
<<
"Fail info:
"
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
}
}
all_pass
&=
pass
;
all_pass
&=
pass
;
if
(
do_log
)
if
(
do_log
)
{
{
std
::
cout
<<
"in : "
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"output : "
,
output
.
mData
,
","
)
<<
std
::
endl
;
show_data_nhwc_layout
(
output
);
;
std
::
cout
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"weight (device): "
,
weight_device_result
.
mData
,
","
)
std
::
cout
<<
"wei: "
;
<<
std
::
endl
;
show_data_nhwc_layout
(
weight_host_result
);
;
std
::
cout
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"weight (host): "
,
weight_host_result
.
mData
,
","
)
std
::
cout
<<
"out : "
;
<<
std
::
endl
;
show_data_nhwc_layout
(
input
);
;
std
::
cout
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"input: "
,
input
.
mData
,
","
)
<<
std
::
endl
;
;
std
::
cout
<<
"wei_device: "
;
show_data_nhwc_layout
(
weight_device_result
);
std
::
cout
<<
std
::
endl
;
}
}
}
}
}
}
...
...
profiler/include/profile_grouped_conv_fwd_impl.hpp
View file @
24af0144
...
@@ -9,11 +9,12 @@
...
@@ -9,11 +9,12 @@
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_dl.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
...
@@ -66,7 +67,7 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
...
@@ -66,7 +67,7 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
auto
&
x
,
auto
&
y
)
{
std
::
copy
(
x
.
begin
(),
x
.
end
()
,
y
.
begin
());
};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
...
@@ -136,25 +137,6 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
...
@@ -136,25 +137,6 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
}
}
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
std
::
string
best_op_name
;
float
best_avg_time
=
0
;
float
best_avg_time
=
0
;
float
best_tflops
=
0
;
float
best_tflops
=
0
;
...
@@ -163,29 +145,7 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
...
@@ -163,29 +145,7 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
// profile device op instances
// profile device op instances
bool
pass
=
true
;
bool
pass
=
true
;
for
(
auto
&
op_ptr
:
op_ptrs
)
auto
run_impl
=
[
&
](
auto
&
op_ptr
,
auto
&
argument_ptr
)
{
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
{
// re-init output to zero before profiling next kernel
// re-init output to zero before profiling next kernel
...
@@ -220,7 +180,7 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
...
@@ -220,7 +180,7 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
{
{
out_device_buf
.
FromDevice
(
device_output
.
mData
.
data
());
out_device_buf
.
FromDevice
(
device_output
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
device_output
.
mData
,
host_output
.
mData
);
pass
=
pass
&
ck
::
utils
::
check_err
(
device_output
,
host_output
);
if
(
do_log
)
if
(
do_log
)
{
{
...
@@ -237,6 +197,95 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
...
@@ -237,6 +197,95 @@ bool profile_grouped_conv_fwd_impl(int do_verification,
{
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
};
// xdl
{
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"xdl found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
{},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
{},
{},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
run_impl
(
op_ptr
,
argument_ptr
);
}
}
// dl
{
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwd
<
NDimSpatial
,
InLayout
,
WeiLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"dl found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
run_impl
(
op_ptr
,
argument_ptr
);
}
}
}
std
::
cout
<<
"Best configuration parameters:"
std
::
cout
<<
"Best configuration parameters:"
...
...
profiler/include/profile_grouped_gemm_impl.hpp
View file @
24af0144
...
@@ -17,6 +17,7 @@
...
@@ -17,6 +17,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
ck
{
...
@@ -45,15 +46,15 @@ bool profile_grouped_gemm_impl(int do_verification,
...
@@ -45,15 +46,15 @@ bool profile_grouped_gemm_impl(int do_verification,
auto
f_host_tensor_descriptor
=
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
}
else
else
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
}
};
};
...
@@ -257,8 +258,7 @@ bool profile_grouped_gemm_impl(int do_verification,
...
@@ -257,8 +258,7 @@ bool profile_grouped_gemm_impl(int do_verification,
c_element_op
);
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
c_m_n_device_results
[
i
].
mData
,
pass
=
pass
&&
ck
::
utils
::
check_err
(
c_m_n_device_results
[
i
],
c_m_n_host_result
);
c_m_n_host_result
.
mData
);
if
(
do_log
)
if
(
do_log
)
{
{
...
...
profiler/include/profile_groupnorm_impl.hpp
View file @
24af0144
...
@@ -7,7 +7,7 @@
...
@@ -7,7 +7,7 @@
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/
layernorm
.hpp"
#include "ck/library/tensor_operation_instance/gpu/
normalization
.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
...
@@ -75,14 +75,14 @@ bool profile_groupnorm_impl(int do_verification,
...
@@ -75,14 +75,14 @@ bool profile_groupnorm_impl(int do_verification,
beta_dev
.
ToDevice
(
beta
.
mData
.
data
());
beta_dev
.
ToDevice
(
beta
.
mData
.
data
());
// add device normalization instances
// add device normalization instances
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
Device
Layernorm
<
XDataType
,
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
Device
Normalization
<
XDataType
,
GammaDataType
,
GammaDataType
,
BetaDataType
,
BetaDataType
,
AccDataType
,
AccDataType
,
YDataType
,
YDataType
,
PassThrough
,
PassThrough
,
5
,
5
,
3
>
;
3
>
;
// get device op instances
// get device op instances
const
auto
instance_ptrs
=
const
auto
instance_ptrs
=
...
@@ -126,6 +126,8 @@ bool profile_groupnorm_impl(int do_verification,
...
@@ -126,6 +126,8 @@ bool profile_groupnorm_impl(int do_verification,
gamma_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
beta_dev
.
GetDeviceBuffer
(),
beta_dev
.
GetDeviceBuffer
(),
y_dev
.
GetDeviceBuffer
(),
y_dev
.
GetDeviceBuffer
(),
nullptr
,
nullptr
,
PassThrough
{});
PassThrough
{});
if
(
inst_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
if
(
inst_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
...
@@ -163,8 +165,7 @@ bool profile_groupnorm_impl(int do_verification,
...
@@ -163,8 +165,7 @@ bool profile_groupnorm_impl(int do_verification,
{
{
y_dev
.
FromDevice
(
y
.
mData
.
data
());
y_dev
.
FromDevice
(
y
.
mData
.
data
());
bool
pass
=
bool
pass
=
ck
::
utils
::
check_err
(
y
,
host_y
,
"Error: Incorrect results"
,
1e-3
,
1e-3
);
ck
::
utils
::
check_err
(
y
.
mData
,
host_y
.
mData
,
"Error: Incorrect results"
,
1e-3
,
1e-3
);
if
(
do_log
)
if
(
do_log
)
{
{
...
@@ -196,7 +197,7 @@ bool profile_groupnorm_impl(int do_verification,
...
@@ -196,7 +197,7 @@ bool profile_groupnorm_impl(int do_verification,
if
(
num_kernel
==
0
)
if
(
num_kernel
==
0
)
{
{
std
::
cout
<<
"Error: No kernel is
tested
"
<<
std
::
endl
;
std
::
cout
<<
"Error: No kernel is
applicable
"
<<
std
::
endl
;
return
false
;
return
false
;
}
}
...
...
profiler/include/profile_layernorm_impl.hpp
View file @
24af0144
...
@@ -6,9 +6,7 @@
...
@@ -6,9 +6,7 @@
#include <iomanip>
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization.hpp"
#include "ck/library/tensor_operation_instance/gpu/layernorm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
...
@@ -24,35 +22,36 @@ template <typename XDataType,
...
@@ -24,35 +22,36 @@ template <typename XDataType,
typename
AccDataType
,
typename
AccDataType
,
typename
YDataType
,
typename
YDataType
,
index_t
Rank
>
index_t
Rank
>
void
profile_layernorm_impl
(
int
do_verification
,
bool
profile_layernorm_impl
(
int
do_verification
,
int
init_method
,
int
init_method
,
bool
do_log
,
bool
do_log
,
bool
time_kernel
,
bool
time_kernel
,
std
::
vector
<
index_t
>
length
,
std
::
vector
<
index_t
>
length
)
std
::
vector
<
index_t
>
strideXY
,
std
::
vector
<
index_t
>
strideGamma
,
std
::
vector
<
index_t
>
strideBeta
)
{
{
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
if
(
length
.
size
()
<
2
)
if
(
length
.
size
()
<
2
)
return
;
return
false
;
// Assume normalize dimension except for first dimension
// Assume normalize dimension except for
batch (
first
)
dimension
std
::
vector
<
index_t
>
reduce_length
{
length
.
begin
()
+
1
,
length
.
end
()};
std
::
vector
<
index_t
>
reduce_length
{
length
.
begin
()
+
1
,
length
.
end
()};
std
::
vector
<
index_t
>
reduce_dim
;
std
::
vector
<
index_t
>
reduce_dim
;
for
(
int
i
=
1
;
i
<
Rank
;
++
i
)
for
(
int
i
=
1
;
i
<
Rank
;
++
i
)
reduce_dim
.
push_back
(
i
);
reduce_dim
.
push_back
(
i
);
Tensor
<
XDataType
>
x
(
length
);
Tensor
<
XDataType
>
x
(
length
);
Tensor
<
GammaDataType
>
gamma
(
reduce_length
,
strideGamma
);
Tensor
<
GammaDataType
>
gamma
(
reduce_length
);
Tensor
<
BetaDataType
>
beta
(
reduce_length
,
strideBeta
);
Tensor
<
BetaDataType
>
beta
(
reduce_length
);
Tensor
<
YDataType
>
y
(
length
,
strideXY
);
Tensor
<
YDataType
>
y
(
length
);
Tensor
<
YDataType
>
host_y
(
length
,
strideXY
);
Tensor
<
YDataType
>
host_y
(
length
);
std
::
vector
<
index_t
>
strideXY
=
std
::
vector
<
ck
::
index_t
>
{
x
.
mDesc
.
GetStrides
().
begin
(),
x
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
index_t
>
strideGammaBeta
=
strideXY
;
strideGammaBeta
[
0
]
=
0
;
switch
(
init_method
)
switch
(
init_method
)
{
{
// case 0: break;
case
0
:
case
0
:
x
.
GenerateTensorValue
(
GeneratorTensor_1
<
XDataType
>
{});
x
.
GenerateTensorValue
(
GeneratorTensor_1
<
XDataType
>
{});
gamma
.
GenerateTensorValue
(
GeneratorTensor_1
<
GammaDataType
>
{});
gamma
.
GenerateTensorValue
(
GeneratorTensor_1
<
GammaDataType
>
{});
...
@@ -84,14 +83,14 @@ void profile_layernorm_impl(int do_verification,
...
@@ -84,14 +83,14 @@ void profile_layernorm_impl(int do_verification,
constexpr
int
NumReduceDim
=
Rank
-
1
;
constexpr
int
NumReduceDim
=
Rank
-
1
;
// add device normalization instances
// add device normalization instances
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
Device
Layernorm
<
XDataType
,
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
Device
Normalization
<
XDataType
,
GammaDataType
,
GammaDataType
,
BetaDataType
,
BetaDataType
,
AccDataType
,
AccDataType
,
YDataType
,
YDataType
,
PassThrough
,
PassThrough
,
Rank
,
Rank
,
NumReduceDim
>
;
NumReduceDim
>
;
// get device op instances
// get device op instances
const
auto
instance_ptrs
=
const
auto
instance_ptrs
=
...
@@ -122,12 +121,14 @@ void profile_layernorm_impl(int do_verification,
...
@@ -122,12 +121,14 @@ void profile_layernorm_impl(int do_verification,
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
}
}
int
num_kernel
=
0
;
for
(
auto
&
inst_ptr
:
instance_ptrs
)
for
(
auto
&
inst_ptr
:
instance_ptrs
)
{
{
auto
argument_ptr
=
inst_ptr
->
MakeArgumentPointer
(
length
,
auto
argument_ptr
=
inst_ptr
->
MakeArgumentPointer
(
length
,
strideXY
,
strideXY
,
strideGamma
,
strideGamma
Beta
,
strideBeta
,
stride
Gamma
Beta
,
strideXY
,
strideXY
,
reduce_dim
,
reduce_dim
,
1e-4
,
1e-4
,
...
@@ -135,12 +136,21 @@ void profile_layernorm_impl(int do_verification,
...
@@ -135,12 +136,21 @@ void profile_layernorm_impl(int do_verification,
gamma_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
beta_dev
.
GetDeviceBuffer
(),
beta_dev
.
GetDeviceBuffer
(),
y_dev
.
GetDeviceBuffer
(),
y_dev
.
GetDeviceBuffer
(),
nullptr
,
nullptr
,
PassThrough
{});
PassThrough
{});
if
(
!
inst_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
if
(
inst_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
{
std
::
cout
<<
inst_ptr
->
GetTypeString
()
<<
" skipped due to unsupported argument: "
;
++
num_kernel
;
LogRange
(
std
::
cout
<<
"input lengths = "
,
length
,
", "
)
<<
std
::
endl
;
}
else
{
if
(
time_kernel
)
{
std
::
cout
<<
inst_ptr
->
GetTypeString
()
<<
" skipped due to unsupported argument: "
;
LogRange
(
std
::
cout
<<
"input lengths = "
,
length
,
", "
)
<<
std
::
endl
;
}
continue
;
continue
;
}
}
...
@@ -156,8 +166,9 @@ void profile_layernorm_impl(int do_verification,
...
@@ -156,8 +166,9 @@ void profile_layernorm_impl(int do_verification,
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
if
(
time_kernel
)
<<
inst_ptr
->
GetTypeString
()
<<
std
::
endl
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
inst_ptr
->
GetTypeString
()
<<
std
::
endl
;
if
(
avg_time
<
best_avg_time
)
if
(
avg_time
<
best_avg_time
)
{
{
...
@@ -184,20 +195,32 @@ void profile_layernorm_impl(int do_verification,
...
@@ -184,20 +195,32 @@ void profile_layernorm_impl(int do_verification,
{
{
std
::
cout
<<
inst_ptr
->
GetTypeString
()
<<
" failed verification: "
;
std
::
cout
<<
inst_ptr
->
GetTypeString
()
<<
" failed verification: "
;
LogRange
(
std
::
cout
<<
"lengths = ["
,
length
,
", "
)
<<
"]."
<<
std
::
endl
;
LogRange
(
std
::
cout
<<
"lengths = ["
,
length
,
", "
)
<<
"]."
<<
std
::
endl
;
return
;
return
false
;
}
}
else
else
{
{
std
::
cout
<<
"pass"
<<
std
::
endl
;
if
(
time_kernel
)
std
::
cout
<<
"pass"
<<
std
::
endl
;
}
}
}
}
}
}
LogRange
(
std
::
cout
<<
"length = "
,
length
,
","
)
<<
", "
;
if
(
time_kernel
)
LogRange
(
std
::
cout
<<
"stride = "
,
strideXY
,
","
)
<<
", "
;
{
LogRange
(
std
::
cout
<<
"reduce dims "
,
reduce_dim
,
","
)
<<
std
::
endl
;
LogRange
(
std
::
cout
<<
"length = "
,
length
,
","
)
<<
", "
;
std
::
cout
<<
"best perf = "
<<
best_avg_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
LogRange
(
std
::
cout
<<
"stride = "
,
strideXY
,
","
)
<<
", "
;
<<
best_instance_name
<<
std
::
endl
;
LogRange
(
std
::
cout
<<
"reduce dims "
,
reduce_dim
,
","
)
<<
std
::
endl
;
std
::
cout
<<
"best perf = "
<<
best_avg_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_instance_name
<<
std
::
endl
;
}
if
(
num_kernel
==
0
)
{
std
::
cout
<<
"Error: No kernel is applicable"
<<
std
::
endl
;
return
false
;
}
return
true
;
}
}
}
// namespace profiler
}
// namespace profiler
...
...
profiler/include/profile_reduce_impl.hpp
View file @
24af0144
...
@@ -18,57 +18,61 @@ namespace tensor_operation {
...
@@ -18,57 +18,61 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
template
<
int
Rank
,
int
NumReduceDim
,
int
ReduceOpId
,
bool
PropagateNan
,
bool
UseIndex
>
template
<
index_t
Rank
,
index_t
NumReduceDim
,
ReduceTensorOp
ReduceOpId
,
bool
PropagateNan
,
bool
UseIndex
>
struct
ReduceDescription
struct
ReduceDescription
{
{
static
constexpr
int
Rank_
=
Rank
;
static
constexpr
in
dex_
t
Rank_
=
Rank
;
static
constexpr
int
NumReduceDim_
=
NumReduceDim
;
static
constexpr
in
dex_
t
NumReduceDim_
=
NumReduceDim
;
static
constexpr
int
ReduceOpId_
=
ReduceOpId
;
static
constexpr
ReduceTensorOp
ReduceOpId_
=
ReduceOpId
;
static
constexpr
int
PropagateNan_
=
PropagateNan
;
static
constexpr
bool
PropagateNan_
=
PropagateNan
;
static
constexpr
int
UseIndex_
=
UseIndex
;
static
constexpr
bool
UseIndex_
=
UseIndex
;
};
};
using
reduce_description_instances
=
using
reduce_description_instances
=
std
::
tuple
<
ReduceDescription
<
4
,
3
,
0
,
false
,
false
>
,
// for ADD
std
::
tuple
<
ReduceDescription
<
4
,
3
,
ReduceTensorOp
::
ADD
,
false
,
false
>
,
// for ADD
ReduceDescription
<
4
,
4
,
0
,
false
,
false
>
,
ReduceDescription
<
4
,
4
,
ReduceTensorOp
::
ADD
,
false
,
false
>
,
ReduceDescription
<
4
,
1
,
0
,
false
,
false
>
,
ReduceDescription
<
4
,
1
,
ReduceTensorOp
::
ADD
,
false
,
false
>
,
ReduceDescription
<
2
,
1
,
0
,
false
,
false
>
,
ReduceDescription
<
2
,
1
,
ReduceTensorOp
::
ADD
,
false
,
false
>
,
ReduceDescription
<
4
,
3
,
5
,
false
,
false
>
,
// for AVG
ReduceDescription
<
4
,
3
,
ReduceTensorOp
::
AVG
,
false
,
false
>
,
// for AVG
ReduceDescription
<
4
,
4
,
5
,
false
,
false
>
,
ReduceDescription
<
4
,
4
,
ReduceTensorOp
::
AVG
,
false
,
false
>
,
ReduceDescription
<
4
,
1
,
5
,
false
,
false
>
,
ReduceDescription
<
4
,
1
,
ReduceTensorOp
::
AVG
,
false
,
false
>
,
ReduceDescription
<
2
,
1
,
5
,
false
,
false
>
,
ReduceDescription
<
2
,
1
,
ReduceTensorOp
::
AVG
,
false
,
false
>
,
ReduceDescription
<
4
,
3
,
7
,
false
,
false
>
,
// for NORM2
ReduceDescription
<
4
,
3
,
ReduceTensorOp
::
NORM2
,
false
,
false
>
,
// for NORM2
ReduceDescription
<
4
,
4
,
7
,
false
,
false
>
,
ReduceDescription
<
4
,
4
,
ReduceTensorOp
::
NORM2
,
false
,
false
>
,
ReduceDescription
<
4
,
1
,
7
,
false
,
false
>
,
ReduceDescription
<
4
,
1
,
ReduceTensorOp
::
NORM2
,
false
,
false
>
,
ReduceDescription
<
2
,
1
,
7
,
false
,
false
>
,
ReduceDescription
<
2
,
1
,
ReduceTensorOp
::
NORM2
,
false
,
false
>
,
ReduceDescription
<
4
,
3
,
2
,
false
,
false
>
,
// for MIN
ReduceDescription
<
4
,
3
,
ReduceTensorOp
::
MIN
,
false
,
false
>
,
// for MIN
ReduceDescription
<
4
,
4
,
2
,
false
,
false
>
,
ReduceDescription
<
4
,
4
,
ReduceTensorOp
::
MIN
,
false
,
false
>
,
ReduceDescription
<
4
,
1
,
2
,
false
,
false
>
,
ReduceDescription
<
4
,
1
,
ReduceTensorOp
::
MIN
,
false
,
false
>
,
ReduceDescription
<
2
,
1
,
2
,
false
,
false
>
,
ReduceDescription
<
2
,
1
,
ReduceTensorOp
::
MIN
,
false
,
false
>
,
ReduceDescription
<
4
,
3
,
3
,
false
,
false
>
,
// for MAX
ReduceDescription
<
4
,
3
,
ReduceTensorOp
::
MAX
,
false
,
false
>
,
// for MAX
ReduceDescription
<
4
,
4
,
3
,
false
,
false
>
,
ReduceDescription
<
4
,
4
,
ReduceTensorOp
::
MAX
,
false
,
false
>
,
ReduceDescription
<
4
,
1
,
3
,
false
,
false
>
,
ReduceDescription
<
4
,
1
,
ReduceTensorOp
::
MAX
,
false
,
false
>
,
ReduceDescription
<
2
,
1
,
3
,
false
,
false
>
,
ReduceDescription
<
2
,
1
,
ReduceTensorOp
::
MAX
,
false
,
false
>
,
ReduceDescription
<
4
,
3
,
4
,
false
,
false
>
,
// for AMAX
ReduceDescription
<
4
,
3
,
ReduceTensorOp
::
AMAX
,
false
,
false
>
,
// for AMAX
ReduceDescription
<
4
,
4
,
4
,
false
,
false
>
,
ReduceDescription
<
4
,
4
,
ReduceTensorOp
::
AMAX
,
false
,
false
>
,
ReduceDescription
<
4
,
1
,
4
,
false
,
false
>
,
ReduceDescription
<
4
,
1
,
ReduceTensorOp
::
AMAX
,
false
,
false
>
,
ReduceDescription
<
2
,
1
,
4
,
false
,
false
>
,
ReduceDescription
<
2
,
1
,
ReduceTensorOp
::
AMAX
,
false
,
false
>
,
ReduceDescription
<
4
,
3
,
2
,
false
,
true
>
,
// for MIN
ReduceDescription
<
4
,
3
,
ReduceTensorOp
::
MIN
,
false
,
true
>
,
// for MIN
ReduceDescription
<
4
,
4
,
2
,
false
,
true
>
,
ReduceDescription
<
4
,
4
,
ReduceTensorOp
::
MIN
,
false
,
true
>
,
ReduceDescription
<
4
,
1
,
2
,
false
,
true
>
,
ReduceDescription
<
4
,
1
,
ReduceTensorOp
::
MIN
,
false
,
true
>
,
ReduceDescription
<
2
,
1
,
2
,
false
,
true
>
,
ReduceDescription
<
2
,
1
,
ReduceTensorOp
::
MIN
,
false
,
true
>
,
ReduceDescription
<
4
,
3
,
3
,
false
,
true
>
,
// for MAX
ReduceDescription
<
4
,
3
,
ReduceTensorOp
::
MAX
,
false
,
true
>
,
// for MAX
ReduceDescription
<
4
,
4
,
3
,
false
,
true
>
,
ReduceDescription
<
4
,
4
,
ReduceTensorOp
::
MAX
,
false
,
true
>
,
ReduceDescription
<
4
,
1
,
3
,
false
,
true
>
,
ReduceDescription
<
4
,
1
,
ReduceTensorOp
::
MAX
,
false
,
true
>
,
ReduceDescription
<
2
,
1
,
3
,
false
,
true
>
,
ReduceDescription
<
2
,
1
,
ReduceTensorOp
::
MAX
,
false
,
true
>
,
ReduceDescription
<
4
,
3
,
4
,
false
,
true
>
,
// for AMAX
ReduceDescription
<
4
,
3
,
ReduceTensorOp
::
AMAX
,
false
,
true
>
,
// for AMAX
ReduceDescription
<
4
,
4
,
4
,
false
,
true
>
,
ReduceDescription
<
4
,
4
,
ReduceTensorOp
::
AMAX
,
false
,
true
>
,
ReduceDescription
<
4
,
1
,
4
,
false
,
true
>
,
ReduceDescription
<
4
,
1
,
ReduceTensorOp
::
AMAX
,
false
,
true
>
,
ReduceDescription
<
2
,
1
,
4
,
false
,
true
>>
;
ReduceDescription
<
2
,
1
,
ReduceTensorOp
::
AMAX
,
false
,
true
>>
;
template
<
typename
DescriptionType
>
template
<
typename
DescriptionType
>
bool
description_match
(
const
DescriptionType
&
description
,
bool
description_match
(
const
DescriptionType
&
description
,
...
@@ -78,9 +82,8 @@ bool description_match(const DescriptionType& description,
...
@@ -78,9 +82,8 @@ bool description_match(const DescriptionType& description,
bool
PropagateNan
,
bool
PropagateNan
,
bool
UseIndex
)
bool
UseIndex
)
{
{
if
(
description
.
Rank_
!=
Rank
||
description
.
ReduceOpId_
!=
static_cast
<
int
>
(
ReduceOpId
)
||
if
(
description
.
Rank_
!=
Rank
||
description
.
ReduceOpId_
!=
ReduceOpId
||
description
.
PropagateNan_
!=
static_cast
<
int
>
(
PropagateNan
)
||
description
.
PropagateNan_
!=
PropagateNan
||
description
.
UseIndex_
!=
UseIndex
)
description
.
UseIndex_
!=
static_cast
<
int
>
(
UseIndex
))
return
(
false
);
return
(
false
);
if
(
DescriptionType
::
NumReduceDim_
!=
reduceDims
.
size
())
if
(
DescriptionType
::
NumReduceDim_
!=
reduceDims
.
size
())
...
@@ -99,11 +102,10 @@ bool description_match(const DescriptionType& description,
...
@@ -99,11 +102,10 @@ bool description_match(const DescriptionType& description,
namespace
ck
{
namespace
ck
{
namespace
profiler
{
namespace
profiler
{
template
<
index_t
Rank
,
index_t
NumReduceDim
>
template
<
int
Rank
,
int
NumReduceDim
>
static
inline
std
::
vector
<
int
>
get_invariant_dims
(
const
std
::
vector
<
int
>&
reduceDims
)
static
inline
std
::
array
<
int
,
Rank
-
NumReduceDim
>
get_invariant_dims
(
const
std
::
array
<
int
,
NumReduceDim
>&
reduceDims
)
{
{
assert
(
NumReduceDim
==
reduceDims
.
size
());
int
reduceFlag
=
0
;
int
reduceFlag
=
0
;
// flag the bits for the reduceDims
// flag the bits for the reduceDims
...
@@ -112,13 +114,15 @@ static inline std::vector<int> get_invariant_dims(const std::vector<int>& reduce
...
@@ -112,13 +114,15 @@ static inline std::vector<int> get_invariant_dims(const std::vector<int>& reduce
reduceFlag
|=
1
<<
reduceDims
[
i
];
reduceFlag
|=
1
<<
reduceDims
[
i
];
};
};
std
::
vector
<
int
>
invariantDims
;
std
::
array
<
int
,
Rank
-
NumReduceDim
>
invariantDims
;
// collect invariant dimensions
// collect invariant dimensions
int
dim
=
0
;
for
(
int
i
=
0
;
i
<
Rank
;
i
++
)
for
(
int
i
=
0
;
i
<
Rank
;
i
++
)
if
((
reduceFlag
&
(
1
<<
i
))
==
0
)
if
((
reduceFlag
&
(
1
<<
i
))
==
0
)
{
{
invariantDims
.
push_back
(
i
);
invariantDims
[
dim
]
=
i
;
dim
++
;
};
};
return
invariantDims
;
return
invariantDims
;
...
@@ -137,7 +141,7 @@ bool profile_reduce_impl_impl(bool do_verification,
...
@@ -137,7 +141,7 @@ bool profile_reduce_impl_impl(bool do_verification,
bool
do_dumpout
,
bool
do_dumpout
,
bool
time_kernel
,
bool
time_kernel
,
const
std
::
vector
<
size_t
>&
inLengths
,
const
std
::
vector
<
size_t
>&
inLengths
,
const
std
::
vector
<
int
>&
reduceDims
,
const
std
::
array
<
int
,
NumReduceDim
>&
reduceDims
,
float
alpha
,
float
alpha
,
float
beta
)
float
beta
)
{
{
...
@@ -145,6 +149,8 @@ bool profile_reduce_impl_impl(bool do_verification,
...
@@ -145,6 +149,8 @@ bool profile_reduce_impl_impl(bool do_verification,
using
namespace
ck
::
tensor_operation
::
device
::
instance
;
using
namespace
ck
::
tensor_operation
::
device
::
instance
;
using
ck
::
host_common
::
dumpBufferToFile
;
using
ck
::
host_common
::
dumpBufferToFile
;
constexpr
index_t
NumOutDim
=
(
Rank
-
NumReduceDim
==
0
)
?
1
:
Rank
-
NumReduceDim
;
constexpr
bool
op_support_indices
=
constexpr
bool
op_support_indices
=
(
ReduceOpId
==
ReduceTensorOp
::
MIN
||
ReduceOpId
==
ReduceTensorOp
::
MAX
||
(
ReduceOpId
==
ReduceTensorOp
::
MIN
||
ReduceOpId
==
ReduceTensorOp
::
MAX
||
ReduceOpId
==
ReduceTensorOp
::
AMAX
);
ReduceOpId
==
ReduceTensorOp
::
AMAX
);
...
@@ -279,28 +285,32 @@ bool profile_reduce_impl_impl(bool do_verification,
...
@@ -279,28 +285,32 @@ bool profile_reduce_impl_impl(bool do_verification,
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
static_cast
<
int32_t
>
(
reduce_total_length
));
static_cast
<
int32_t
>
(
reduce_total_length
));
using
DeviceReduceInstPtr
0
=
using
DeviceReduceInstPtr
=
DeviceReducePtr
<
InElementwiseOperation
,
AccElementwiseOperation
>
;
DeviceReducePtr
<
Rank
,
NumReduceDim
,
InElementwiseOperation
,
AccElementwiseOperation
>
;
std
::
vector
<
DeviceReduceInstPtr
0
>
reduce
0
_ptrs
;
std
::
vector
<
DeviceReduceInstPtr
>
reduce_ptrs
;
add_device_reduce_instance_threadwise
<
InDataType
,
add_device_reduce_instance_threadwise
<
InDataType
,
AccDataType
,
AccDataType
,
OutDataType
,
OutDataType
,
Rank
,
Rank
,
NumReduceDim
,
NumReduceDim
,
ReduceOpId
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
PropagateNan
,
PropagateNan
,
UseIndex
>
(
reduce
0
_ptrs
);
UseIndex
>
(
reduce_ptrs
);
add_device_reduce_instance_blockwise
<
InDataType
,
add_device_reduce_instance_blockwise
<
InDataType
,
AccDataType
,
AccDataType
,
OutDataType
,
OutDataType
,
Rank
,
Rank
,
NumReduceDim
,
NumReduceDim
,
ReduceOpId
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
PropagateNan
,
PropagateNan
,
UseIndex
>
(
reduce
0
_ptrs
);
UseIndex
>
(
reduce_ptrs
);
if
constexpr
(
use_atomic_add
)
if
constexpr
(
use_atomic_add
)
{
{
...
@@ -309,12 +319,14 @@ bool profile_reduce_impl_impl(bool do_verification,
...
@@ -309,12 +319,14 @@ bool profile_reduce_impl_impl(bool do_verification,
OutDataType
,
OutDataType
,
Rank
,
Rank
,
NumReduceDim
,
NumReduceDim
,
ReduceOpId
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
PropagateNan
,
PropagateNan
,
UseIndex
>
(
reduce
0
_ptrs
);
UseIndex
>
(
reduce_ptrs
);
}
}
if
(
reduce
0
_ptrs
.
empty
())
if
(
reduce_ptrs
.
empty
())
{
{
throw
std
::
runtime_error
(
"Wrong! No device REDUCE instance found"
);
throw
std
::
runtime_error
(
"Wrong! No device REDUCE instance found"
);
};
};
...
@@ -342,22 +354,22 @@ bool profile_reduce_impl_impl(bool do_verification,
...
@@ -342,22 +354,22 @@ bool profile_reduce_impl_impl(bool do_verification,
acc_elementwise_op
);
acc_elementwise_op
);
};
};
std
::
vector
<
ck
::
index_t
>
i_i
nLengths
;
std
::
array
<
index_t
,
Rank
>
arrI
nLengths
;
std
::
vector
<
ck
::
index_t
>
i_i
nStrides
;
std
::
array
<
index_t
,
Rank
>
arrI
nStrides
;
std
::
vector
<
ck
::
index_t
>
i_o
utLengths
;
std
::
array
<
index_t
,
NumOutDim
>
arrO
utLengths
;
std
::
vector
<
ck
::
index_t
>
i_o
utStrides
;
std
::
array
<
index_t
,
NumOutDim
>
arrO
utStrides
;
i_inLengths
.
assign
(
inLengths
.
begin
(),
inLengths
.
end
());
std
::
copy
(
inLengths
.
begin
(),
inLengths
.
end
()
,
arrInLengths
.
begin
()
);
i_inStrides
.
assign
(
inStrides
.
begin
(),
inStrides
.
end
());
std
::
copy
(
inStrides
.
begin
(),
inStrides
.
end
()
,
arrInStrides
.
begin
()
);
i_outLengths
.
assign
(
outLengths
.
begin
(),
outLengths
.
end
());
std
::
copy
(
outLengths
.
begin
(),
outLengths
.
end
()
,
arrOutLengths
.
begin
()
);
i_outStrides
.
assign
(
outStrides
.
begin
(),
outStrides
.
end
());
std
::
copy
(
outStrides
.
begin
(),
outStrides
.
end
()
,
arrOutStrides
.
begin
()
);
for
(
auto
&
reduce_ptr
:
reduce
0
_ptrs
)
for
(
auto
&
reduce_ptr
:
reduce_ptrs
)
{
{
auto
argument_ptr
=
reduce_ptr
->
MakeArgumentPointer
(
i_i
nLengths
,
auto
argument_ptr
=
reduce_ptr
->
MakeArgumentPointer
(
arrI
nLengths
,
i_i
nStrides
,
arrI
nStrides
,
i_o
utLengths
,
arrO
utLengths
,
i_o
utStrides
,
arrO
utStrides
,
reduceDims
,
reduceDims
,
alpha
,
alpha
,
beta
,
beta
,
...
@@ -399,13 +411,12 @@ bool profile_reduce_impl_impl(bool do_verification,
...
@@ -399,13 +411,12 @@ bool profile_reduce_impl_impl(bool do_verification,
bool
single_pass
;
bool
single_pass
;
out_dev
.
FromDevice
(
out
.
mData
.
data
());
out_dev
.
FromDevice
(
out
.
mData
.
data
());
single_pass
=
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
);
single_pass
=
ck
::
utils
::
check_err
(
out
,
out_ref
);
if
(
OutputIndex
)
if
(
OutputIndex
)
{
{
out_indices_dev
.
FromDevice
(
out_indices
.
mData
.
data
());
out_indices_dev
.
FromDevice
(
out_indices
.
mData
.
data
());
single_pass
=
single_pass
&&
single_pass
=
single_pass
&&
ck
::
utils
::
check_err
(
out_indices
,
out_indices_ref
);
ck
::
utils
::
check_err
(
out_indices
.
mData
,
out_indices_ref
.
mData
);
};
};
if
(
!
single_pass
)
if
(
!
single_pass
)
...
@@ -478,22 +489,25 @@ bool profile_reduce_impl(bool do_verification,
...
@@ -478,22 +489,25 @@ bool profile_reduce_impl(bool do_verification,
descType
{},
inLengths
.
size
(),
reduceDims
,
ReduceOpId
,
PropagateNan
,
UseIndex
))
descType
{},
inLengths
.
size
(),
reduceDims
,
ReduceOpId
,
PropagateNan
,
UseIndex
))
return
;
return
;
pass
=
pass
&&
std
::
array
<
ck
::
index_t
,
descType
::
NumReduceDim_
>
arrReduceDims
;
profile_reduce_impl_impl
<
InDataType
,
AccDataType
,
std
::
copy
(
reduceDims
.
begin
(),
reduceDims
.
end
(),
arrReduceDims
.
begin
());
OutDataType
,
descType
::
Rank_
,
pass
=
pass
&&
profile_reduce_impl_impl
<
InDataType
,
descType
::
NumReduceDim_
,
AccDataType
,
static_cast
<
ReduceTensorOp
>
(
descType
::
ReduceOpId_
),
OutDataType
,
static_cast
<
bool
>
(
descType
::
PropagateNan_
),
descType
::
Rank_
,
static_cast
<
bool
>
(
descType
::
UseIndex_
)
>
(
do_verification
,
descType
::
NumReduceDim_
,
init_method
,
static_cast
<
ReduceTensorOp
>
(
descType
::
ReduceOpId_
),
do_dumpout
,
descType
::
PropagateNan_
,
time_kernel
,
descType
::
UseIndex_
>
(
do_verification
,
inLengths
,
init_method
,
reduceDims
,
do_dumpout
,
alpha
,
time_kernel
,
beta
);
inLengths
,
arrReduceDims
,
alpha
,
beta
);
matched
=
true
;
matched
=
true
;
});
});
...
...
profiler/include/profile_
normalization
_impl.hpp
→
profiler/include/profile_
softmax
_impl.hpp
View file @
24af0144
...
@@ -3,55 +3,27 @@
...
@@ -3,55 +3,27 @@
#pragma once
#pragma once
#include <algorithm>
#include <iomanip>
#include <iomanip>
#include <iostream>
#include <string>
#include <vector>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax.hpp"
#include "ck/tensor_operation/gpu/device/device_softmax.hpp"
#include "ck/tensor_operation/gpu/device/device_softmax.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/data_type.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
namespace
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
}
// namespace
void
add_device_softmax_f16_f16_rank3_instances
(
std
::
vector
<
DeviceSoftmaxPtr
<
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
3
>>&
);
void
add_device_softmax_f16_f16_rank4_instances
(
std
::
vector
<
DeviceSoftmaxPtr
<
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
4
>>&
);
void
add_device_softmax_f32_f32_rank3_instances
(
std
::
vector
<
DeviceSoftmaxPtr
<
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
3
>>&
);
void
add_device_softmax_f32_f32_rank4_instances
(
std
::
vector
<
DeviceSoftmaxPtr
<
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
4
>>&
);
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
namespace
ck
{
namespace
ck
{
namespace
profiler
{
namespace
profiler
{
enum
struct
NormType
enum
struct
SoftmaxDataType
{
BATCHNORM
,
SOFTMAX
,
};
enum
struct
NormDataType
{
{
F32_F32
,
// in, out
F32_F32
,
// in, out
F16_F16
,
F16_F16
,
...
@@ -60,7 +32,7 @@ enum struct NormDataType
...
@@ -60,7 +32,7 @@ enum struct NormDataType
};
};
// clang-format off
// clang-format off
template
<
typename
Norm
DataType
>
std
::
string
type_to_string
();
template
<
typename
Softmax
DataType
>
std
::
string
type_to_string
();
template
<
>
std
::
string
type_to_string
<
float
>
()
{
return
"f32"
;
}
template
<
>
std
::
string
type_to_string
<
float
>
()
{
return
"f32"
;
}
template
<
>
std
::
string
type_to_string
<
half_t
>
()
{
return
"f16"
;
}
template
<
>
std
::
string
type_to_string
<
half_t
>
()
{
return
"f16"
;
}
template
<
>
std
::
string
type_to_string
<
bhalf_t
>
()
{
return
"bf16"
;
}
template
<
>
std
::
string
type_to_string
<
bhalf_t
>
()
{
return
"bf16"
;
}
...
@@ -69,16 +41,15 @@ template <> std::string type_to_string<int32_t>() { return "int32"; }
...
@@ -69,16 +41,15 @@ template <> std::string type_to_string<int32_t>() { return "int32"; }
// clang-format on
// clang-format on
template
<
typename
InDataType
,
typename
AccDataType
,
typename
OutDataType
,
index_t
Rank
>
template
<
typename
InDataType
,
typename
AccDataType
,
typename
OutDataType
,
index_t
Rank
>
void
profile_normalization_impl
(
int
do_verification
,
bool
profile_softmax_impl
(
int
do_verification
,
int
init_method
,
int
init_method
,
bool
do_log
,
bool
do_log
,
bool
time_kernel
,
bool
time_kernel
,
std
::
vector
<
index_t
>
in_length
,
std
::
vector
<
index_t
>
in_length
,
std
::
vector
<
index_t
>
in_strides
,
std
::
vector
<
index_t
>
in_strides
,
std
::
vector
<
index_t
>
reduce_dims
,
std
::
vector
<
index_t
>
reduce_dims
,
AccDataType
alpha
,
AccDataType
alpha
,
AccDataType
beta
,
AccDataType
beta
)
NormType
norm_type
)
{
{
if
(
Rank
!=
in_length
.
size
())
if
(
Rank
!=
in_length
.
size
())
{
{
...
@@ -88,62 +59,46 @@ void profile_normalization_impl(int do_verification,
...
@@ -88,62 +59,46 @@ void profile_normalization_impl(int do_verification,
Tensor
<
InDataType
>
in
=
in_strides
.
empty
()
?
Tensor
<
InDataType
>
(
in_length
)
Tensor
<
InDataType
>
in
=
in_strides
.
empty
()
?
Tensor
<
InDataType
>
(
in_length
)
:
Tensor
<
InDataType
>
(
in_length
,
in_strides
);
:
Tensor
<
InDataType
>
(
in_length
,
in_strides
);
Tensor
<
OutDataType
>
out
(
in
.
mDesc
);
Tensor
<
OutDataType
>
out
(
in
.
mDesc
);
Tensor
<
OutDataType
>
prior_out
(
in
.
mDesc
);
switch
(
init_method
)
switch
(
init_method
)
{
{
// case 0: break;
case
0
:
break
;
case
0
:
in
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{});
out
.
GenerateTensorValue
(
GeneratorTensor_1
<
OutDataType
>
{});
break
;
case
1
:
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
ck
::
utils
::
FillUniformDistributionIntegerValue
<
InDataType
>
{
-
5.
f
,
5.
f
}(
in
.
begin
(),
in
.
end
());
out
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
ck
::
utils
::
FillUniformDistributionIntegerValue
<
OutDataType
>
{
-
5.
f
,
5.
f
}(
prior_out
.
begin
(),
prior_out
.
end
());
break
;
break
;
default:
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
}
);
ck
::
utils
::
FillUniformDistribution
<
InDataType
>
{
0.0
f
,
1.0
f
}(
in
);
out
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
-
0.5
,
0.5
}
);
ck
::
utils
::
FillUniformDistribution
<
OutDataType
>
{
-
0.5
f
,
0.5
f
}(
prior_out
);
}
}
Tensor
<
OutDataType
>
out_ref
(
out
);
Tensor
<
OutDataType
>
out_ref
(
prior_out
);
if
(
do_verification
)
{
using
ReferenceSoftmax
=
tensor_operation
::
host
::
ReferenceSoftmax
<
InDataType
,
OutDataType
,
AccDataType
>
;
ReferenceSoftmax
{}.
MakeInvoker
().
Run
({
in
,
out_ref
,
alpha
,
beta
,
reduce_dims
});
}
DeviceMem
in_dev
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
in_dev
(
in
.
GetElementSpaceSizeInBytes
());
DeviceMem
out_dev
(
sizeof
(
OutDataType
)
*
out
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_dev
(
out
.
GetElementSpaceSizeInBytes
());
in_dev
.
ToDevice
(
in
.
mData
.
data
());
in_dev
.
ToDevice
(
in
.
data
());
out_dev
.
ToDevice
(
out
.
mData
.
data
());
std
::
vector
<
index_t
>
i
_in
_lengths
(
in
.
mDesc
.
GetLengths
().
begin
(),
in
.
mDesc
.
GetLengths
().
end
());
std
::
vector
<
index_t
>
i
n_tensor
_lengths
(
in
.
GetLengths
().
begin
(),
in
.
GetLengths
().
end
());
std
::
vector
<
index_t
>
i
_in
_strides
(
in
.
mDesc
.
GetStrides
().
begin
(),
in
.
mDesc
.
GetStrides
().
end
());
std
::
vector
<
index_t
>
i
n_tensor
_strides
(
in
.
GetStrides
().
begin
(),
in
.
GetStrides
().
end
());
// add device softmax instances
// add device softmax instances
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceOpPtr
=
tensor_operation
::
device
::
using
DeviceOp
=
tensor_operation
::
device
::
DeviceSoftmaxPtr
<
InDataType
,
AccDataType
,
OutDataType
,
PassThrough
,
PassThrough
,
Rank
>
;
DeviceSoftmax
<
InDataType
,
AccDataType
,
OutDataType
,
PassThrough
,
PassThrough
,
Rank
>
;
std
::
vector
<
DeviceOpPtr
>
instances
;
if
(
norm_type
==
NormType
::
SOFTMAX
)
// get device op instances
{
const
auto
instances
=
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
if
constexpr
(
is_same
<
InDataType
,
half_t
>::
value
&&
is_same
<
OutDataType
,
half_t
>::
value
&&
DeviceOp
>::
GetInstances
();
is_same
<
AccDataType
,
float
>::
value
)
std
::
cout
<<
"found "
<<
instances
.
size
()
<<
" instances"
<<
std
::
endl
;
{
if
constexpr
(
Rank
==
3
)
tensor_operation
::
device
::
instance
::
add_device_softmax_f16_f16_rank3_instances
(
instances
);
else
if
constexpr
(
Rank
==
4
)
tensor_operation
::
device
::
instance
::
add_device_softmax_f16_f16_rank4_instances
(
instances
);
}
else
if
constexpr
(
is_same
<
InDataType
,
float
>::
value
&&
is_same
<
OutDataType
,
float
>::
value
&&
is_same
<
AccDataType
,
float
>::
value
)
{
if
constexpr
(
Rank
==
3
)
tensor_operation
::
device
::
instance
::
add_device_softmax_f32_f32_rank3_instances
(
instances
);
else
if
constexpr
(
Rank
==
4
)
tensor_operation
::
device
::
instance
::
add_device_softmax_f32_f32_rank4_instances
(
instances
);
}
}
if
(
instances
.
size
()
<=
0
)
if
(
instances
.
size
()
<=
0
)
{
{
...
@@ -153,21 +108,19 @@ void profile_normalization_impl(int do_verification,
...
@@ -153,21 +108,19 @@ void profile_normalization_impl(int do_verification,
std
::
string
best_instance_name
;
std
::
string
best_instance_name
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_gb_per_sec
=
0
;
std
::
vector
<
bool
>
instance_pass
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
for
(
auto
&
inst_ptr
:
instances
)
for
(
auto
&
inst_ptr
:
instances
)
{
{
// Is this user's responsibility to check if problem mismatches kernel instance (ie. rank 3
// Is this user's responsibility to check if problem mismatches kernel instance (ie. rank 3
// problem to rank 4 kernel) other than invoking IsSupportedArgument()?
// problem to rank 4 kernel) other than invoking IsSupportedArgument()?
if
(
!
(
inst_ptr
->
GetRank
()
==
static_cast
<
index_t
>
(
i_in_lengths
.
size
())
&&
if
(
!
(
inst_ptr
->
GetNumReduceDim
()
==
static_cast
<
index_t
>
(
reduce_dims
.
size
())))
inst_ptr
->
GetNumReduceDim
()
==
static_cast
<
index_t
>
(
reduce_dims
.
size
())))
{
{
continue
;
continue
;
}
}
auto
argument_ptr
=
inst_ptr
->
MakeArgumentPointer
(
i
_in
_lengths
,
auto
argument_ptr
=
inst_ptr
->
MakeArgumentPointer
(
i
n_tensor
_lengths
,
i
_in
_strides
,
i
n_tensor
_strides
,
reduce_dims
,
reduce_dims
,
&
alpha
,
&
alpha
,
&
beta
,
&
beta
,
...
@@ -181,45 +134,42 @@ void profile_normalization_impl(int do_verification,
...
@@ -181,45 +134,42 @@ void profile_normalization_impl(int do_verification,
std
::
cout
<<
inst_ptr
->
GetTypeString
()
<<
" skipped due to unsupported argument: "
;
std
::
cout
<<
inst_ptr
->
GetTypeString
()
<<
" skipped due to unsupported argument: "
;
LogRange
(
std
::
cout
<<
"input lengths = ["
,
in_length
,
", "
)
LogRange
(
std
::
cout
<<
"input lengths = ["
,
in_length
,
", "
)
<<
"], "
<<
"], "
<<
"scaler = ["
<<
alpha
<<
", "
<<
beta
<<
"]."
<<
std
::
endl
;
<<
"scaler = ["
<<
alpha
<<
", "
<<
beta
<<
"]"
;
return
;
LogRange
(
std
::
cout
<<
", reduce dims = ["
,
reduce_dims
,
", "
)
<<
"]."
<<
std
::
endl
;
instance_pass
.
push_back
(
true
);
continue
;
}
}
out_dev
.
ToDevice
(
prior_out
.
data
());
auto
invoker_ptr
=
inst_ptr
->
MakeInvokerPointer
();
auto
invoker_ptr
=
inst_ptr
->
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
if
(
time_kernel
)
{
std
::
size_t
num_bytes
=
std
::
size_t
num_bytes
=
in
.
mDesc
.
GetElementSize
()
*
sizeof
(
InDataType
)
+
in
.
GetElementSize
()
*
sizeof
(
InDataType
)
+
(
beta
==
0.0
f
?
1
:
2
)
*
out
.
mDesc
.
GetElementSize
()
*
sizeof
(
OutDataType
);
(
beta
==
0.0
f
?
1
:
2
)
*
out
.
GetElementSize
()
*
sizeof
(
OutDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
inst_ptr
->
GetTypeString
()
<<
std
::
endl
;
<<
inst_ptr
->
GetTypeString
()
<<
std
::
endl
;
if
(
avg_time
<
best_avg_time
)
if
(
avg_time
<
best_avg_time
)
{
{
best_instance_name
=
inst_ptr
->
GetTypeString
();
best_instance_name
=
inst_ptr
->
GetTypeString
();
best_avg_time
=
avg_time
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_gb_per_sec
=
gb_per_sec
;
}
}
}
if
(
do_verification
)
if
(
do_verification
)
{
{
// TODO: factory method to dynamically switch between different reference normalizations
out_dev
.
FromDevice
(
out
.
data
());
using
ReferenceFactory
=
bool
pass
=
true
;
tensor_operation
::
host
::
ReferenceSoftmax
<
InDataType
,
OutDataType
,
AccDataType
>
;
ReferenceFactory
{}.
MakeInvoker
().
Run
({
in
,
out_ref
,
alpha
,
beta
,
reduce_dims
});
out_dev
.
FromDevice
(
out
.
mData
.
data
());
bool
pass
;
if
(
std
::
is_same
<
InDataType
,
int8_t
>::
value
)
if
(
std
::
is_same
<
InDataType
,
int8_t
>::
value
)
{
{
pass
=
ck
::
utils
::
check_err
(
pass
=
pass
&&
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
,
"Error: Incorrect results!"
,
0
,
1
);
out
.
mData
,
out_ref
.
mData
,
"Error: Incorrect results!"
,
0
,
1
);
if
(
do_log
)
if
(
do_log
)
{
{
LogRangeAsType
<
int
>
(
std
::
cout
<<
"in : "
,
in
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
int
>
(
std
::
cout
<<
"in : "
,
in
.
mData
,
","
)
<<
std
::
endl
;
...
@@ -230,7 +180,7 @@ void profile_normalization_impl(int do_verification,
...
@@ -230,7 +180,7 @@ void profile_normalization_impl(int do_verification,
}
}
else
else
{
{
pass
=
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
);
if
(
do_log
)
if
(
do_log
)
{
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in
.
mData
,
","
)
<<
std
::
endl
;
...
@@ -247,16 +197,22 @@ void profile_normalization_impl(int do_verification,
...
@@ -247,16 +197,22 @@ void profile_normalization_impl(int do_verification,
<<
"], "
<<
"], "
<<
"scaler = ["
<<
alpha
<<
", "
<<
beta
<<
"]."
<<
std
::
endl
;
<<
"scaler = ["
<<
alpha
<<
", "
<<
beta
<<
"]."
<<
std
::
endl
;
}
}
instance_pass
.
push_back
(
pass
);
}
}
}
}
std
::
cout
<<
"Best Perf for datatype = "
<<
type_to_string
<
InDataType
>
()
<<
"_"
if
(
time_kernel
)
<<
type_to_string
<
OutDataType
>
()
<<
", "
;
{
LogRange
(
std
::
cout
<<
"length = "
,
i_in_lengths
,
","
)
<<
", "
;
std
::
cout
<<
"Best Perf for datatype = "
<<
type_to_string
<
InDataType
>
()
<<
"_"
LogRange
(
std
::
cout
<<
"stride = "
,
i_in_strides
,
","
)
<<
", "
;
<<
type_to_string
<
OutDataType
>
()
<<
", "
;
LogRange
(
std
::
cout
<<
"reduce dims "
,
reduce_dims
,
","
)
<<
", "
;
LogRange
(
std
::
cout
<<
"length = "
,
in_tensor_lengths
,
","
)
<<
", "
;
std
::
cout
<<
"alpha = "
<<
alpha
<<
", "
LogRange
(
std
::
cout
<<
"stride = "
,
in_tensor_strides
,
","
)
<<
", "
;
<<
"beta = "
<<
beta
<<
", "
<<
best_avg_time
<<
" ms, "
<<
best_gb_per_sec
LogRange
(
std
::
cout
<<
"reduce dims "
,
reduce_dims
,
","
)
<<
", "
;
<<
" GB/s, "
<<
best_instance_name
<<
std
::
endl
;
std
::
cout
<<
"alpha = "
<<
alpha
<<
", "
<<
"beta = "
<<
beta
<<
", "
<<
best_avg_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_instance_name
<<
std
::
endl
;
}
return
std
::
all_of
(
std
::
begin
(
instance_pass
),
std
::
end
(
instance_pass
),
[](
bool
p
)
{
return
p
;
});
}
}
}
// namespace profiler
}
// namespace profiler
...
...
profiler/src/profile_conv_bwd_weight.cpp
→
profiler/src/profile_
grouped_
conv_bwd_weight.cpp
View file @
24af0144
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <initializer_list>
#include <iostream>
#include <iostream>
#include <numeric>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/include/profile_conv_bwd_weight_impl.hpp"
#include "profiler/include/profile_
grouped_
conv_bwd_weight_impl.hpp"
namespace
{
namespace
{
enum
struct
ConvLayout
enum
struct
ConvLayout
{
{
NCHW_KCYX_NKHW
,
// 0
G
NCHW_
G
KCYX_
G
NKHW
,
// 0
NHWC_KYXC_NHWK
,
// 1
G
NHWC_
G
KYXC_
G
NHWK
,
// 1
};
};
enum
struct
ConvDataType
enum
struct
ConvDataType
...
@@ -25,24 +25,25 @@ enum struct ConvDataType
...
@@ -25,24 +25,25 @@ enum struct ConvDataType
static
void
print_helper_msg
()
static
void
print_helper_msg
()
{
{
std
::
cout
std
::
cout
<<
"arg1: tensor operation (conv_bwd_weight: Convolution Backward Weight
\n
"
<<
"arg1: tensor operation (conv_bwd_weight: Convolution Backward Weight
\n
"
<<
"arg2: data type (0: Input fp32, Weight fp32, Output fp32
\n
"
<<
"arg2: data type (0: Input fp32, Weight fp32, Output fp32
\n
"
<<
" 1: Input fp16, Weight fp16, Output fp16
\n
"
<<
" 1: Input fp16, Weight fp16, Output fp16
\n
"
<<
" 2: Input bf16, Weight fp32, Output bf16)
\n
"
<<
" 2: Input bf16, Weight fp32, Output bf16)
\n
"
<<
"arg3: tensor layout (0: Input[G, N, C, Hi, Wi], Weight[G, K, C, Y, X], Output[G, "
<<
"arg3: tensor layout (0: Input[N, C, Hi, Wi], Weight[K, C, Y, X], Output[N, K, Ho, Wo]
\n
"
"N, K, Ho, Wo]
\n
"
<<
" 1: Input[N, Hi, Wi, C], Weight[K, Y, X, C], Output[N, Ho, Wo, K]
\n
"
<<
" 1: Input[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Output[G, "
<<
"arg4: verification (0: no, 1: yes)
\n
"
"N, Ho, Wo, K]
\n
"
<<
"arg5: initialization (0: no init, 1: integer value, 2: decimal value)
\n
"
<<
"arg4: verification (0: no, 1: yes)
\n
"
<<
"arg6: print tensor value (0: no; 1: yes)
\n
"
<<
"arg5: initialization (0: no init, 1: integer value, 2: decimal value)
\n
"
<<
"arg7: time kernel (0: no, 1: yes)
\n
"
<<
"arg6: print tensor value (0: no; 1: yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
" SplitK
\n
"
<<
"arg7: time kernel (0: no, 1: yes)
\n
"
<<
std
::
endl
;
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
" SplitK
\n
"
<<
std
::
endl
;
}
}
}
// namespace
}
// namespace
int
profile_conv_bwd_weight
(
int
argc
,
char
*
argv
[])
int
profile_
grouped_
conv_bwd_weight
(
int
argc
,
char
*
argv
[])
{
{
// 8 for control, 1 for num_dim_spatial
// 8 for control, 1 for num_dim_spatial
if
(
argc
<
9
)
if
(
argc
<
9
)
...
@@ -75,17 +76,17 @@ int profile_conv_bwd_weight(int argc, char* argv[])
...
@@ -75,17 +76,17 @@ int profile_conv_bwd_weight(int argc, char* argv[])
using
F16
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
BF16
=
ck
::
bhalf_t
;
using
NWC
=
ck
::
tensor_layout
::
convolution
::
NWC
;
using
G
NWC
=
ck
::
tensor_layout
::
convolution
::
G
NWC
;
using
NHWC
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
using
G
NHWC
=
ck
::
tensor_layout
::
convolution
::
G
NHWC
;
using
NDHWC
=
ck
::
tensor_layout
::
convolution
::
NDHWC
;
using
G
NDHWC
=
ck
::
tensor_layout
::
convolution
::
G
NDHWC
;
using
KXC
=
ck
::
tensor_layout
::
convolution
::
KXC
;
using
G
KXC
=
ck
::
tensor_layout
::
convolution
::
G
KXC
;
using
KYXC
=
ck
::
tensor_layout
::
convolution
::
KYXC
;
using
G
KYXC
=
ck
::
tensor_layout
::
convolution
::
G
KYXC
;
using
KZYXC
=
ck
::
tensor_layout
::
convolution
::
KZYXC
;
using
G
KZYXC
=
ck
::
tensor_layout
::
convolution
::
G
KZYXC
;
using
NWK
=
ck
::
tensor_layout
::
convolution
::
NWK
;
using
G
NWK
=
ck
::
tensor_layout
::
convolution
::
G
NWK
;
using
NHWK
=
ck
::
tensor_layout
::
convolution
::
NHWK
;
using
G
NHWK
=
ck
::
tensor_layout
::
convolution
::
G
NHWK
;
using
NDHWK
=
ck
::
tensor_layout
::
convolution
::
NDHWK
;
using
G
NDHWK
=
ck
::
tensor_layout
::
convolution
::
G
NDHWK
;
constexpr
auto
I1
=
ck
::
Number
<
1
>
{};
constexpr
auto
I1
=
ck
::
Number
<
1
>
{};
constexpr
auto
I2
=
ck
::
Number
<
2
>
{};
constexpr
auto
I2
=
ck
::
Number
<
2
>
{};
...
@@ -108,64 +109,64 @@ int profile_conv_bwd_weight(int argc, char* argv[])
...
@@ -108,64 +109,64 @@ int profile_conv_bwd_weight(int argc, char* argv[])
using
WeiDataType
=
decltype
(
wei_type
);
using
WeiDataType
=
decltype
(
wei_type
);
using
OutDataType
=
decltype
(
out_type
);
using
OutDataType
=
decltype
(
out_type
);
bool
pass
=
ck
::
profiler
::
profile_conv_bwd_weight_impl
<
NDimSpatial
,
bool
pass
=
ck
::
profiler
::
profile_
grouped_
conv_bwd_weight_impl
<
NDimSpatial
,
InLayout
,
InLayout
,
WeiLayout
,
WeiLayout
,
OutLayout
,
OutLayout
,
InDataType
,
InDataType
,
WeiDataType
,
WeiDataType
,
OutDataType
>
(
OutDataType
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
params
,
split_k
);
do_verification
,
init_method
,
do_log
,
time_kernel
,
params
,
split_k
);
return
pass
?
0
:
1
;
return
pass
?
0
:
1
;
};
};
if
(
num_dim_spatial
==
1
&&
layout
==
ConvLayout
::
NHWC_KYXC_NHWK
)
if
(
num_dim_spatial
==
1
&&
layout
==
ConvLayout
::
G
NHWC_
G
KYXC_
G
NHWK
)
{
{
if
(
data_type
==
ConvDataType
::
F32_F32_F32
)
if
(
data_type
==
ConvDataType
::
F32_F32_F32
)
{
{
return
profile
(
I1
,
NWC
{},
KXC
{},
NWK
{},
F32
{},
F32
{},
F32
{});
return
profile
(
I1
,
G
NWC
{},
G
KXC
{},
G
NWK
{},
F32
{},
F32
{},
F32
{});
}
}
else
if
(
data_type
==
ConvDataType
::
F16_F16_F16
)
else
if
(
data_type
==
ConvDataType
::
F16_F16_F16
)
{
{
return
profile
(
I1
,
NWC
{},
KXC
{},
NWK
{},
F16
{},
F16
{},
F16
{});
return
profile
(
I1
,
G
NWC
{},
G
KXC
{},
G
NWK
{},
F16
{},
F16
{},
F16
{});
}
}
else
if
(
data_type
==
ConvDataType
::
BF16_F32_BF16
)
else
if
(
data_type
==
ConvDataType
::
BF16_F32_BF16
)
{
{
// fp32 atomic add is used for weight tensor in bf16 kernel
// fp32 atomic add is used for weight tensor in bf16 kernel
return
profile
(
I1
,
NWC
{},
KXC
{},
NWK
{},
BF16
{},
F32
{},
BF16
{});
return
profile
(
I1
,
G
NWC
{},
G
KXC
{},
G
NWK
{},
BF16
{},
F32
{},
BF16
{});
}
}
}
}
else
if
(
num_dim_spatial
==
2
&&
layout
==
ConvLayout
::
NHWC_KYXC_NHWK
)
else
if
(
num_dim_spatial
==
2
&&
layout
==
ConvLayout
::
G
NHWC_
G
KYXC_
G
NHWK
)
{
{
if
(
data_type
==
ConvDataType
::
F32_F32_F32
)
if
(
data_type
==
ConvDataType
::
F32_F32_F32
)
{
{
return
profile
(
I2
,
NHWC
{},
KYXC
{},
NHWK
{},
F32
{},
F32
{},
F32
{});
return
profile
(
I2
,
G
NHWC
{},
G
KYXC
{},
G
NHWK
{},
F32
{},
F32
{},
F32
{});
}
}
else
if
(
data_type
==
ConvDataType
::
F16_F16_F16
)
else
if
(
data_type
==
ConvDataType
::
F16_F16_F16
)
{
{
return
profile
(
I2
,
NHWC
{},
KYXC
{},
NHWK
{},
F16
{},
F16
{},
F16
{});
return
profile
(
I2
,
G
NHWC
{},
G
KYXC
{},
G
NHWK
{},
F16
{},
F16
{},
F16
{});
}
}
else
if
(
data_type
==
ConvDataType
::
BF16_F32_BF16
)
else
if
(
data_type
==
ConvDataType
::
BF16_F32_BF16
)
{
{
// fp32 atomic add is used for weight tensor in bf16 kernel
// fp32 atomic add is used for weight tensor in bf16 kernel
return
profile
(
I2
,
NHWC
{},
KYXC
{},
NHWK
{},
BF16
{},
F32
{},
BF16
{});
return
profile
(
I2
,
G
NHWC
{},
G
KYXC
{},
G
NHWK
{},
BF16
{},
F32
{},
BF16
{});
}
}
}
}
else
if
(
num_dim_spatial
==
3
&&
layout
==
ConvLayout
::
NHWC_KYXC_NHWK
)
else
if
(
num_dim_spatial
==
3
&&
layout
==
ConvLayout
::
G
NHWC_
G
KYXC_
G
NHWK
)
{
{
if
(
data_type
==
ConvDataType
::
F32_F32_F32
)
if
(
data_type
==
ConvDataType
::
F32_F32_F32
)
{
{
return
profile
(
I3
,
NDHWC
{},
KZYXC
{},
NDHWK
{},
F32
{},
F32
{},
F32
{});
return
profile
(
I3
,
G
NDHWC
{},
G
KZYXC
{},
G
NDHWK
{},
F32
{},
F32
{},
F32
{});
}
}
else
if
(
data_type
==
ConvDataType
::
F16_F16_F16
)
else
if
(
data_type
==
ConvDataType
::
F16_F16_F16
)
{
{
return
profile
(
I3
,
NDHWC
{},
KZYXC
{},
NDHWK
{},
F16
{},
F16
{},
F16
{});
return
profile
(
I3
,
G
NDHWC
{},
G
KZYXC
{},
G
NDHWK
{},
F16
{},
F16
{},
F16
{});
}
}
else
if
(
data_type
==
ConvDataType
::
BF16_F32_BF16
)
else
if
(
data_type
==
ConvDataType
::
BF16_F32_BF16
)
{
{
// fp32 atomic add is used for weight tensor in bf16 kernel
// fp32 atomic add is used for weight tensor in bf16 kernel
return
profile
(
I3
,
NDHWC
{},
KZYXC
{},
NDHWK
{},
BF16
{},
F32
{},
BF16
{});
return
profile
(
I3
,
G
NDHWC
{},
G
KZYXC
{},
G
NDHWK
{},
BF16
{},
F32
{},
BF16
{});
}
}
}
}
...
...
profiler/src/profile_layernorm.cpp
View file @
24af0144
...
@@ -12,8 +12,7 @@ using ck::index_t;
...
@@ -12,8 +12,7 @@ using ck::index_t;
struct
LayernormArgParser
struct
LayernormArgParser
{
{
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int
>>
long_opts
=
{
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int
>>
long_opts
=
{{
"length"
,
{}}};
{
"length"
,
{}},
{
"strideXY"
,
{}},
{
"strideGamma"
,
{}},
{
"strideBeta"
,
{}}};
bool
parse_opt
(
int
argc
,
char
*
argv
[],
const
std
::
string
&
key
,
int
i
)
bool
parse_opt
(
int
argc
,
char
*
argv
[],
const
std
::
string
&
key
,
int
i
)
{
{
...
@@ -52,9 +51,6 @@ void print_help_layernorm()
...
@@ -52,9 +51,6 @@ void print_help_layernorm()
<<
"arg4: print tensor value (0: no; 1: yes)
\n
"
<<
"arg4: print tensor value (0: no; 1: yes)
\n
"
<<
"arg5: time kernel (0=no, 1=yes)
\n
"
<<
"arg5: time kernel (0=no, 1=yes)
\n
"
<<
"--length: tensor extents (e.g, --length 1024 1024)
\n
"
<<
"--length: tensor extents (e.g, --length 1024 1024)
\n
"
<<
"--strideXY: tensor strides (e.g, --strideXY 1024 1)
\n
"
<<
"--strideGamma: tensor strides (e.g, --strideGamma 1)
\n
"
<<
"--strideBeta: tensor strides (e.g, --strideBeta 1)
\n
"
<<
std
::
endl
;
<<
std
::
endl
;
}
}
...
@@ -77,10 +73,7 @@ int profile_layernorm(int argc, char* argv[])
...
@@ -77,10 +73,7 @@ int profile_layernorm(int argc, char* argv[])
// parse the long options
// parse the long options
arg_parser
(
argc
,
argv
);
arg_parser
(
argc
,
argv
);
const
std
::
vector
<
index_t
>
length
=
arg_parser
.
long_opts
[
"length"
];
const
std
::
vector
<
index_t
>
length
=
arg_parser
.
long_opts
[
"length"
];
const
std
::
vector
<
index_t
>
strideXY
=
arg_parser
.
long_opts
[
"strideXY"
];
const
std
::
vector
<
index_t
>
strideGamma
=
arg_parser
.
long_opts
[
"strideGamma"
];
const
std
::
vector
<
index_t
>
strideBeta
=
arg_parser
.
long_opts
[
"strideBeta"
];
using
F16
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F32
=
float
;
...
@@ -88,25 +81,13 @@ int profile_layernorm(int argc, char* argv[])
...
@@ -88,25 +81,13 @@ int profile_layernorm(int argc, char* argv[])
if
(
data_type
==
ck
::
DataTypeEnum
::
Half
)
if
(
data_type
==
ck
::
DataTypeEnum
::
Half
)
{
{
ck
::
profiler
::
profile_layernorm_impl
<
F16
,
F16
,
F16
,
F32
,
F16
,
rank
>
(
do_verification
,
ck
::
profiler
::
profile_layernorm_impl
<
F16
,
F16
,
F16
,
F32
,
F16
,
rank
>
(
init_method
,
do_verification
,
init_method
,
do_log
,
time_kernel
,
length
);
do_log
,
time_kernel
,
length
,
strideXY
,
strideGamma
,
strideBeta
);
}
}
else
if
(
data_type
==
ck
::
DataTypeEnum
::
Float
)
else
if
(
data_type
==
ck
::
DataTypeEnum
::
Float
)
{
{
ck
::
profiler
::
profile_layernorm_impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
rank
>
(
do_verification
,
ck
::
profiler
::
profile_layernorm_impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
rank
>
(
init_method
,
do_verification
,
init_method
,
do_log
,
time_kernel
,
length
);
do_log
,
time_kernel
,
length
,
strideXY
,
strideGamma
,
strideBeta
);
}
}
else
else
{
{
...
...
profiler/src/profile_
normalization
.cpp
→
profiler/src/profile_
softmax
.cpp
View file @
24af0144
...
@@ -5,17 +5,13 @@
...
@@ -5,17 +5,13 @@
#include <vector>
#include <vector>
#include <unordered_map>
#include <unordered_map>
#include "profiler/include/profile_
normalization
_impl.hpp"
#include "profiler/include/profile_
softmax
_impl.hpp"
using
ck
::
index_t
;
using
ck
::
index_t
;
using
ck
::
profiler
::
NormDataType
;
using
ck
::
profiler
::
SoftmaxDataType
;
using
ck
::
profiler
::
NormType
;
struct
ArgParser
struct
ArgParser
{
{
std
::
unordered_map
<
std
::
string
,
NormType
>
norm_dict
=
{{
"batchnorm"
,
NormType
::
BATCHNORM
},
{
"softmax"
,
NormType
::
SOFTMAX
}};
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int
>>
long_opts
=
{
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int
>>
long_opts
=
{
{
"length"
,
{}},
{
"stride"
,
{}},
{
"reduce"
,
{}},
{
"alpha"
,
{}},
{
"beta"
,
{}}};
{
"length"
,
{}},
{
"stride"
,
{}},
{
"reduce"
,
{}},
{
"alpha"
,
{}},
{
"beta"
,
{}}};
...
@@ -50,7 +46,7 @@ struct ArgParser
...
@@ -50,7 +46,7 @@ struct ArgParser
void
print_help
()
void
print_help
()
{
{
std
::
cout
<<
"arg1: tensor operation (
batchnorm/
softmax)
\n
"
std
::
cout
<<
"arg1: tensor operation (softmax)
\n
"
<<
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)
\n
"
<<
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)
\n
"
<<
"arg3: verification (0: no; 1: yes)
\n
"
<<
"arg3: verification (0: no; 1: yes)
\n
"
<<
"arg4: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
<<
"arg4: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
...
@@ -64,7 +60,7 @@ void print_help()
...
@@ -64,7 +60,7 @@ void print_help()
<<
std
::
endl
;
<<
std
::
endl
;
}
}
int
profile_
normalization
(
int
argc
,
char
*
argv
[])
int
profile_
softmax
(
int
argc
,
char
*
argv
[])
{
{
if
(
argc
<=
2
)
if
(
argc
<=
2
)
{
{
...
@@ -75,12 +71,11 @@ int profile_normalization(int argc, char* argv[])
...
@@ -75,12 +71,11 @@ int profile_normalization(int argc, char* argv[])
ArgParser
arg_parser
;
ArgParser
arg_parser
;
// short unnamed options
// short unnamed options
const
NormType
norm_type
=
arg_parser
.
norm_dict
[
argv
[
1
]];
const
SoftmaxDataType
data_type
=
static_cast
<
SoftmaxDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
NormDataType
data_type
=
static_cast
<
NormDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
3
]);
const
bool
do_verification
=
std
::
stoi
(
argv
[
3
]);
const
int
init_method
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
4
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
5
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
6
]);
// parse the long options
// parse the long options
arg_parser
(
argc
,
argv
);
arg_parser
(
argc
,
argv
);
...
@@ -91,68 +86,64 @@ int profile_normalization(int argc, char* argv[])
...
@@ -91,68 +86,64 @@ int profile_normalization(int argc, char* argv[])
arg_parser
.
long_opts
[
"alpha"
].
empty
()
?
1
:
arg_parser
.
long_opts
[
"alpha"
][
0
];
arg_parser
.
long_opts
[
"alpha"
].
empty
()
?
1
:
arg_parser
.
long_opts
[
"alpha"
][
0
];
const
index_t
beta
=
arg_parser
.
long_opts
[
"beta"
].
empty
()
?
0
:
arg_parser
.
long_opts
[
"beta"
][
0
];
const
index_t
beta
=
arg_parser
.
long_opts
[
"beta"
].
empty
()
?
0
:
arg_parser
.
long_opts
[
"beta"
][
0
];
// Rank 3
if
(
length
.
size
()
==
3
)
if
(
length
.
size
()
==
3
)
{
{
if
(
data_type
==
Norm
DataType
::
F16_F16
)
if
(
data_type
==
Softmax
DataType
::
F16_F16
)
{
{
ck
::
profiler
::
profile_normalization_impl
<
ck
::
half_t
,
float
,
ck
::
half_t
,
3
>
(
ck
::
profiler
::
profile_softmax_impl
<
ck
::
half_t
,
float
,
ck
::
half_t
,
3
>
(
do_verification
,
do_verification
,
init_method
,
init_method
,
do_log
,
do_log
,
time_kernel
,
time_kernel
,
length
,
length
,
stride
,
stride
,
reduce
,
reduce
,
float
(
alpha
),
float
(
alpha
),
float
(
beta
));
float
(
beta
),
norm_type
);
}
}
else
if
(
data_type
==
Norm
DataType
::
F32_F32
)
else
if
(
data_type
==
Softmax
DataType
::
F32_F32
)
{
{
ck
::
profiler
::
profile_normalization_impl
<
float
,
float
,
float
,
3
>
(
do_verification
,
ck
::
profiler
::
profile_softmax_impl
<
float
,
float
,
float
,
3
>
(
do_verification
,
init_method
,
init_method
,
do_log
,
do_log
,
time_kernel
,
time_kernel
,
length
,
length
,
stride
,
stride
,
reduce
,
reduce
,
float
(
alpha
),
float
(
alpha
),
float
(
beta
),
float
(
beta
));
norm_type
);
}
}
else
else
{
{
throw
std
::
runtime_error
(
"not implemented yet"
);
throw
std
::
runtime_error
(
"not implemented yet"
);
}
}
}
}
// Rank 4
else
if
(
length
.
size
()
==
4
)
else
if
(
length
.
size
()
==
4
)
{
{
if
(
data_type
==
Norm
DataType
::
F16_F16
)
if
(
data_type
==
Softmax
DataType
::
F16_F16
)
{
{
ck
::
profiler
::
profile_normalization_impl
<
ck
::
half_t
,
float
,
ck
::
half_t
,
4
>
(
ck
::
profiler
::
profile_softmax_impl
<
ck
::
half_t
,
float
,
ck
::
half_t
,
4
>
(
do_verification
,
do_verification
,
init_method
,
init_method
,
do_log
,
do_log
,
time_kernel
,
time_kernel
,
length
,
length
,
stride
,
stride
,
reduce
,
reduce
,
float
(
alpha
),
float
(
alpha
),
float
(
beta
));
float
(
beta
),
norm_type
);
}
}
else
if
(
data_type
==
Norm
DataType
::
F32_F32
)
else
if
(
data_type
==
Softmax
DataType
::
F32_F32
)
{
{
ck
::
profiler
::
profile_normalization_impl
<
float
,
float
,
float
,
4
>
(
do_verification
,
ck
::
profiler
::
profile_softmax_impl
<
float
,
float
,
float
,
4
>
(
do_verification
,
init_method
,
init_method
,
do_log
,
do_log
,
time_kernel
,
time_kernel
,
length
,
length
,
stride
,
stride
,
reduce
,
reduce
,
float
(
alpha
),
float
(
alpha
),
float
(
beta
),
float
(
beta
));
norm_type
);
}
}
else
else
{
{
...
...
profiler/src/profiler.cpp
View file @
24af0144
...
@@ -18,9 +18,9 @@ int profile_conv_fwd(int, char*[]);
...
@@ -18,9 +18,9 @@ int profile_conv_fwd(int, char*[]);
int
profile_conv_fwd_bias_relu
(
int
,
char
*
[]);
int
profile_conv_fwd_bias_relu
(
int
,
char
*
[]);
int
profile_conv_fwd_bias_relu_add
(
int
,
char
*
[]);
int
profile_conv_fwd_bias_relu_add
(
int
,
char
*
[]);
int
profile_conv_bwd_data
(
int
,
char
*
[]);
int
profile_conv_bwd_data
(
int
,
char
*
[]);
int
profile_conv_bwd_weight
(
int
,
char
*
[]);
int
profile_grouped_conv_fwd
(
int
,
char
*
[]);
int
profile_grouped_conv_fwd
(
int
,
char
*
[]);
int
profile_normalization
(
int
,
char
*
[]);
int
profile_grouped_conv_bwd_weight
(
int
,
char
*
[]);
int
profile_softmax
(
int
,
char
*
[]);
int
profile_layernorm
(
int
,
char
*
[]);
int
profile_layernorm
(
int
,
char
*
[]);
int
profile_groupnorm
(
int
,
char
*
[]);
int
profile_groupnorm
(
int
,
char
*
[]);
int
profile_reduce
(
int
,
char
*
[]);
int
profile_reduce
(
int
,
char
*
[]);
...
@@ -43,8 +43,9 @@ static void print_helper_message()
...
@@ -43,8 +43,9 @@ static void print_helper_message()
" conv_fwd_bias_relu: ForwardConvolution+Bias+ReLU
\n
"
" conv_fwd_bias_relu: ForwardConvolution+Bias+ReLU
\n
"
" conv_fwd_bias_relu_add: ForwardConvolution+Bias+ReLU+Add
\n
"
" conv_fwd_bias_relu_add: ForwardConvolution+Bias+ReLU+Add
\n
"
" conv_bwd_data: Convolution Backward Data
\n
"
" conv_bwd_data: Convolution Backward Data
\n
"
" conv_bwd_weight: Convolution Backward Weight
\n
"
" grouped_conv_fwd: Grouped Convolution Forward
\n
"
" grouped_conv_fwd: Grouped Convolution Forward
\n
"
" grouped_conv_bwd_weight: Grouped Convolution Backward Weight
\n
"
" softmax: Softmax
\n
"
" reduce: Reduce
\n
"
);
" reduce: Reduce
\n
"
);
// clang-format on
// clang-format on
}
}
...
@@ -117,21 +118,21 @@ int main(int argc, char* argv[])
...
@@ -117,21 +118,21 @@ int main(int argc, char* argv[])
{
{
return
profile_conv_bwd_data
(
argc
,
argv
);
return
profile_conv_bwd_data
(
argc
,
argv
);
}
}
else
if
(
strcmp
(
argv
[
1
],
"conv_bwd_weight"
)
==
0
)
{
return
profile_conv_bwd_weight
(
argc
,
argv
);
}
else
if
(
strcmp
(
argv
[
1
],
"grouped_conv_fwd"
)
==
0
)
else
if
(
strcmp
(
argv
[
1
],
"grouped_conv_fwd"
)
==
0
)
{
{
return
profile_grouped_conv_fwd
(
argc
,
argv
);
return
profile_grouped_conv_fwd
(
argc
,
argv
);
}
}
else
if
(
strcmp
(
argv
[
1
],
"conv_bwd_weight"
)
==
0
)
{
return
profile_grouped_conv_bwd_weight
(
argc
,
argv
);
}
else
if
(
strcmp
(
argv
[
1
],
"reduce"
)
==
0
)
else
if
(
strcmp
(
argv
[
1
],
"reduce"
)
==
0
)
{
{
return
profile_reduce
(
argc
,
argv
);
return
profile_reduce
(
argc
,
argv
);
}
}
else
if
(
strcmp
(
argv
[
1
],
"batchnorm"
)
==
0
||
strcmp
(
argv
[
1
],
"softmax"
)
==
0
)
else
if
(
strcmp
(
argv
[
1
],
"softmax"
)
==
0
)
{
{
return
profile_
normalization
(
argc
,
argv
);
return
profile_
softmax
(
argc
,
argv
);
}
}
else
if
(
strcmp
(
argv
[
1
],
"layernorm"
)
==
0
)
else
if
(
strcmp
(
argv
[
1
],
"layernorm"
)
==
0
)
{
{
...
...
script/cmake-ck-dev.sh
View file @
24af0144
...
@@ -11,7 +11,7 @@ cmake
...
@@ -11,7 +11,7 @@ cmake
-D
CMAKE_CXX_FLAGS
=
"-O3 -ftemplate-backtrace-limit=0 -gline-tables-only -save-temps=
$PWD
"
\
-D
CMAKE_CXX_FLAGS
=
"-O3 -ftemplate-backtrace-limit=0 -gline-tables-only -save-temps=
$PWD
"
\
-D
CMAKE_BUILD_TYPE
=
Release
\
-D
CMAKE_BUILD_TYPE
=
Release
\
-D
BUILD_DEV
=
ON
\
-D
BUILD_DEV
=
ON
\
-D
GPU_TARGETS
=
gfx908
;
gfx90a
\
-D
GPU_TARGETS
=
"
gfx908;gfx90a
"
\
-D
CMAKE_VERBOSE_MAKEFILE:BOOL
=
ON
\
-D
CMAKE_VERBOSE_MAKEFILE:BOOL
=
ON
\
-D
USE_BITINT_EXTENSION_INT4
=
OFF
\
-D
USE_BITINT_EXTENSION_INT4
=
OFF
\
${
MY_PROJECT_SOURCE
}
${
MY_PROJECT_SOURCE
}
...
...
script/cmake-ck-release.sh
View file @
24af0144
...
@@ -11,7 +11,7 @@ cmake
...
@@ -11,7 +11,7 @@ cmake
-D
CMAKE_CXX_FLAGS
=
"-O3"
\
-D
CMAKE_CXX_FLAGS
=
"-O3"
\
-D
CMAKE_BUILD_TYPE
=
Release
\
-D
CMAKE_BUILD_TYPE
=
Release
\
-D
BUILD_DEV
=
OFF
\
-D
BUILD_DEV
=
OFF
\
-D
GPU_TARGETS
=
gfx908
;
gfx90a
\
-D
GPU_TARGETS
=
"
gfx908;gfx90a
"
\
-D
CMAKE_VERBOSE_MAKEFILE:BOOL
=
ON
\
-D
CMAKE_VERBOSE_MAKEFILE:BOOL
=
ON
\
-D
USE_BITINT_EXTENSION_INT4
=
OFF
\
-D
USE_BITINT_EXTENSION_INT4
=
OFF
\
${
MY_PROJECT_SOURCE
}
${
MY_PROJECT_SOURCE
}
...
...
script/process_perf_data.py
View file @
24af0144
...
@@ -81,7 +81,7 @@ def parse_logfile(logfile):
...
@@ -81,7 +81,7 @@ def parse_logfile(logfile):
StrideA
=
[]
StrideA
=
[]
StrideB
=
[]
StrideB
=
[]
StrideC
=
[]
StrideC
=
[]
if
'perf_gemm'
in
logfile
:
if
'perf_gemm
.log
'
in
logfile
:
for
line
in
open
(
logfile
):
for
line
in
open
(
logfile
):
if
'Best Perf'
in
line
:
if
'Best Perf'
in
line
:
lst
=
line
.
split
()
lst
=
line
.
split
()
...
@@ -120,14 +120,14 @@ def parse_logfile(logfile):
...
@@ -120,14 +120,14 @@ def parse_logfile(logfile):
res
=
[
x
for
_
,
x
in
sorted
(
zip
(
tests
,
tflops
))]
res
=
[
x
for
_
,
x
in
sorted
(
zip
(
tests
,
tflops
))]
#sorted_kernels = [x for _,x in sorted(zip(tests,kernels))]
#sorted_kernels = [x for _,x in sorted(zip(tests,kernels))]
test_list
=
list
(
range
(
1
,
len
(
tests
)
+
1
))
test_list
=
list
(
range
(
1
,
len
(
tests
)
+
1
))
#parse conv_fwd performance tests:
#parse conv_fwd
and conv_bwd
performance tests:
elif
'conv_fwd'
in
logfile
:
elif
'conv_fwd'
in
logfile
or
'conv_bwd_data'
in
logfile
:
for
line
in
open
(
logfile
):
for
line
in
open
(
logfile
):
if
'tflops:'
in
line
:
if
'tflops:'
in
line
:
lst
=
line
.
split
()
lst
=
line
.
split
()
res
.
append
(
lst
[
1
])
res
.
append
(
lst
[
1
])
#parse all other performance tests:
#parse all other performance tests:
elif
'resnet50'
in
logfile
or
'batched_gemm'
in
logfile
or
'grouped_gemm'
in
logfile
or
'conv_bwd_data'
in
logfile
or
'gemm_bilinear'
in
logfile
or
'reduction'
in
logfile
:
elif
'resnet50'
in
logfile
or
'batched_gemm'
in
logfile
or
'grouped_gemm'
in
logfile
or
'gemm_bilinear'
in
logfile
or
'reduction'
in
logfile
:
for
line
in
open
(
logfile
):
for
line
in
open
(
logfile
):
if
'Best Perf'
in
line
:
if
'Best Perf'
in
line
:
lst
=
line
.
split
()
lst
=
line
.
split
()
...
@@ -149,7 +149,7 @@ def store_new_test_result(table_name, test_results, testlist, branch_name, node_
...
@@ -149,7 +149,7 @@ def store_new_test_result(table_name, test_results, testlist, branch_name, node_
df
=
pd
.
DataFrame
(
data
=
[
params
],
columns
=
[
'Branch_ID'
,
'Node_ID'
,
'GPU_arch'
,
'Compute Units'
,
'ROCM_version'
,
'HIP_version'
,
'Environment'
,
'Datetime'
])
df
=
pd
.
DataFrame
(
data
=
[
params
],
columns
=
[
'Branch_ID'
,
'Node_ID'
,
'GPU_arch'
,
'Compute Units'
,
'ROCM_version'
,
'HIP_version'
,
'Environment'
,
'Datetime'
])
df_add
=
pd
.
DataFrame
(
data
=
[
test_results
],
columns
=
testlist
)
df_add
=
pd
.
DataFrame
(
data
=
[
test_results
],
columns
=
testlist
)
df
=
pd
.
concat
([
df
,
df_add
],
axis
=
1
)
df
=
pd
.
concat
([
df
,
df_add
],
axis
=
1
)
print
(
"new test results dataframe:"
,
df
)
#
print("new test results dataframe:",df)
df
.
to_sql
(
table_name
,
connection
,
if_exists
=
'append'
,
index
=
False
)
df
.
to_sql
(
table_name
,
connection
,
if_exists
=
'append'
,
index
=
False
)
return
0
return
0
...
@@ -165,7 +165,7 @@ def compare_test_to_baseline(baseline,test,testlist):
...
@@ -165,7 +165,7 @@ def compare_test_to_baseline(baseline,test,testlist):
print
(
"test # "
,
i
,
"shows regression by {:.3f}%"
.
format
(
print
(
"test # "
,
i
,
"shows regression by {:.3f}%"
.
format
(
(
float
(
test
[
i
])
-
base_list
[
i
])
/
base_list
[
i
]
*
100
))
(
float
(
test
[
i
])
-
base_list
[
i
])
/
base_list
[
i
]
*
100
))
regression
=
1
regression
=
1
ave_perf
=
ave_perf
+
float
(
test
[
i
])
/
base_list
[
i
]
if
base_list
[
i
]
>
0
:
ave_perf
=
ave_perf
+
float
(
test
[
i
])
/
base_list
[
i
]
if
regression
==
0
:
if
regression
==
0
:
print
(
"no regressions found"
)
print
(
"no regressions found"
)
ave_perf
=
ave_perf
/
len
(
base_list
)
ave_perf
=
ave_perf
/
len
(
base_list
)
...
@@ -248,7 +248,7 @@ def main():
...
@@ -248,7 +248,7 @@ def main():
conn
=
sqlEngine
.
connect
()
conn
=
sqlEngine
.
connect
()
#save gemm performance tests:
#save gemm performance tests:
if
'perf_gemm'
in
filename
:
if
'perf_gemm
.log
'
in
filename
:
#write the ck_gemm_test_params table only needed once the test set changes
#write the ck_gemm_test_params table only needed once the test set changes
#post_test_params(test_list,conn)
#post_test_params(test_list,conn)
for
i
in
range
(
1
,
len
(
results
)
+
1
):
for
i
in
range
(
1
,
len
(
results
)
+
1
):
...
...
test/CMakeLists.txt
View file @
24af0144
...
@@ -6,11 +6,10 @@ include(googletest)
...
@@ -6,11 +6,10 @@ include(googletest)
add_custom_target
(
tests
)
add_custom_target
(
tests
)
function
(
add_test_executable TEST_NAME
)
function
(
add_test_executable TEST_NAME
)
message
(
"adding test
${
TEST_NAME
}
"
)
message
(
"adding test
${
TEST_NAME
}
"
)
add_executable
(
${
TEST_NAME
}
${
ARGN
}
)
add_executable
(
${
TEST_NAME
}
${
ARGN
}
)
add_test
(
NAME
${
TEST_NAME
}
COMMAND $<TARGET_FILE:
${
TEST_NAME
}
>
)
add_test
(
NAME
${
TEST_NAME
}
COMMAND $<TARGET_FILE:
${
TEST_NAME
}
>
)
add_dependencies
(
tests
${
TEST_NAME
}
)
add_dependencies
(
tests
${
TEST_NAME
}
)
add_dependencies
(
check
${
TEST_NAME
}
)
add_dependencies
(
check
${
TEST_NAME
}
)
rocm_install
(
TARGETS
${
TEST_NAME
}
COMPONENT tests
)
rocm_install
(
TARGETS
${
TEST_NAME
}
COMPONENT tests
)
...
@@ -23,14 +22,14 @@ function(add_gtest_executable TEST_NAME)
...
@@ -23,14 +22,14 @@ function(add_gtest_executable TEST_NAME)
add_executable
(
${
TEST_NAME
}
${
ARGN
}
)
add_executable
(
${
TEST_NAME
}
${
ARGN
}
)
add_dependencies
(
tests
${
TEST_NAME
}
)
add_dependencies
(
tests
${
TEST_NAME
}
)
add_dependencies
(
check
${
TEST_NAME
}
)
add_dependencies
(
check
${
TEST_NAME
}
)
# suppress gtest warnings
# suppress gtest warnings
target_compile_options
(
${
TEST_NAME
}
PRIVATE -Wno-global-constructors -Wno-undef
)
target_compile_options
(
${
TEST_NAME
}
PRIVATE -Wno-global-constructors -Wno-undef
)
target_link_libraries
(
${
TEST_NAME
}
PRIVATE gtest_main
)
target_link_libraries
(
${
TEST_NAME
}
PRIVATE gtest_main
)
gtest_discover_tests
(
${
TEST_NAME
}
)
add_test
(
NAME
${
TEST_NAME
}
COMMAND $<TARGET_FILE:
${
TEST_NAME
}
>
)
rocm_install
(
TARGETS
${
TEST_NAME
}
COMPONENT tests
)
rocm_install
(
TARGETS
${
TEST_NAME
}
COMPONENT tests
)
endfunction
(
add_gtest_executable TEST_NAME
)
endfunction
(
add_gtest_executable TEST_NAME
)
add_subdirectory
(
magic_number_division
)
add_subdirectory
(
magic_number_division
)
add_subdirectory
(
space_filling_curve
)
add_subdirectory
(
space_filling_curve
)
add_subdirectory
(
conv_util
)
add_subdirectory
(
conv_util
)
...
@@ -42,14 +41,15 @@ add_subdirectory(batched_gemm)
...
@@ -42,14 +41,15 @@ add_subdirectory(batched_gemm)
add_subdirectory
(
batched_gemm_reduce
)
add_subdirectory
(
batched_gemm_reduce
)
add_subdirectory
(
batched_gemm_gemm
)
add_subdirectory
(
batched_gemm_gemm
)
add_subdirectory
(
batched_gemm_softmax_gemm
)
add_subdirectory
(
batched_gemm_softmax_gemm
)
add_subdirectory
(
batched_gemm_
masking_scale_
softmax_gemm_permute
)
add_subdirectory
(
batched_gemm_softmax_gemm_permute
)
add_subdirectory
(
grouped_gemm
)
add_subdirectory
(
grouped_gemm
)
add_subdirectory
(
reduce
)
add_subdirectory
(
reduce
)
add_subdirectory
(
convnd_fwd
)
add_subdirectory
(
convnd_fwd
)
add_subdirectory
(
convnd_bwd_weight
)
add_subdirectory
(
convnd_bwd_data
)
add_subdirectory
(
convnd_bwd_data
)
add_subdirectory
(
grouped_convnd_fwd
)
add_subdirectory
(
grouped_convnd_fwd
)
add_subdirectory
(
grouped_convnd_bwd_weight
)
add_subdirectory
(
block_to_ctile_map
)
add_subdirectory
(
block_to_ctile_map
)
add_subdirectory
(
softmax
)
add_subdirectory
(
softmax
)
add_subdirectory
(
layernorm
)
add_subdirectory
(
normalization
)
add_subdirectory
(
data_type
)
add_subdirectory
(
data_type
)
add_subdirectory
(
elementwise_normalization
)
test/batched_gemm/CMakeLists.txt
View file @
24af0144
...
@@ -2,3 +2,14 @@ add_test_executable(test_batched_gemm_fp16 batched_gemm_fp16.cpp)
...
@@ -2,3 +2,14 @@ add_test_executable(test_batched_gemm_fp16 batched_gemm_fp16.cpp)
target_link_libraries
(
test_batched_gemm_fp16 PRIVATE utility
)
target_link_libraries
(
test_batched_gemm_fp16 PRIVATE utility
)
target_link_libraries
(
test_batched_gemm_fp16 PRIVATE device_batched_gemm_instance
)
target_link_libraries
(
test_batched_gemm_fp16 PRIVATE device_batched_gemm_instance
)
add_test_executable
(
test_batched_gemm_fp32 batched_gemm_fp32.cpp
)
target_link_libraries
(
test_batched_gemm_fp32 PRIVATE utility
)
target_link_libraries
(
test_batched_gemm_fp32 PRIVATE device_batched_gemm_instance
)
add_test_executable
(
test_batched_gemm_bf16 batched_gemm_bf16.cpp
)
target_link_libraries
(
test_batched_gemm_bf16 PRIVATE utility
)
target_link_libraries
(
test_batched_gemm_bf16 PRIVATE device_batched_gemm_instance
)
add_test_executable
(
test_batched_gemm_int8 batched_gemm_int8.cpp
)
target_link_libraries
(
test_batched_gemm_int8 PRIVATE utility
)
target_link_libraries
(
test_batched_gemm_int8 PRIVATE device_batched_gemm_instance
)
test/batched_gemm/batched_gemm_bf16.cpp
0 → 100644
View file @
24af0144
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "profiler/include/profile_batched_gemm_impl.hpp"
namespace
{
using
ADataType
=
ck
::
bhalf_t
;
using
BDataType
=
ck
::
bhalf_t
;
using
CDataType
=
ck
::
bhalf_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
}
// namespace
int
main
()
{
int
M
=
256
;
int
N
=
256
;
int
K
=
128
;
int
BatchCount
=
3
;
bool
pass
=
true
;
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Row
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Col
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Row
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Col
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
std
::
cout
<<
"test BatchedGEMM bf16: "
<<
(
pass
?
"Pass"
:
"Fail"
)
<<
std
::
endl
;
return
pass
?
0
:
1
;
}
test/batched_gemm/batched_gemm_fp32.cpp
0 → 100644
View file @
24af0144
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "profiler/include/profile_batched_gemm_impl.hpp"
namespace
{
using
ADataType
=
float
;
using
BDataType
=
float
;
using
CDataType
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
}
// namespace
int
main
()
{
int
M
=
256
;
int
N
=
256
;
int
K
=
128
;
int
BatchCount
=
3
;
bool
pass
=
true
;
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Row
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Col
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Row
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Col
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
std
::
cout
<<
"test BatchedGEMM fp32: "
<<
(
pass
?
"Pass"
:
"Fail"
)
<<
std
::
endl
;
return
pass
?
0
:
1
;
}
Prev
1
…
34
35
36
37
38
39
40
41
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment