Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
24af0144
Unverified
Commit
24af0144
authored
Nov 12, 2022
by
Po Yen Chen
Committed by
GitHub
Nov 12, 2022
Browse files
Merge branch 'develop' into gemm_layernorm_welford
parents
961f5e9e
b79bbbc2
Changes
813
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
690 additions
and
185 deletions
+690
-185
library/src/tensor_operation_instance/gpu/normalization/CMakeLists.txt
...ensor_operation_instance/gpu/normalization/CMakeLists.txt
+2
-4
library/src/tensor_operation_instance/gpu/normalization/device_layernorm_f16_instance.cpp
...tance/gpu/normalization/device_layernorm_f16_instance.cpp
+0
-61
library/src/tensor_operation_instance/gpu/normalization/device_normalization_f16_instance.cpp
...e/gpu/normalization/device_normalization_f16_instance.cpp
+65
-0
library/src/tensor_operation_instance/gpu/normalization/device_normalization_f32_instance.cpp
...e/gpu/normalization/device_normalization_f32_instance.cpp
+60
-0
library/src/tensor_operation_instance/gpu/quantization/CMakeLists.txt
...tensor_operation_instance/gpu/quantization/CMakeLists.txt
+4
-0
library/src/tensor_operation_instance/gpu/quantization/device_conv2d_xdl_bias_quant_int8_instance.cpp
...antization/device_conv2d_xdl_bias_quant_int8_instance.cpp
+112
-0
library/src/tensor_operation_instance/gpu/quantization/device_conv2d_xdl_quant_int8_instance.cpp
...pu/quantization/device_conv2d_xdl_quant_int8_instance.cpp
+109
-0
library/src/tensor_operation_instance/gpu/reduce/CMakeLists.txt
...y/src/tensor_operation_instance/gpu/reduce/CMakeLists.txt
+74
-21
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_b16_f32_b16.cpp
...u/reduce/device_reduce_instance_blockwise_b16_f32_b16.cpp
+0
-56
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_b16_f32_b16_add.cpp
...duce/device_reduce_instance_blockwise_b16_f32_b16_add.cpp
+24
-0
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_b16_f32_b16_amax.cpp
...uce/device_reduce_instance_blockwise_b16_f32_b16_amax.cpp
+28
-0
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_b16_f32_b16_avg.cpp
...duce/device_reduce_instance_blockwise_b16_f32_b16_avg.cpp
+24
-0
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_b16_f32_b16_max.cpp
...duce/device_reduce_instance_blockwise_b16_f32_b16_max.cpp
+28
-0
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_b16_f32_b16_min.cpp
...duce/device_reduce_instance_blockwise_b16_f32_b16_min.cpp
+28
-0
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_b16_f32_b16_norm2.cpp
...ce/device_reduce_instance_blockwise_b16_f32_b16_norm2.cpp
+24
-0
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_f16_f16_f16.cpp
...u/reduce/device_reduce_instance_blockwise_f16_f16_f16.cpp
+0
-43
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_f16_f16_f16_amax.cpp
...uce/device_reduce_instance_blockwise_f16_f16_f16_amax.cpp
+28
-0
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_f16_f16_f16_max.cpp
...duce/device_reduce_instance_blockwise_f16_f16_f16_max.cpp
+28
-0
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_f16_f16_f16_min.cpp
...duce/device_reduce_instance_blockwise_f16_f16_f16_min.cpp
+28
-0
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_f16_f32_f16_add.cpp
...duce/device_reduce_instance_blockwise_f16_f32_f16_add.cpp
+24
-0
No files found.
library/src/tensor_operation_instance/gpu/normalization/CMakeLists.txt
View file @
24af0144
add_instance_library
(
device_normalization_instance
add_instance_library
(
device_normalization_instance
device_layernorm_f16_instance.cpp
device_normalization_f16_instance.cpp
device_layernorm_f32_instance.cpp
device_normalization_f32_instance.cpp
device_softmax_f32_f32_instance.cpp
device_softmax_f16_f16_instance.cpp
)
)
library/src/tensor_operation_instance/gpu/normalization/device_layernorm_f16_instance.cpp
deleted
100644 → 0
View file @
961f5e9e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Pass
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
template
<
typename
OutElementwise
,
index_t
Rank
,
index_t
Reduce
>
using
device_layernorm_f16_instances
=
std
::
tuple
<
// clang-format off
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize>
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// fallback kernel
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
2
,
1
,
2
,
1
,
2
,
2
>
,
// fallback kernel
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
// fallback kernel
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
4
,
64
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
8
,
1
,
2
,
1
,
2
,
1
,
2
,
2
>
// clang-format on
>
;
void
add_device_layernorm_rank_2_1_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
2
,
1
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_layernorm_f16_instances
<
Pass
,
2
,
1
>
{});
}
void
add_device_layernorm_rank_4_3_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
4
,
3
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_layernorm_f16_instances
<
Pass
,
4
,
3
>
{});
}
void
add_device_layernorm_rank_5_3_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
5
,
3
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_layernorm_f16_instances
<
Pass
,
5
,
3
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/normalization/device_normalization_f16_instance.cpp
0 → 100644
View file @
24af0144
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Pass
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
template
<
typename
OutElementwise
,
index_t
Rank
,
index_t
Reduce
>
// clang-format off
using
device_normalization_f16_instances
=
std
::
tuple
<
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize>
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// fallback kernel
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
2
,
1
,
2
,
1
,
2
,
2
>
,
// fallback kernel
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
// fallback kernel
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
4
,
64
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
8
,
1
,
2
,
1
,
2
,
1
,
2
,
2
>
>
;
// clang-format on
void
add_device_normalization_rank_2_1_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalization
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
2
,
1
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_normalization_f16_instances
<
Pass
,
2
,
1
>
{});
}
void
add_device_normalization_rank_4_3_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalization
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
4
,
3
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_normalization_f16_instances
<
Pass
,
4
,
3
>
{});
}
void
add_device_normalization_rank_5_3_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalization
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
5
,
3
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_normalization_f16_instances
<
Pass
,
5
,
3
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/normalization/device_
layernorm
_f32_instance.cpp
→
library/src/tensor_operation_instance/gpu/normalization/device_
normalization
_f32_instance.cpp
View file @
24af0144
...
@@ -2,7 +2,7 @@
...
@@ -2,7 +2,7 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_
layernorm
_impl.hpp"
#include "ck/tensor_operation/gpu/device/
impl/
device_
normalization
_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
...
@@ -20,33 +20,36 @@ template <typename OutElementwise, index_t Rank, index_t Reduce>
...
@@ -20,33 +20,36 @@ template <typename OutElementwise, index_t Rank, index_t Reduce>
using
device_layernorm_f32_instances
=
std
::
tuple
<
using
device_layernorm_f32_instances
=
std
::
tuple
<
// clang-format off
// clang-format off
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize>
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize>
Device
Layernorm
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// fallback kernel
Device
Normalization
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// fallback kernel
Device
Layernorm
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
2
,
1
,
2
,
1
,
2
,
2
>
,
// fallback kernel
Device
Normalization
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
2
,
1
,
2
,
1
,
2
,
2
>
,
// fallback kernel
Device
Layernorm
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
Device
Normalization
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
Device
Layernorm
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
4
,
64
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
Device
Normalization
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
4
,
64
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
Device
Layernorm
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
Device
Normalization
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
Device
Layernorm
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
16
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
Device
Normalization
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
16
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
Device
Layernorm
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
32
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
Device
Normalization
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
32
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
Device
Layernorm
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
Device
Normalization
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
Device
Layernorm
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
Device
Normalization
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
Device
Layernorm
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
Device
Normalization
Impl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
// clang-format on
// clang-format on
>
;
>
;
void
add_device_layernorm_rank_2_1_f32_instances
(
void
add_device_normalization_rank_2_1_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
2
,
1
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalization
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
2
,
1
>>>&
instances
)
{
{
add_device_operation_instances
(
instances
,
device_layernorm_f32_instances
<
Pass
,
2
,
1
>
{});
add_device_operation_instances
(
instances
,
device_layernorm_f32_instances
<
Pass
,
2
,
1
>
{});
}
}
void
add_device_layernorm_rank_4_3_f32_instances
(
void
add_device_normalization_rank_4_3_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
4
,
3
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalization
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
4
,
3
>>>&
instances
)
{
{
add_device_operation_instances
(
instances
,
device_layernorm_f32_instances
<
Pass
,
4
,
3
>
{});
add_device_operation_instances
(
instances
,
device_layernorm_f32_instances
<
Pass
,
4
,
3
>
{});
}
}
void
add_device_layernorm_rank_5_3_f32_instances
(
void
add_device_normalization_rank_5_3_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
5
,
3
>>>&
instances
)
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalization
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
5
,
3
>>>&
instances
)
{
{
add_device_operation_instances
(
instances
,
device_layernorm_f32_instances
<
Pass
,
5
,
3
>
{});
add_device_operation_instances
(
instances
,
device_layernorm_f32_instances
<
Pass
,
5
,
3
>
{});
}
}
...
...
library/src/tensor_operation_instance/gpu/quantization/CMakeLists.txt
0 → 100644
View file @
24af0144
add_instance_library
(
device_quantization_instance
device_conv2d_xdl_bias_quant_int8_instance.cpp
device_conv2d_xdl_quant_int8_instance.cpp
)
library/src/tensor_operation_instance/gpu/quantization/device_conv2d_xdl_bias_quant_int8_instance.cpp
0 → 100644
View file @
24af0144
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
GNHWC
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
GKYXC
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
GNHWK
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
GK
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Relu
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
GK_Tuple
=
ck
::
Tuple
<
GK
>
;
using
I32_Tuple
=
ck
::
Tuple
<
int32_t
>
;
using
Add_Mul_Clamp
=
ck
::
tensor_operation
::
element_wise
::
Add_Activation_Mul_Clamp
<
PassThrough
>
;
using
Add_Relu_Mul_Clamp
=
ck
::
tensor_operation
::
element_wise
::
Add_Activation_Mul_Clamp
<
Relu
>
;
static
constexpr
ck
::
index_t
NDimSpatial
=
2
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
ConvFwd1x1P0
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Pad0
;
static
constexpr
auto
ConvFwd1x1S1P0
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
;
// TODO - Add more instances
template
<
typename
OutElementOp
,
ConvolutionForwardSpecialization
ConvSpec
>
// clang-format off
using
device_conv2d_int8_instances
=
std
::
tuple
<
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
16
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
64
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
32
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
32
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
64
,
32
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
32
,
64
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
>
;
// clang-format on
void
add_device_conv2d_bias_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
GNHWC
,
GKYXC
,
ck
::
Tuple
<
GK
>
,
GNHWK
,
int8_t
,
int8_t
,
ck
::
Tuple
<
int32_t
>
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_conv2d_int8_instances
<
Add_Mul_Clamp
,
ConvFwdDefault
>
{});
add_device_operation_instances
(
instances
,
device_conv2d_int8_instances
<
Add_Mul_Clamp
,
ConvFwd1x1P0
>
{});
add_device_operation_instances
(
instances
,
device_conv2d_int8_instances
<
Add_Mul_Clamp
,
ConvFwd1x1S1P0
>
{});
}
void
add_device_conv2d_bias_relu_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
GNHWC
,
GKYXC
,
ck
::
Tuple
<
GK
>
,
GNHWK
,
int8_t
,
int8_t
,
ck
::
Tuple
<
int32_t
>
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Relu_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_conv2d_int8_instances
<
Add_Relu_Mul_Clamp
,
ConvFwdDefault
>
{});
add_device_operation_instances
(
instances
,
device_conv2d_int8_instances
<
Add_Relu_Mul_Clamp
,
ConvFwd1x1P0
>
{});
add_device_operation_instances
(
instances
,
device_conv2d_int8_instances
<
Add_Relu_Mul_Clamp
,
ConvFwd1x1S1P0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/quantization/device_conv2d_xdl_quant_int8_instance.cpp
0 → 100644
View file @
24af0144
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
Empty_Tuple
=
ck
::
Tuple
<>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
GNHWC
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
GKYXC
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
GNHWK
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Relu
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
Mul_Clamp
=
ck
::
tensor_operation
::
element_wise
::
Activation_Mul_Clamp
<
PassThrough
>
;
using
Relu_Mul_Clamp
=
ck
::
tensor_operation
::
element_wise
::
Activation_Mul_Clamp
<
Relu
>
;
static
constexpr
ck
::
index_t
NDimSpatial
=
2
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
ConvFwd1x1P0
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Pad0
;
static
constexpr
auto
ConvFwd1x1S1P0
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
;
// TODO - Add more instances
template
<
typename
OutElementOp
,
ConvolutionForwardSpecialization
ConvSpec
>
// clang-format off
using
device_conv2d_int8_instances
=
std
::
tuple
<
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
Empty_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
Empty_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
16
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
Empty_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
Empty_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
Empty_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
16
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
Empty_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
Empty_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
64
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
16
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
Empty_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
Empty_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
Empty_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
32
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
16
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
Empty_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
32
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
16
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
Empty_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
64
,
32
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
16
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
Empty_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
32
,
64
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
16
>
>
;
// clang-format on
void
add_device_conv2d_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
GNHWC
,
GKYXC
,
Empty_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_conv2d_int8_instances
<
Mul_Clamp
,
ConvFwdDefault
>
{});
add_device_operation_instances
(
instances
,
device_conv2d_int8_instances
<
Mul_Clamp
,
ConvFwd1x1P0
>
{});
add_device_operation_instances
(
instances
,
device_conv2d_int8_instances
<
Mul_Clamp
,
ConvFwd1x1S1P0
>
{});
}
void
add_device_conv2d_relu_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
GNHWC
,
GKYXC
,
Empty_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Relu_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_conv2d_int8_instances
<
Relu_Mul_Clamp
,
ConvFwdDefault
>
{});
add_device_operation_instances
(
instances
,
device_conv2d_int8_instances
<
Relu_Mul_Clamp
,
ConvFwd1x1P0
>
{});
add_device_operation_instances
(
instances
,
device_conv2d_int8_instances
<
Relu_Mul_Clamp
,
ConvFwd1x1S1P0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/CMakeLists.txt
View file @
24af0144
add_instance_library
(
device_reduce_instance
add_instance_library
(
device_reduce_instance
device_reduce_instance_blockwise_f16_f16_f16.cpp
device_reduce_instance_blockwise_f16_f16_f16_min.cpp
device_reduce_instance_blockwise_f16_f32_f16.cpp
device_reduce_instance_blockwise_f16_f16_f16_max.cpp
device_reduce_instance_blockwise_f32_f32_f32.cpp
device_reduce_instance_blockwise_f16_f16_f16_amax.cpp
device_reduce_instance_blockwise_f32_f64_f32.cpp
device_reduce_instance_blockwise_f16_f32_f16_add.cpp
device_reduce_instance_blockwise_f64_f64_f64.cpp
device_reduce_instance_blockwise_f16_f32_f16_avg.cpp
device_reduce_instance_blockwise_i8_i32_i8.cpp
device_reduce_instance_blockwise_f16_f32_f16_norm2.cpp
device_reduce_instance_blockwise_i8_i8_i8.cpp
device_reduce_instance_blockwise_f32_f32_f32_add.cpp
device_reduce_instance_blockwise_b16_f32_b16.cpp
device_reduce_instance_blockwise_f32_f32_f32_avg.cpp
device_reduce_instance_threadwise_f16_f16_f16.cpp
device_reduce_instance_blockwise_f32_f32_f32_norm2.cpp
device_reduce_instance_threadwise_f16_f32_f16.cpp
device_reduce_instance_blockwise_f32_f32_f32_min.cpp
device_reduce_instance_threadwise_f32_f32_f32.cpp
device_reduce_instance_blockwise_f32_f32_f32_max.cpp
device_reduce_instance_threadwise_f32_f64_f32.cpp
device_reduce_instance_blockwise_f32_f32_f32_amax.cpp
device_reduce_instance_threadwise_f64_f64_f64.cpp
device_reduce_instance_blockwise_f32_f64_f32_add.cpp
device_reduce_instance_threadwise_i8_i32_i8.cpp
device_reduce_instance_blockwise_f32_f64_f32_avg.cpp
device_reduce_instance_threadwise_i8_i8_i8.cpp
device_reduce_instance_blockwise_f32_f64_f32_norm2.cpp
device_reduce_instance_threadwise_b16_f32_b16.cpp
device_reduce_instance_blockwise_f64_f64_f64_add.cpp
device_reduce_instance_multiblock_atomic_add_f16_f32_f32.cpp
device_reduce_instance_blockwise_f64_f64_f64_avg.cpp
device_reduce_instance_multiblock_atomic_add_f32_f32_f32.cpp
device_reduce_instance_blockwise_f64_f64_f64_norm2.cpp
device_reduce_instance_multiblock_atomic_add_f32_f64_f32.cpp
device_reduce_instance_blockwise_f64_f64_f64_min.cpp
device_reduce_instance_multiblock_atomic_add_f64_f64_f64.cpp
device_reduce_instance_blockwise_f64_f64_f64_max.cpp
device_reduce_instance_multiblock_atomic_add_b16_f32_f32.cpp
device_reduce_instance_blockwise_f64_f64_f64_amax.cpp
device_reduce_instance_blockwise_i8_i32_i8_add.cpp
device_reduce_instance_blockwise_i8_i32_i8_avg.cpp
device_reduce_instance_blockwise_i8_i8_i8_min.cpp
device_reduce_instance_blockwise_i8_i8_i8_max.cpp
device_reduce_instance_blockwise_i8_i8_i8_amax.cpp
device_reduce_instance_blockwise_b16_f32_b16_add.cpp
device_reduce_instance_blockwise_b16_f32_b16_avg.cpp
device_reduce_instance_blockwise_b16_f32_b16_norm2.cpp
device_reduce_instance_blockwise_b16_f32_b16_min.cpp
device_reduce_instance_blockwise_b16_f32_b16_max.cpp
device_reduce_instance_blockwise_b16_f32_b16_amax.cpp
device_reduce_instance_threadwise_f16_f16_f16_min.cpp
device_reduce_instance_threadwise_f16_f16_f16_max.cpp
device_reduce_instance_threadwise_f16_f16_f16_amax.cpp
device_reduce_instance_threadwise_f16_f32_f16_add.cpp
device_reduce_instance_threadwise_f16_f32_f16_avg.cpp
device_reduce_instance_threadwise_f16_f32_f16_norm2.cpp
device_reduce_instance_threadwise_f32_f32_f32_add.cpp
device_reduce_instance_threadwise_f32_f32_f32_avg.cpp
device_reduce_instance_threadwise_f32_f32_f32_norm2.cpp
device_reduce_instance_threadwise_f32_f32_f32_min.cpp
device_reduce_instance_threadwise_f32_f32_f32_max.cpp
device_reduce_instance_threadwise_f32_f32_f32_amax.cpp
device_reduce_instance_threadwise_f32_f64_f32_add.cpp
device_reduce_instance_threadwise_f32_f64_f32_avg.cpp
device_reduce_instance_threadwise_f32_f64_f32_norm2.cpp
device_reduce_instance_threadwise_f64_f64_f64_add.cpp
device_reduce_instance_threadwise_f64_f64_f64_avg.cpp
device_reduce_instance_threadwise_f64_f64_f64_norm2.cpp
device_reduce_instance_threadwise_f64_f64_f64_min.cpp
device_reduce_instance_threadwise_f64_f64_f64_max.cpp
device_reduce_instance_threadwise_f64_f64_f64_amax.cpp
device_reduce_instance_threadwise_i8_i32_i8_add.cpp
device_reduce_instance_threadwise_i8_i32_i8_avg.cpp
device_reduce_instance_threadwise_i8_i8_i8_min.cpp
device_reduce_instance_threadwise_i8_i8_i8_max.cpp
device_reduce_instance_threadwise_i8_i8_i8_amax.cpp
device_reduce_instance_threadwise_b16_f32_b16_add.cpp
device_reduce_instance_threadwise_b16_f32_b16_avg.cpp
device_reduce_instance_threadwise_b16_f32_b16_norm2.cpp
device_reduce_instance_threadwise_b16_f32_b16_min.cpp
device_reduce_instance_threadwise_b16_f32_b16_max.cpp
device_reduce_instance_threadwise_b16_f32_b16_amax.cpp
device_reduce_instance_multiblock_atomic_add_f16_f32_f32_add.cpp
device_reduce_instance_multiblock_atomic_add_f16_f32_f32_avg.cpp
device_reduce_instance_multiblock_atomic_add_f32_f32_f32_add.cpp
device_reduce_instance_multiblock_atomic_add_f32_f32_f32_avg.cpp
device_reduce_instance_multiblock_atomic_add_f32_f64_f32_add.cpp
device_reduce_instance_multiblock_atomic_add_f32_f64_f32_avg.cpp
device_reduce_instance_multiblock_atomic_add_f64_f64_f64_add.cpp
device_reduce_instance_multiblock_atomic_add_f64_f64_f64_avg.cpp
device_reduce_instance_multiblock_atomic_add_b16_f32_f32_add.cpp
device_reduce_instance_multiblock_atomic_add_b16_f32_f32_avg.cpp
)
)
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_b16_f32_b16.cpp
deleted
100644 → 0
View file @
961f5e9e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
0
,
0
,
0
,
4
,
3
);
// for ADD
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
0
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
0
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
0
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
5
,
0
,
0
,
4
,
3
);
// for AVG
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
5
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
5
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
5
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
7
,
0
,
0
,
4
,
3
);
// for NORM2
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
7
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
7
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
7
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
2
,
0
,
0
,
4
,
3
);
// for MIN
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
2
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
2
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
2
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
3
,
0
,
0
,
4
,
3
);
// for MAX
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
3
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
3
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
3
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
4
,
0
,
0
,
4
,
3
);
// for AMAX
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
4
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
4
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
4
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
2
,
0
,
1
,
4
,
3
);
// for MIN
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
2
,
0
,
1
,
4
,
4
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
2
,
0
,
1
,
4
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
2
,
0
,
1
,
2
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
3
,
0
,
1
,
4
,
3
);
// for MAX
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
3
,
0
,
1
,
4
,
4
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
3
,
0
,
1
,
4
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
3
,
0
,
1
,
2
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
4
,
0
,
1
,
4
,
3
);
// for AMAX
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
4
,
0
,
1
,
4
,
4
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
4
,
0
,
1
,
4
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
bhalf_t
,
float
,
bhalf_t
,
4
,
0
,
1
,
2
,
1
);
// clang-format on
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_b16_f32_b16_add.cpp
0 → 100644
View file @
24af0144
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/reduction_enums.hpp"
#include "ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | Rank | NumReduceDim | ReduceOperation | InElementwiseOp | AccElementwiseOp | PropagateNan | UseIndex
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
3
,
ReduceAdd
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
3
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
4
,
ReduceAdd
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
4
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
1
,
ReduceAdd
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
1
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
2
,
1
,
ReduceAdd
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
2
,
1
,
PassThrough
,
PassThrough
>>&
);
// clang-format on
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_b16_f32_b16_amax.cpp
0 → 100644
View file @
24af0144
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/reduction_enums.hpp"
#include "ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | Rank | NumReduceDim | ReduceOperation | InElementwiseOp | AccElementwiseOp | PropagateNan | UseIndex
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
3
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
3
,
UnaryAbs
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
4
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
4
,
UnaryAbs
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
1
,
UnaryAbs
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
2
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
2
,
1
,
UnaryAbs
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
3
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
4
,
3
,
UnaryAbs
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
4
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
4
,
4
,
UnaryAbs
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
4
,
1
,
UnaryAbs
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
2
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
2
,
1
,
UnaryAbs
,
PassThrough
>>&
);
// clang-format on
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_b16_f32_b16_avg.cpp
0 → 100644
View file @
24af0144
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/reduction_enums.hpp"
#include "ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | Rank | NumReduceDim | ReduceOperation | InElementwiseOp | AccElementwiseOp | PropagateNan | UseIndex
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
3
,
ReduceAdd
,
PassThrough
,
UnaryDivide
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
3
,
PassThrough
,
UnaryDivide
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
4
,
ReduceAdd
,
PassThrough
,
UnaryDivide
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
4
,
PassThrough
,
UnaryDivide
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
1
,
ReduceAdd
,
PassThrough
,
UnaryDivide
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
1
,
PassThrough
,
UnaryDivide
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
2
,
1
,
ReduceAdd
,
PassThrough
,
UnaryDivide
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
2
,
1
,
PassThrough
,
UnaryDivide
>>&
);
// clang-format on
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_b16_f32_b16_max.cpp
0 → 100644
View file @
24af0144
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/reduction_enums.hpp"
#include "ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | Rank | NumReduceDim | ReduceOperation | InElementwiseOp | AccElementwiseOp | PropagateNan | UseIndex
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
3
,
ReduceMax
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
3
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
4
,
ReduceMax
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
4
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
1
,
ReduceMax
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
1
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
2
,
1
,
ReduceMax
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
2
,
1
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
3
,
ReduceMax
,
PassThrough
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
4
,
3
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
4
,
ReduceMax
,
PassThrough
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
4
,
4
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
1
,
ReduceMax
,
PassThrough
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
4
,
1
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
2
,
1
,
ReduceMax
,
PassThrough
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
2
,
1
,
PassThrough
,
PassThrough
>>&
);
// clang-format on
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_b16_f32_b16_min.cpp
0 → 100644
View file @
24af0144
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/reduction_enums.hpp"
#include "ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | Rank | NumReduceDim | ReduceOperation | InElementwiseOp | AccElementwiseOp | PropagateNan | UseIndex
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
3
,
ReduceMin
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
3
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
4
,
ReduceMin
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
4
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
1
,
ReduceMin
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
1
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
2
,
1
,
ReduceMin
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
2
,
1
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
3
,
ReduceMin
,
PassThrough
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
4
,
3
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
4
,
ReduceMin
,
PassThrough
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
4
,
4
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
1
,
ReduceMin
,
PassThrough
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
4
,
1
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
2
,
1
,
ReduceMin
,
PassThrough
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
2
,
1
,
PassThrough
,
PassThrough
>>&
);
// clang-format on
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_
f
16_f32_
f
16.cpp
→
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_
b
16_f32_
b
16
_norm2
.cpp
View file @
24af0144
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/reduction_enums.hpp"
#include "ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise.hpp"
#include "ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise.hpp"
namespace
ck
{
namespace
ck
{
...
@@ -9,19 +10,11 @@ namespace device {
...
@@ -9,19 +10,11 @@ namespace device {
namespace
instance
{
namespace
instance
{
// clang-format off
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
// InDataType | AccDataType | OutDataType | Rank | NumReduceDim | ReduceOperation | InElementwiseOp | AccElementwiseOp | PropagateNan | UseIndex
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
float
,
half_t
,
0
,
0
,
0
,
4
,
3
);
// for ADD
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
3
,
ReduceAdd
,
UnarySquare
,
UnarySqrt
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
3
,
UnarySquare
,
UnarySqrt
>>&
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
float
,
half_t
,
0
,
0
,
0
,
4
,
4
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
4
,
ReduceAdd
,
UnarySquare
,
UnarySqrt
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
4
,
UnarySquare
,
UnarySqrt
>>&
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
float
,
half_t
,
0
,
0
,
0
,
4
,
1
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
4
,
1
,
ReduceAdd
,
UnarySquare
,
UnarySqrt
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
1
,
UnarySquare
,
UnarySqrt
>>&
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
float
,
half_t
,
0
,
0
,
0
,
2
,
1
);
template
void
add_device_reduce_instance_blockwise
<
BF16
,
F32
,
BF16
,
2
,
1
,
ReduceAdd
,
UnarySquare
,
UnarySqrt
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
2
,
1
,
UnarySquare
,
UnarySqrt
>>&
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
float
,
half_t
,
5
,
0
,
0
,
4
,
3
);
// for AVG
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
float
,
half_t
,
5
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
float
,
half_t
,
5
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
float
,
half_t
,
5
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
float
,
half_t
,
7
,
0
,
0
,
4
,
3
);
// for NORM2
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
float
,
half_t
,
7
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
float
,
half_t
,
7
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
float
,
half_t
,
7
,
0
,
0
,
2
,
1
);
// clang-format on
// clang-format on
}
// namespace instance
}
// namespace instance
...
...
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_f16_f16_f16.cpp
deleted
100644 → 0
View file @
961f5e9e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
2
,
0
,
0
,
4
,
3
);
// for MIN
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
2
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
2
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
2
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
3
,
0
,
0
,
4
,
3
);
// for MAX
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
3
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
3
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
3
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
4
,
0
,
0
,
4
,
3
);
// for AMAX
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
4
,
0
,
0
,
4
,
4
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
4
,
0
,
0
,
4
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
4
,
0
,
0
,
2
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
2
,
0
,
1
,
4
,
3
);
// for MIN
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
2
,
0
,
1
,
4
,
4
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
2
,
0
,
1
,
4
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
2
,
0
,
1
,
2
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
3
,
0
,
1
,
4
,
3
);
// for MAX
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
3
,
0
,
1
,
4
,
4
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
3
,
0
,
1
,
4
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
3
,
0
,
1
,
2
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
4
,
0
,
1
,
4
,
3
);
// for AMAX
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
4
,
0
,
1
,
4
,
4
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
4
,
0
,
1
,
4
,
1
);
ADD_BLOCKWISE_INST_BY_ID
(
half_t
,
half_t
,
half_t
,
4
,
0
,
1
,
2
,
1
);
// clang-format on
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_f16_f16_f16_amax.cpp
0 → 100644
View file @
24af0144
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/reduction_enums.hpp"
#include "ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | Rank | NumReduceDim | ReduceOperation | InElementwiseOp | AccElementwiseOp | PropagateNan | UseIndex
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
4
,
3
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
3
,
UnaryAbs
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
4
,
4
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
4
,
UnaryAbs
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
4
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
1
,
UnaryAbs
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
2
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
2
,
1
,
UnaryAbs
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
4
,
3
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
4
,
3
,
UnaryAbs
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
4
,
4
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
4
,
4
,
UnaryAbs
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
4
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
4
,
1
,
UnaryAbs
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
2
,
1
,
ReduceAMax
,
UnaryAbs
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
2
,
1
,
UnaryAbs
,
PassThrough
>>&
);
// clang-format on
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_f16_f16_f16_max.cpp
0 → 100644
View file @
24af0144
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/reduction_enums.hpp"
#include "ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | Rank | NumReduceDim | ReduceOperation | InElementwiseOp | AccElementwiseOp | PropagateNan | UseIndex
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
4
,
3
,
ReduceMax
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
3
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
4
,
4
,
ReduceMax
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
4
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
4
,
1
,
ReduceMax
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
1
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
2
,
1
,
ReduceMax
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
2
,
1
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
4
,
3
,
ReduceMax
,
PassThrough
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
4
,
3
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
4
,
4
,
ReduceMax
,
PassThrough
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
4
,
4
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
4
,
1
,
ReduceMax
,
PassThrough
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
4
,
1
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
2
,
1
,
ReduceMax
,
PassThrough
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
2
,
1
,
PassThrough
,
PassThrough
>>&
);
// clang-format on
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_f16_f16_f16_min.cpp
0 → 100644
View file @
24af0144
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/reduction_enums.hpp"
#include "ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | Rank | NumReduceDim | ReduceOperation | InElementwiseOp | AccElementwiseOp | PropagateNan | UseIndex
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
4
,
3
,
ReduceMin
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
3
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
4
,
4
,
ReduceMin
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
4
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
4
,
1
,
ReduceMin
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
1
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
2
,
1
,
ReduceMin
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
2
,
1
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
4
,
3
,
ReduceMin
,
PassThrough
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
4
,
3
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
4
,
4
,
ReduceMin
,
PassThrough
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
4
,
4
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
4
,
1
,
ReduceMin
,
PassThrough
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
4
,
1
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F16
,
F16
,
2
,
1
,
ReduceMin
,
PassThrough
,
PassThrough
,
false
,
true
>(
std
::
vector
<
DeviceReducePtr
<
2
,
1
,
PassThrough
,
PassThrough
>>&
);
// clang-format on
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise_f16_f32_f16_add.cpp
0 → 100644
View file @
24af0144
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/reduction_enums.hpp"
#include "ck/library/tensor_operation_instance/gpu/reduce/device_reduce_instance_blockwise.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// clang-format off
// InDataType | AccDataType | OutDataType | Rank | NumReduceDim | ReduceOperation | InElementwiseOp | AccElementwiseOp | PropagateNan | UseIndex
template
void
add_device_reduce_instance_blockwise
<
F16
,
F32
,
F16
,
4
,
3
,
ReduceAdd
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
3
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F32
,
F16
,
4
,
4
,
ReduceAdd
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
4
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F32
,
F16
,
4
,
1
,
ReduceAdd
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
4
,
1
,
PassThrough
,
PassThrough
>>&
);
template
void
add_device_reduce_instance_blockwise
<
F16
,
F32
,
F16
,
2
,
1
,
ReduceAdd
,
PassThrough
,
PassThrough
,
false
,
false
>(
std
::
vector
<
DeviceReducePtr
<
2
,
1
,
PassThrough
,
PassThrough
>>&
);
// clang-format on
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Prev
1
…
27
28
29
30
31
32
33
34
35
…
41
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment