Commit 24672339 authored by Po-Yen, Chen's avatar Po-Yen, Chen
Browse files

Merge branch 'feature/integrage-karg-simplification-pr' into feature/test

parents f2c5ca5a 853e797e
......@@ -411,6 +411,12 @@ struct Tensor
}
}
template <typename... Is>
std::size_t GetOffsetFromMultiIndex(Is... is) const
{
return mDesc.GetOffsetFromMultiIndex(is...);
}
template <typename... Is>
T& operator()(Is... is)
{
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <iostream>
#include <limits>
#include <memory>
#include <stdexcept>
#include <tuple>
#include <utility>
#include <vector>
#include "ck/utility/functional2.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace ck {
namespace utils {
struct ProfileBestConfig
{
std::string best_op_name;
float best_avg_time = std::numeric_limits<float>::max();
float best_tflops = std::numeric_limits<float>::max();
float best_gb_per_sec = std::numeric_limits<float>::max();
};
/**
* @brief This class describes an operation instance(s).
*
* Op instance defines a particular specializations of operator
* template. Thanks to this specific input/output data types, data
* layouts and modifying elementwise operations it is able to create
* it's input/output tensors, provide pointers to instances which
* can execute it and all operation specific parameters.
*/
template <typename OutDataType, typename... InArgTypes>
class OpInstance
{
public:
template <typename T>
using TensorPtr = std::unique_ptr<Tensor<T>>;
using InTensorsTuple = std::tuple<TensorPtr<InArgTypes>...>;
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
using DeviceBuffers = std::vector<DeviceMemPtr>;
OpInstance() = default;
OpInstance(const OpInstance&) = default;
OpInstance& operator=(const OpInstance&) = default;
virtual ~OpInstance(){};
virtual InTensorsTuple GetInputTensors() const = 0;
virtual TensorPtr<OutDataType> GetOutputTensor() const = 0;
virtual std::unique_ptr<tensor_operation::device::BaseInvoker>
MakeInvokerPointer(tensor_operation::device::BaseOperator*) const = 0;
virtual std::unique_ptr<tensor_operation::device::BaseArgument>
MakeArgumentPointer(tensor_operation::device::BaseOperator*,
const DeviceBuffers&,
const DeviceMemPtr&) const = 0;
virtual std::size_t GetFlops() const = 0;
virtual std::size_t GetBtype() const = 0;
};
/**
* @brief A generic operation instance run engine.
*/
template <typename OutDataType, typename... InArgTypes>
class OpInstanceRunEngine
{
public:
using OpInstanceT = OpInstance<InArgTypes..., OutDataType>;
template <typename T>
using TensorPtr = std::unique_ptr<Tensor<T>>;
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
using InTensorsTuple = std::tuple<TensorPtr<InArgTypes>...>;
using DeviceBuffers = std::vector<DeviceMemPtr>;
using InArgsTypesTuple = std::tuple<InArgTypes...>;
OpInstanceRunEngine() = delete;
template <typename ReferenceOp = std::function<void()>>
OpInstanceRunEngine(const OpInstanceT& op_instance,
const ReferenceOp& reference_op = ReferenceOp{},
bool do_verification = true)
: op_instance_{op_instance}
{
in_tensors_ = op_instance_.GetInputTensors();
out_tensor_ = op_instance_.GetOutputTensor();
if constexpr(std::is_invocable_v<ReferenceOp,
const Tensor<InArgTypes>&...,
Tensor<OutDataType>&>)
{
if(do_verification)
{
ref_output_ = op_instance_.GetOutputTensor();
CallRefOpUnpackArgs(reference_op, std::make_index_sequence<kNInArgs_>{});
}
}
AllocateDeviceInputTensors(std::make_index_sequence<kNInArgs_>{});
out_device_buffer_ = std::make_unique<DeviceMem>(sizeof(OutDataType) *
out_tensor_->mDesc.GetElementSpaceSize());
out_device_buffer_->SetZero();
}
virtual ~OpInstanceRunEngine(){};
template <typename OpInstancePtr>
bool Test(const std::vector<OpInstancePtr>& op_ptrs)
{
bool res{true};
for(auto& op_ptr : op_ptrs)
{
auto invoker = op_instance_.MakeInvokerPointer(op_ptr.get());
auto argument = op_instance_.MakeArgumentPointer(
op_ptr.get(), in_device_buffers_, out_device_buffer_);
if(op_ptr->IsSupportedArgument(argument.get()))
{
std::cout << "Testing instance: " << op_ptr->GetTypeString() << std::endl;
invoker->Run(argument.get());
out_device_buffer_->FromDevice(out_tensor_->mData.data());
if(!ref_output_)
{
throw std::runtime_error(
"OpInstanceRunEngine::Test: Reference value not availabe."
" You have to provide reference function.");
}
// TODO: enable flexible use of custom check_error functions
bool inst_res = CheckErr(out_tensor_->mData, ref_output_->mData);
std::cout << (inst_res ? "SUCCESS" : "FAILURE") << std::endl;
res = res && inst_res;
out_device_buffer_->SetZero();
}
else
{
std::cout << "Given conv problem is not supported by instance: \n\t>>>>"
<< op_ptr->GetTypeString() << std::endl;
}
}
return res;
}
template <typename OpInstancePtr>
ProfileBestConfig Profile(const std::vector<OpInstancePtr>& op_ptrs,
bool time_kernel = false,
bool do_verification = false,
bool do_log = false)
{
ProfileBestConfig best_config;
for(auto& op_ptr : op_ptrs)
{
auto invoker = op_instance_.MakeInvokerPointer(op_ptr.get());
auto argument = op_instance_.MakeArgumentPointer(
op_ptr.get(), in_device_buffers_, out_device_buffer_);
if(op_ptr->IsSupportedArgument(argument.get()))
{
std::string op_name = op_ptr->GetTypeString();
float avg_time = invoker->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::size_t flops = op_instance_.GetFlops();
std::size_t num_btype = op_instance_.GetBtype();
float tflops = static_cast<float>(flops) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << op_name << std::endl;
if(avg_time < best_config.best_avg_time)
{
best_config.best_op_name = op_name;
best_config.best_tflops = tflops;
best_config.best_gb_per_sec = gb_per_sec;
best_config.best_avg_time = avg_time;
}
if(do_verification)
{
out_device_buffer_->FromDevice(out_tensor_->mData.data());
if(!ref_output_)
{
throw std::runtime_error(
"OpInstanceRunEngine::Profile: Reference value not availabe."
" You have to provide reference function.");
}
// TODO: enable flexible use of custom check_error functions
CheckErr(out_tensor_->mData, ref_output_->mData);
if(do_log) {}
}
out_device_buffer_->SetZero();
}
}
return best_config;
}
void SetAtol(double a) { atol_ = a; }
void SetRtol(double r) { rtol_ = r; }
private:
template <typename F, std::size_t... Is>
void CallRefOpUnpackArgs(const F& f, std::index_sequence<Is...>) const
{
f(*std::get<Is>(in_tensors_)..., *ref_output_);
}
template <std::size_t... Is>
void AllocateDeviceInputTensors(std::index_sequence<Is...>)
{
(AllocateDeviceInputTensorsImpl<Is>(), ...);
}
template <std::size_t Index>
void AllocateDeviceInputTensorsImpl()
{
const auto& ts = std::get<Index>(in_tensors_);
in_device_buffers_
.emplace_back(
std::make_unique<DeviceMem>(sizeof(std::tuple_element_t<Index, InArgsTypesTuple>) *
ts->mDesc.GetElementSpaceSize()))
->ToDevice(ts->mData.data());
}
static constexpr std::size_t kNInArgs_ = std::tuple_size_v<InTensorsTuple>;
const OpInstanceT& op_instance_;
double rtol_{1e-5};
double atol_{1e-8};
InTensorsTuple in_tensors_;
TensorPtr<OutDataType> out_tensor_;
TensorPtr<OutDataType> ref_output_;
DeviceBuffers in_device_buffers_;
DeviceMemPtr out_device_buffer_;
template <typename T>
bool CheckErr(const std::vector<T>& dev_out, const std::vector<T>& ref_out) const
{
return ck::utils::check_err(dev_out, ref_out, "Error: incorrect results!", rtol_, atol_);
}
};
} // namespace utils
} // namespace ck
add_instance_library(device_pool_fwd_instance
device_avg_pool2d_fwd_nhwc_f16_instance.cpp
device_avg_pool2d_fwd_nhwc_f32_instance.cpp
device_avg_pool3d_fwd_ndhwc_f16_instance.cpp
device_avg_pool3d_fwd_ndhwc_f32_instance.cpp
device_max_pool2d_fwd_nhwc_f16_instance.cpp
device_max_pool2d_fwd_nhwc_f32_instance.cpp
device_max_pool3d_fwd_ndhwc_f16_instance.cpp
device_max_pool3d_fwd_ndhwc_f32_instance.cpp
)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "pool_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
void add_device_pool2d_fwd_nhwc_f16_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F16, F16, I32, ReduceOpId, false>>>& instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F16, F16, I32, F32, ReduceOpId, false>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "pool_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
void add_device_pool2d_fwd_nhwc_f32_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F32, F32, I32, ReduceOpId, false>>>& instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F32, F32, I32, F32, ReduceOpId, false>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "pool_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
void add_device_pool3d_fwd_ndhwc_f16_instances(
std::vector<std::unique_ptr<DevicePoolFwd<5, 3, F16, F16, I32, ReduceOpId, false>>>& instances)
{
add_device_operation_instances(
instances, device_pool3d_fwd_ndhwc_instances<F16, F16, I32, F32, ReduceOpId, false>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "pool_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
void add_device_pool3d_fwd_ndhwc_f32_instances(
std::vector<std::unique_ptr<DevicePoolFwd<5, 3, F32, F32, I32, ReduceOpId, false>>>& instances)
{
add_device_operation_instances(
instances, device_pool3d_fwd_ndhwc_instances<F32, F32, I32, F32, ReduceOpId, false>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "pool_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
void add_device_pool2d_fwd_nhwc_f16_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F16, F16, I32, ReduceOpId, false>>>& instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F16, F16, I32, F16, ReduceOpId, false>{});
}
void add_device_pool2d_fwd_nhwc_index_f16_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F16, F16, I32, ReduceOpId, true>>>& instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F16, F16, I32, F16, ReduceOpId, true>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "pool_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
void add_device_pool2d_fwd_nhwc_f32_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F32, F32, I32, ReduceOpId, false>>>& instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F32, F32, I32, F32, ReduceOpId, false>{});
}
void add_device_pool2d_fwd_nhwc_index_f32_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F32, F32, I32, ReduceOpId, true>>>& instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F32, F32, I32, F32, ReduceOpId, true>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "pool_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
void add_device_pool3d_fwd_ndhwc_f16_instances(
std::vector<std::unique_ptr<DevicePoolFwd<5, 3, F16, F16, I32, ReduceOpId, false>>>& instances)
{
add_device_operation_instances(
instances, device_pool3d_fwd_ndhwc_instances<F16, F16, I32, F16, ReduceOpId, false>{});
}
void add_device_pool3d_fwd_ndhwc_index_f16_instances(
std::vector<std::unique_ptr<DevicePoolFwd<5, 3, F16, F16, I32, ReduceOpId, true>>>& instances)
{
add_device_operation_instances(
instances, device_pool3d_fwd_ndhwc_instances<F16, F16, I32, F16, ReduceOpId, true>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "pool_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
void add_device_pool3d_fwd_ndhwc_f32_instances(
std::vector<std::unique_ptr<DevicePoolFwd<5, 3, F32, F32, I32, ReduceOpId, false>>>& instances)
{
add_device_operation_instances(
instances, device_pool3d_fwd_ndhwc_instances<F32, F32, I32, F32, ReduceOpId, false>{});
}
void add_device_pool3d_fwd_ndhwc_index_f32_instances(
std::vector<std::unique_ptr<DevicePoolFwd<5, 3, F32, F32, I32, ReduceOpId, true>>>& instances)
{
add_device_operation_instances(
instances, device_pool3d_fwd_ndhwc_instances<F32, F32, I32, F32, ReduceOpId, true>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool3d_fwd_ndhwc_ndhwc.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using I32 = int32_t;
using F16 = ck::half_t;
using F32 = float;
template <typename InDataType,
typename OutDataType,
typename IndexDataType,
typename ComputeDataType,
ReduceTensorOp ReduceOpId,
bool OutputIndex>
using device_pool2d_fwd_nhwc_instances =
// clang-format off
std::tuple <
DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C<InDataType, OutDataType, IndexDataType, ComputeDataType, ReduceOpId, OutputIndex, 256, 256, 1, 1, 1, 1>,
DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C<InDataType, OutDataType, IndexDataType, ComputeDataType, ReduceOpId, OutputIndex, 256, 256, 1, 2, 1, 2>,
DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C<InDataType, OutDataType, IndexDataType, ComputeDataType, ReduceOpId, OutputIndex, 256, 256, 1, 4, 1, 4>
// clang-format on
>;
template <typename InDataType,
typename OutDataType,
typename IndexDataType,
typename ComputeDataType,
ReduceTensorOp ReduceOpId,
bool OutputIndex>
using device_pool3d_fwd_ndhwc_instances =
// clang-format off
std::tuple <
DevicePool3dFwd_Input_N_Di_Hi_Wi_C_Output_N_Do_Ho_Wo_C<InDataType, OutDataType, IndexDataType, ComputeDataType, ReduceOpId, OutputIndex, 256, 256, 1, 1, 1, 1>,
DevicePool3dFwd_Input_N_Di_Hi_Wi_C_Output_N_Do_Ho_Wo_C<InDataType, OutDataType, IndexDataType, ComputeDataType, ReduceOpId, OutputIndex, 256, 256, 1, 2, 1, 2>,
DevicePool3dFwd_Input_N_Di_Hi_Wi_C_Output_N_Do_Ho_Wo_C<InDataType, OutDataType, IndexDataType, ComputeDataType, ReduceOpId, OutputIndex, 256, 256, 1, 4, 1, 4>
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma
#include "ck/utility/data_type.hpp"
#include "profiler/data_type_enum.hpp"
namespace ck {
template <DataTypeEnum DataTypeEnum>
struct get_datatype_from_enum;
template <>
struct get_datatype_from_enum<DataTypeEnum::Int8>
{
using type = int8_t;
};
template <>
struct get_datatype_from_enum<DataTypeEnum::Int32>
{
using type = int32_t;
};
template <>
struct get_datatype_from_enum<DataTypeEnum::Half>
{
using type = half_t;
};
template <>
struct get_datatype_from_enum<DataTypeEnum::Float>
{
using type = float;
};
template <>
struct get_datatype_from_enum<DataTypeEnum::Double>
{
using type = double;
};
template <typename T>
struct get_datatype_enum_from_type;
template <>
struct get_datatype_enum_from_type<int8_t>
{
static constexpr DataTypeEnum value = DataTypeEnum::Int8;
};
template <>
struct get_datatype_enum_from_type<int32_t>
{
static constexpr DataTypeEnum value = DataTypeEnum::Int32;
};
template <>
struct get_datatype_enum_from_type<half_t>
{
static constexpr DataTypeEnum value = DataTypeEnum::Half;
};
template <>
struct get_datatype_enum_from_type<float>
{
static constexpr DataTypeEnum value = DataTypeEnum::Float;
};
template <>
struct get_datatype_enum_from_type<double>
{
static constexpr DataTypeEnum value = DataTypeEnum::Double;
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_data.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp"
using F16 = ck::half_t;
using F32 = float;
using BF16 = ck::bhalf_t;
using INT8 = int8_t;
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using DeviceConvBwdDataNoOpPtr =
DeviceConvBwdDataPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f16_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f16_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances(
std::vector<DeviceConvBwdDataNoOpPtr>&);
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace ck {
namespace profiler {
using DeviceConvBwdDataNoOpPtr = ck::tensor_operation::device::instance::DeviceConvBwdDataNoOpPtr;
template <typename InLayout>
HostTensorDescriptor get_input_host_tensor_descriptor(const std::vector<std::size_t>& dims,
int num_dim_spatial = 2)
{
namespace tl = ck::tensor_layout::convolution;
switch(num_dim_spatial)
{
case 3: {
return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{});
}
case 2: {
return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{});
}
case 1: {
return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{});
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
template <typename WeiLayout>
HostTensorDescriptor get_filters_host_tensor_descriptor(const std::vector<std::size_t>& dims,
int num_dim_spatial = 2)
{
namespace tl = ck::tensor_layout::convolution;
switch(num_dim_spatial)
{
case 3: {
return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{});
}
case 2: {
return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{});
}
case 1: {
return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{});
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
template <typename OutLayout>
HostTensorDescriptor get_output_host_ensor_descriptor(const std::vector<std::size_t>& dims,
int num_dim_spatial = 2)
{
namespace tl = ck::tensor_layout::convolution;
switch(num_dim_spatial)
{
case 3: {
return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{});
}
case 2: {
return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{});
}
case 1: {
return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{});
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
template <typename InDataType, typename WeiDataType, typename OutDataType>
void get_device_conv_bwd_data_op_ptr(
InDataType, WeiDataType, OutDataType, std::vector<DeviceConvBwdDataNoOpPtr>&, int)
{
std::cout << "can not find device conv bwd data" << std::endl;
exit(1);
}
template <>
void get_device_conv_bwd_data_op_ptr(
F32, F32, F32, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
switch(num_dim_spatial)
{
case 1:
ck::tensor_operation::device::instance::
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(conv_ptrs);
break;
case 2:
ck::tensor_operation::device::instance::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
break;
case 3:
ck::tensor_operation::device::instance::
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(conv_ptrs);
break;
default: break;
}
}
template <>
void get_device_conv_bwd_data_op_ptr(
F16, F16, F16, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
switch(num_dim_spatial)
{
case 1:
ck::tensor_operation::device::instance::
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f16_instances(conv_ptrs);
break;
case 2:
ck::tensor_operation::device::instance::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
break;
case 3:
ck::tensor_operation::device::instance::
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f16_instances(conv_ptrs);
break;
default: break;
}
}
template <>
void get_device_conv_bwd_data_op_ptr(
BF16, BF16, BF16, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
switch(num_dim_spatial)
{
case 1:
ck::tensor_operation::device::instance::
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances(conv_ptrs);
break;
case 2:
ck::tensor_operation::device::instance::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs);
break;
case 3:
ck::tensor_operation::device::instance::
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(conv_ptrs);
break;
default: break;
}
}
template <>
void get_device_conv_bwd_data_op_ptr(
INT8, INT8, INT8, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
switch(num_dim_spatial)
{
case 1:
ck::tensor_operation::device::instance::
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances(conv_ptrs);
break;
case 2:
ck::tensor_operation::device::instance::
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(conv_ptrs);
break;
case 3:
ck::tensor_operation::device::instance::
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances(conv_ptrs);
break;
default: break;
}
}
template <typename T>
static bool check_out(const Tensor<T>& ref, const Tensor<T>& result)
{
float max_diff = 1e-6;
for(std::size_t i = 0; i < ref.mData.size(); ++i)
{
float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
if(max_diff < diff)
{
return false;
}
}
return true;
}
template <typename DataType>
void show_data_nhwc_layout(Tensor<DataType>& nhwc)
{
std::cout << "[";
for(int n = 0; n < ck::type_convert<int>(nhwc.mDesc.GetLengths()[0]); n++)
{
std::cout << "[";
for(int hi = 0; hi < ck::type_convert<int>(nhwc.mDesc.GetLengths()[2]); hi++)
{
std::cout << "[";
for(int wi = 0; wi < ck::type_convert<int>(nhwc.mDesc.GetLengths()[3]); wi++)
{
std::cout << "[";
for(int c = 0; c < ck::type_convert<int>(nhwc.mDesc.GetLengths()[1]); c++)
{
std::cout << static_cast<float>(nhwc(n, c, hi, wi)) << " ";
}
std::cout << "]";
}
std::cout << "]";
}
std::cout << "]";
}
std::cout << "]";
}
template <int NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename AccDataType,
typename InLayout,
typename WeiLayout,
typename OutLayout>
bool profile_convnd_bwd_data_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
ck::index_t N,
ck::index_t K,
ck::index_t C,
const std::vector<ck::index_t>& input_spatial_lengths,
const std::vector<ck::index_t>& filter_spatial_lengths,
const std::vector<ck::index_t>& output_spatial_lengths,
const std::vector<ck::index_t>& conv_filter_strides,
const std::vector<ck::index_t>& conv_filter_dilations,
const std::vector<ck::index_t>& input_left_pads,
const std::vector<ck::index_t>& input_right_pads)
{
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{};
std::vector<std::size_t> input_dims{static_cast<std::size_t>(N), static_cast<std::size_t>(C)};
input_dims.insert(
std::end(input_dims), std::begin(input_spatial_lengths), std::end(input_spatial_lengths));
std::vector<std::size_t> filter_dims{static_cast<std::size_t>(K), static_cast<std::size_t>(C)};
filter_dims.insert(std::end(filter_dims),
std::begin(filter_spatial_lengths),
std::end(filter_spatial_lengths));
std::vector<std::size_t> output_dims{static_cast<std::size_t>(N), static_cast<std::size_t>(K)};
output_dims.insert(std::end(output_dims),
std::begin(output_spatial_lengths),
std::end(output_spatial_lengths));
Tensor<InDataType> input_host_result(
get_input_host_tensor_descriptor<InLayout>(input_dims, NDimSpatial));
Tensor<InDataType> input_device_result(
get_input_host_tensor_descriptor<InLayout>(input_dims, NDimSpatial));
Tensor<WeiDataType> weights(
get_filters_host_tensor_descriptor<WeiLayout>(filter_dims, NDimSpatial));
Tensor<OutDataType> output(
get_output_host_ensor_descriptor<OutLayout>(output_dims, NDimSpatial));
std::cout << "input: " << input_host_result.mDesc << std::endl;
std::cout << "weights: " << weights.mDesc << std::endl;
std::cout << "output: " << output.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
output.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
weights.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
default:
output.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
weights.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
}
DeviceMem in_device_buf(sizeof(InDataType) * input_device_result.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * weights.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) * output.mDesc.GetElementSpace());
out_device_buf.ToDevice(output.mData.data());
wei_device_buf.ToDevice(weights.mData.data());
// reset input to zero
in_device_buf.SetZero();
if(do_verification)
{
auto RunReference = [&](auto& ref_conv) {
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(input_host_result,
weights,
output,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
ref_invoker.Run(ref_argument);
};
auto ref_conv = ck::tensor_operation::host::ReferenceConvBwdData<InDataType,
WeiDataType,
OutDataType,
AccDataType,
InElementOp,
WeiElementOp,
OutElementOp,
NDimSpatial>();
RunReference(ref_conv);
}
// add device Conv instances
std::vector<DeviceConvBwdDataNoOpPtr> conv_ptrs;
get_device_conv_bwd_data_op_ptr(
InDataType{}, WeiDataType{}, OutDataType{}, conv_ptrs, NDimSpatial);
if(conv_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device Conv instance found");
}
std::string best_conv_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device Conv instances
bool success = true;
for(auto& conv_ptr : conv_ptrs)
{
auto argument_ptr = conv_ptr->MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
auto invoker_ptr = conv_ptr->MakeInvokerPointer();
if(conv_ptr->IsSupportedArgument(argument_ptr.get()))
{
std::string conv_name = conv_ptr->GetTypeString();
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop =
ck::utils::conv::get_flops(N, C, K, filter_spatial_lengths, output_spatial_lengths);
std::size_t num_btype =
ck::utils::conv::get_btype<InDataType, WeiDataType, OutDataType>(
N, C, K, input_spatial_lengths, filter_spatial_lengths, output_spatial_lengths);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s" << std::endl;
if(tflops > best_tflops)
{
best_conv_name = conv_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
in_device_buf.FromDevice(input_device_result.mData.data());
if(!check_out(input_host_result, input_device_result))
{
std::cout << "Fail Info: " << conv_ptr->GetTypeString() << std::endl;
success = false;
}
else
{
std::cout << "Pass Info: " << conv_ptr->GetTypeString() << std::endl;
}
success = ck::utils::check_err(input_host_result, input_device_result);
if(do_log)
{
std::cout << "in : ";
show_data_nhwc_layout(output);
std::cout << std::endl;
std::cout << "wei: ";
show_data_nhwc_layout(weights);
std::cout << std::endl;
std::cout << "out_host : ";
show_data_nhwc_layout(input_host_result);
std::cout << std::endl;
std::cout << "out_device: ";
show_data_nhwc_layout(input_device_result);
std::cout << std::endl;
}
}
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_conv_name << std::endl;
return success;
}
} // namespace profiler
} // namespace ck
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_backward_weight.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_backward_weight.hpp"
using F16 = ck::half_t;
using F32 = float;
using BF16 = ck::bhalf_t;
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using DeviceConvndBwdWeightNoOpPtr =
DeviceConvBwdWeightPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_bf16_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace ck {
namespace profiler {
using DeviceConvndBwdWeightNoOpPtr =
ck::tensor_operation::device::instance::DeviceConvndBwdWeightNoOpPtr;
template <typename InLayout>
HostTensorDescriptor get_input_host_tensor_descriptor(const std::vector<std::size_t>& dims,
int num_dim_spatial = 2)
{
namespace tl = ck::tensor_layout::convolution;
switch(num_dim_spatial)
{
case 3: {
return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{});
}
case 2: {
return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{});
}
case 1: {
return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{});
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
template <typename WeiLayout>
HostTensorDescriptor get_filters_host_tensor_descriptor(const std::vector<std::size_t>& dims,
int num_dim_spatial = 2)
{
namespace tl = ck::tensor_layout::convolution;
switch(num_dim_spatial)
{
case 3: {
return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{});
}
case 2: {
return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{});
}
case 1: {
return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{});
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
template <typename OutLayout>
HostTensorDescriptor get_output_host_ensor_descriptor(const std::vector<std::size_t>& dims,
int num_dim_spatial = 2)
{
namespace tl = ck::tensor_layout::convolution;
switch(num_dim_spatial)
{
case 3: {
return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{});
}
case 2: {
return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{});
}
case 1: {
return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{});
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
template <typename InDataType, typename WeiDataType, typename OutDataType>
void get_device_conv_bwd_weight_op_ptr(
InDataType, WeiDataType, OutDataType, std::vector<DeviceConvndBwdWeightNoOpPtr>&, int)
{
std::cout << "can not find device conv bwd weight" << std::endl;
exit(1);
}
template <>
void get_device_conv_bwd_weight_op_ptr(
F32, F32, F32, std::vector<DeviceConvndBwdWeightNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
switch(num_dim_spatial)
{
case 1:
ck::tensor_operation::device::instance::
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instances(conv_ptrs);
break;
case 2:
ck::tensor_operation::device::instance::
add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
break;
case 3:
ck::tensor_operation::device::instance::
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances(conv_ptrs);
break;
default: break;
}
}
template <>
void get_device_conv_bwd_weight_op_ptr(
F16, F16, F16, std::vector<DeviceConvndBwdWeightNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
switch(num_dim_spatial)
{
case 1:
ck::tensor_operation::device::instance::
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances(conv_ptrs);
break;
case 2:
ck::tensor_operation::device::instance::
add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
break;
case 3:
ck::tensor_operation::device::instance::
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances(conv_ptrs);
break;
default: break;
}
}
template <>
void get_device_conv_bwd_weight_op_ptr(
BF16, BF16, BF16, std::vector<DeviceConvndBwdWeightNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
switch(num_dim_spatial)
{
case 1:
ck::tensor_operation::device::instance::
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_instances(conv_ptrs);
break;
case 2:
ck::tensor_operation::device::instance::
add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs);
break;
case 3:
ck::tensor_operation::device::instance::
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(conv_ptrs);
break;
default: break;
}
}
template <typename DataType>
void show_data_nhwc_layout(Tensor<DataType>& nhwc)
{
std::cout << "[";
for(int n = 0; n < ck::type_convert<int>(nhwc.mDesc.GetLengths()[0]); n++)
{
std::cout << "[";
for(int hi = 0; hi < ck::type_convert<int>(nhwc.mDesc.GetLengths()[2]); hi++)
{
std::cout << "[";
for(int wi = 0; wi < ck::type_convert<int>(nhwc.mDesc.GetLengths()[3]); wi++)
{
std::cout << "[";
for(int c = 0; c < ck::type_convert<int>(nhwc.mDesc.GetLengths()[1]); c++)
{
std::cout << static_cast<float>(nhwc(n, c, hi, wi)) << " ";
}
std::cout << "]";
}
std::cout << "]";
}
std::cout << "]";
}
std::cout << "]";
}
template <int NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InLayout,
typename WeiLayout,
typename OutLayout>
bool profile_convnd_bwd_weight_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
ck::index_t split_k)
{
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{};
std::vector<std::size_t> input_dims{static_cast<std::size_t>(N), static_cast<std::size_t>(C)};
input_dims.insert(
std::end(input_dims), std::begin(input_spatial_lengths), std::end(input_spatial_lengths));
std::vector<std::size_t> filter_dims{static_cast<std::size_t>(K), static_cast<std::size_t>(C)};
filter_dims.insert(std::end(filter_dims),
std::begin(filter_spatial_lengths),
std::end(filter_spatial_lengths));
std::vector<std::size_t> output_dims{static_cast<std::size_t>(N), static_cast<std::size_t>(K)};
output_dims.insert(std::end(output_dims),
std::begin(output_spatial_lengths),
std::end(output_spatial_lengths));
Tensor<InDataType> input(get_input_host_tensor_descriptor<InLayout>(input_dims, NDimSpatial));
Tensor<WeiDataType> weights_host_result(
get_filters_host_tensor_descriptor<WeiLayout>(filter_dims, NDimSpatial));
Tensor<WeiDataType> weights_device_result(
get_filters_host_tensor_descriptor<WeiLayout>(filter_dims, NDimSpatial));
Tensor<OutDataType> output(
get_output_host_ensor_descriptor<OutLayout>(output_dims, NDimSpatial));
std::cout << "input: " << input.mDesc << std::endl;
std::cout << "weights: " << weights_host_result.mDesc << std::endl;
std::cout << "output: " << output.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
input.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-2, 2});
output.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-2, 2});
break;
default:
input.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
output.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
}
DeviceMem in_device_buf(sizeof(InDataType) * input.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * weights_device_result.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) * output.mDesc.GetElementSpace());
in_device_buf.ToDevice(input.mData.data());
out_device_buf.ToDevice(output.mData.data());
// reset input to zero
wei_device_buf.SetZero();
if(do_verification)
{
auto RunReference = [&](auto& ref_conv) {
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(input,
weights_host_result,
output,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
ref_invoker.Run(ref_argument);
};
auto ref_conv = ck::tensor_operation::host::ReferenceConvBwdWeight<InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
NDimSpatial>();
RunReference(ref_conv);
}
// add device Conv instances
std::vector<DeviceConvndBwdWeightNoOpPtr> conv_ptrs;
get_device_conv_bwd_weight_op_ptr(
InDataType{}, WeiDataType{}, OutDataType{}, conv_ptrs, NDimSpatial);
if(conv_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device Conv instance found");
}
std::string best_conv_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device Conv instances
bool success = true;
for(auto& conv_ptr : conv_ptrs)
{
// using atomic, so need to reset input, setzero is done in invoker
// if(split_k > 1)
//{
// wei_device_buf.SetZero();
//}
auto argument_ptr = conv_ptr->MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op,
split_k);
if(!conv_ptr->IsSupportedArgument(argument_ptr.get()))
{
std::cout << "wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<< std::endl;
continue;
}
auto invoker_ptr = conv_ptr->MakeInvokerPointer();
std::string conv_name = conv_ptr->GetTypeString();
float ave_time = 0;
if(std::is_same<InDataType, ck::bhalf_t>::value && split_k > 1)
{
// alloc work space
size_t bwd_weight_workspace_size = conv_ptr->GetWorkSpaceSize(argument_ptr.get());
if(bwd_weight_workspace_size <= 0)
{
printf("wrong work space size\n");
exit(1);
}
DeviceMem wei_work_space_device_buf(bwd_weight_workspace_size);
wei_work_space_device_buf.SetZero();
conv_ptr->SetWorkSpacePointer(argument_ptr.get(),
wei_work_space_device_buf.GetDeviceBuffer());
ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
}
else
{
ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
}
std::size_t flop =
ck::utils::conv::get_flops(N, C, K, filter_spatial_lengths, output_spatial_lengths);
std::size_t num_btype = ck::utils::conv::get_btype<InDataType, WeiDataType, OutDataType>(
N, C, K, input_spatial_lengths, filter_spatial_lengths, output_spatial_lengths);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s" << std::endl;
if(tflops > best_tflops)
{
best_conv_name = conv_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
wei_device_buf.FromDevice(weights_device_result.mData.data());
success = ck::utils::check_err(weights_host_result, weights_device_result);
if(success == false)
{
std::cout << "Fail Info: " << conv_ptr->GetTypeString() << std::endl;
}
else
{
std::cout << "Pass Info: " << conv_ptr->GetTypeString() << std::endl;
}
if(do_log)
{
std::cout << "in : ";
show_data_nhwc_layout(output);
std::cout << std::endl;
std::cout << "wei: ";
show_data_nhwc_layout(weights_host_result);
std::cout << std::endl;
std::cout << "out : ";
show_data_nhwc_layout(input);
std::cout << std::endl;
std::cout << "wei_device: ";
show_data_nhwc_layout(weights_device_result);
std::cout << std::endl;
}
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_conv_name << std::endl;
return success;
}
} // namespace profiler
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/pool2d_fwd.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp"
namespace ck {
namespace profiler {
template <typename InDataType,
typename OutDataType,
typename ComputeDataType,
typename IndexDataType,
ck::ReduceTensorOp ReduceOpId,
bool PropagateNan,
bool OutputIndex>
bool profile_pool2d_fwd_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
std::vector<index_t> in_length, // NCHW
std::vector<index_t> window_spatial_lengths,
std::vector<index_t> window_strides,
std::vector<index_t> input_left_pads,
std::vector<index_t> input_right_pads)
{
constexpr index_t InOutRank = 4;
constexpr index_t WindowRank = 2;
if(in_length.size() != InOutRank || window_spatial_lengths.size() != WindowRank ||
window_strides.size() != WindowRank || input_left_pads.size() != WindowRank ||
input_right_pads.size() != WindowRank)
return false;
std::vector<index_t> out_length(InOutRank);
int N = in_length[0];
int C = in_length[1];
out_length[0] = N;
out_length[1] = C;
// Calculate Ho, Wo
for(int i = 2; i < InOutRank; ++i)
{
auto pad1 = input_left_pads[i - 2];
auto pad2 = input_right_pads[i - 2];
auto windows_size = window_spatial_lengths[i - 2];
auto windows_stride = window_strides[i - 2];
out_length[i] = (in_length[i] + pad1 + pad2 - windows_size) / windows_stride + 1;
}
int Hi = in_length[2];
int Wi = in_length[3];
int Ho = out_length[2];
int Wo = out_length[3];
auto f_host_tensor_descriptor =
[](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W) {
using namespace ck::literals;
return HostTensorDescriptor({N_, C_, H, W}, {C_ * H * W, 1_uz, W * C_, C_});
};
Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi));
Tensor<OutDataType> out_n_c_ho_wo_host(f_host_tensor_descriptor(N, C, Ho, Wo));
Tensor<IndexDataType> out_indices_n_c_ho_wo_host(f_host_tensor_descriptor(N, C, Ho, Wo));
Tensor<OutDataType> out_n_c_ho_wo_device(f_host_tensor_descriptor(N, C, Ho, Wo));
Tensor<IndexDataType> out_indices_n_c_ho_wo_device(f_host_tensor_descriptor(N, C, Ho, Wo));
switch(init_method)
{
case 0: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{}); break;
case 1: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}); break;
default: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) *
out_n_c_ho_wo_device.mDesc.GetElementSpaceSize());
DeviceMem out_indices_device_buf(sizeof(IndexDataType) *
out_indices_n_c_ho_wo_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
// add device normalization instances
using DeviceOp = ck::tensor_operation::device::DevicePoolFwd<InOutRank,
WindowRank,
InDataType,
OutDataType,
IndexDataType,
ReduceOpId,
OutputIndex>;
// get device op instances
const auto instance_ptrs =
ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << instance_ptrs.size() << " instances" << std::endl;
std::string best_instance_name;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
if(do_verification)
{
using ReferenceInstance = ck::tensor_operation::host::ReferencePoolingFwd<InOutRank,
WindowRank,
InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
ReduceOpId,
PropagateNan,
OutputIndex>;
ReferenceInstance ref;
auto ref_argument = ref.MakeArgument(in_n_c_hi_wi,
out_n_c_ho_wo_host,
out_indices_n_c_ho_wo_host,
window_spatial_lengths,
window_strides,
input_left_pads,
input_right_pads);
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
}
int num_kernel = 0;
for(auto& inst_ptr : instance_ptrs)
{
auto argument_ptr = inst_ptr->MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
static_cast<IndexDataType*>(out_indices_device_buf.GetDeviceBuffer()),
in_length,
window_spatial_lengths,
out_length,
{C * Hi * Wi, 1, Wi * C, C},
{C * Ho * Wo, 1, Wo * C, C},
{C * Ho * Wo, 1, Wo * C, C},
window_strides,
input_left_pads,
input_right_pads,
{2, 3});
if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
{
++num_kernel;
}
else
{
if(time_kernel)
{
std::cout << inst_ptr->GetTypeString() << " skipped due to unsupported argument: ";
LogRange(std::cout << "input lengths = ", in_length, ", ") << std::endl;
}
continue;
}
auto invoker_ptr = inst_ptr->MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t num_bytes = in_n_c_hi_wi.mDesc.GetElementSize() * sizeof(InDataType) +
out_n_c_ho_wo_host.mDesc.GetElementSize() * sizeof(OutDataType);
if constexpr(OutputIndex)
num_bytes += out_indices_n_c_ho_wo_host.mDesc.GetElementSize() * sizeof(IndexDataType);
float gb_per_sec = num_bytes / 1.E6 / avg_time;
if(time_kernel)
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << gb_per_sec << " GB/s, "
<< inst_ptr->GetTypeString() << std::endl;
if(avg_time < best_avg_time)
{
best_instance_name = inst_ptr->GetTypeString();
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
out_device_buf.FromDevice(out_n_c_ho_wo_device.mData.data());
bool pass = ck::utils::check_err(out_n_c_ho_wo_device.mData,
out_n_c_ho_wo_host.mData,
"Error: Incorrect results",
1e-3,
1e-3);
if constexpr(OutputIndex)
{
out_indices_device_buf.FromDevice(out_indices_n_c_ho_wo_device.mData.data());
pass = pass && ck::utils::check_err(out_indices_n_c_ho_wo_device,
out_indices_n_c_ho_wo_host);
}
if(do_log)
{
LogRangeAsType<float>(std::cout << "in_n_c_hi_wi : ", in_n_c_hi_wi.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "out_n_c_ho_wo_host : ", out_n_c_ho_wo_host.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "out_n_c_ho_wo_device : ", out_n_c_ho_wo_device.mData, ",")
<< std::endl;
if constexpr(OutputIndex)
LogRangeAsType<float>(std::cout << "out_indices_n_c_ho_wo_device : ",
out_indices_n_c_ho_wo_device.mData,
",")
<< std::endl;
}
if(!pass)
{
std::cout << inst_ptr->GetTypeString() << " failed verification: ";
LogRange(std::cout << "lengths = [", in_length, ", ") << "]." << std::endl;
return false;
}
else
{
if(time_kernel)
std::cout << "pass" << std::endl;
}
}
}
if(time_kernel)
{
LogRange(std::cout << "length = ", in_length, ",") << std::endl;
std::cout << "best perf = " << best_avg_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_instance_name << std::endl;
}
if(num_kernel == 0)
{
std::cout << "Error: No kernel is applicable" << std::endl;
return false;
}
return true;
}
} // namespace profiler
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/pool3d_fwd.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp"
namespace ck {
namespace profiler {
template <typename InDataType,
typename OutDataType,
typename ComputeDataType,
typename IndexDataType,
ck::ReduceTensorOp ReduceOpId,
bool PropagateNan,
bool OutputIndex>
bool profile_pool3d_fwd_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
std::vector<index_t> in_length, // NCDHW
std::vector<index_t> window_spatial_lengths,
std::vector<index_t> window_strides,
std::vector<index_t> input_left_pads,
std::vector<index_t> input_right_pads)
{
constexpr index_t InOutRank = 5;
constexpr index_t WindowRank = 3;
if(in_length.size() != InOutRank || window_spatial_lengths.size() != WindowRank ||
window_strides.size() != WindowRank || input_left_pads.size() != WindowRank ||
input_right_pads.size() != WindowRank)
return false;
std::vector<index_t> out_length(InOutRank);
int N = in_length[0];
int C = in_length[1];
out_length[0] = N;
out_length[1] = C;
// Calculate Do, Ho, Wo
for(int i = 2; i < InOutRank; ++i)
{
auto pad1 = input_left_pads[i - 2];
auto pad2 = input_right_pads[i - 2];
auto windows_size = window_spatial_lengths[i - 2];
auto windows_stride = window_strides[i - 2];
out_length[i] = (in_length[i] + pad1 + pad2 - windows_size) / windows_stride + 1;
}
int Di = in_length[2];
int Hi = in_length[3];
int Wi = in_length[4];
int Do = out_length[2];
int Ho = out_length[3];
int Wo = out_length[4];
auto f_host_tensor_descriptor =
[](std::size_t N_, std::size_t C_, std::size_t D, std::size_t H, std::size_t W) {
using namespace ck::literals;
return HostTensorDescriptor({N_, C_, D, H, W},
{D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_});
};
Tensor<InDataType> in_n_c_di_hi_wi(f_host_tensor_descriptor(N, C, Di, Hi, Wi));
Tensor<OutDataType> out_n_c_do_ho_wo_host(f_host_tensor_descriptor(N, C, Do, Ho, Wo));
Tensor<IndexDataType> out_indices_n_c_do_ho_wo_host(f_host_tensor_descriptor(N, C, Do, Ho, Wo));
Tensor<OutDataType> out_n_c_do_ho_wo_device(f_host_tensor_descriptor(N, C, Do, Ho, Wo));
Tensor<IndexDataType> out_indices_n_c_do_ho_wo_device(
f_host_tensor_descriptor(N, C, Do, Ho, Wo));
switch(init_method)
{
case 0: in_n_c_di_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{}); break;
case 1: in_n_c_di_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}); break;
default: in_n_c_di_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_di_hi_wi.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) *
out_n_c_do_ho_wo_device.mDesc.GetElementSpaceSize());
DeviceMem out_indices_device_buf(sizeof(IndexDataType) *
out_indices_n_c_do_ho_wo_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in_n_c_di_hi_wi.mData.data());
// add device normalization instances
using DeviceOp = ck::tensor_operation::device::DevicePoolFwd<InOutRank,
WindowRank,
InDataType,
OutDataType,
IndexDataType,
ReduceOpId,
OutputIndex>;
// get device op instances
const auto instance_ptrs =
ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << instance_ptrs.size() << " instances" << std::endl;
std::string best_instance_name;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
if(do_verification)
{
using ReferenceInstance = ck::tensor_operation::host::ReferencePoolingFwd<InOutRank,
WindowRank,
InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
ReduceOpId,
PropagateNan,
OutputIndex>;
ReferenceInstance ref;
auto ref_argument = ref.MakeArgument(in_n_c_di_hi_wi,
out_n_c_do_ho_wo_host,
out_indices_n_c_do_ho_wo_host,
window_spatial_lengths,
window_strides,
input_left_pads,
input_right_pads);
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
}
int num_kernel = 0;
for(auto& inst_ptr : instance_ptrs)
{
auto argument_ptr = inst_ptr->MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
static_cast<IndexDataType*>(out_indices_device_buf.GetDeviceBuffer()),
in_length,
window_spatial_lengths,
out_length,
{Di * C * Hi * Wi, 1, C * Hi * Wi, Wi * C, C},
{Do * C * Ho * Wo, 1, C * Ho * Wo, Wo * C, C},
{Do * C * Ho * Wo, 1, C * Ho * Wo, Wo * C, C},
window_strides,
input_left_pads,
input_right_pads,
{2, 3, 4});
if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
{
++num_kernel;
}
else
{
if(time_kernel)
{
std::cout << inst_ptr->GetTypeString() << " skipped due to unsupported argument: ";
LogRange(std::cout << "input lengths = ", in_length, ", ") << std::endl;
}
continue;
}
auto invoker_ptr = inst_ptr->MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t num_bytes = in_n_c_di_hi_wi.mDesc.GetElementSize() * sizeof(InDataType) +
out_n_c_do_ho_wo_host.mDesc.GetElementSize() * sizeof(OutDataType);
if constexpr(OutputIndex)
num_bytes +=
out_indices_n_c_do_ho_wo_host.mDesc.GetElementSize() * sizeof(IndexDataType);
float gb_per_sec = num_bytes / 1.E6 / avg_time;
if(time_kernel)
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << gb_per_sec << " GB/s, "
<< inst_ptr->GetTypeString() << std::endl;
if(avg_time < best_avg_time)
{
best_instance_name = inst_ptr->GetTypeString();
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
out_device_buf.FromDevice(out_n_c_do_ho_wo_device.mData.data());
bool pass = ck::utils::check_err(out_n_c_do_ho_wo_device.mData,
out_n_c_do_ho_wo_host.mData,
"Error: Incorrect results",
1e-3,
1e-3);
if constexpr(OutputIndex)
{
out_indices_device_buf.FromDevice(out_indices_n_c_do_ho_wo_device.mData.data());
pass = pass && ck::utils::check_err(out_indices_n_c_do_ho_wo_device,
out_indices_n_c_do_ho_wo_host);
}
if(do_log)
{
LogRangeAsType<float>(
std::cout << "in_n_c_di_hi_wi : ", in_n_c_di_hi_wi.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "out_n_c_do_ho_wo_host : ", out_n_c_do_ho_wo_host.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "out_n_c_do_ho_wo_device : ", out_n_c_do_ho_wo_device.mData, ",")
<< std::endl;
if constexpr(OutputIndex)
LogRangeAsType<float>(std::cout << "out_indices_n_c_do_ho_wo_device : ",
out_indices_n_c_do_ho_wo_device.mData,
",")
<< std::endl;
}
if(!pass)
{
std::cout << inst_ptr->GetTypeString() << " failed verification: ";
LogRange(std::cout << "lengths = [", in_length, ", ") << "]." << std::endl;
return false;
}
else
{
if(time_kernel)
std::cout << "pass" << std::endl;
}
}
}
if(time_kernel)
{
LogRange(std::cout << "length = ", in_length, ",") << std::endl;
std::cout << "best perf = " << best_avg_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_instance_name << std::endl;
}
if(num_kernel == 0)
{
std::cout << "Error: No kernel is applicable" << std::endl;
return false;
}
return true;
}
} // namespace profiler
} // namespace ck
......@@ -25,6 +25,8 @@ set(PROFILER_SOURCES
profile_reduce.cpp
profile_groupnorm.cpp
profile_layernorm.cpp
profile_avg_pool2d_fwd.cpp
profile_max_pool3d_fwd.cpp
profile_softmax.cpp
profile_batchnorm_fwd.cpp
profile_batchnorm_bwd.cpp
......@@ -74,4 +76,6 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_scale_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool_fwd_instance)
rocm_install(TARGETS ${PROFILER_EXECUTABLE} COMPONENT profiler)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_pool2d_fwd_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
struct avgPoolFwdArgParser
{
std::unordered_map<std::string, std::vector<int>> long_opts = {
{"length", {}}, {"wsize", {}}, {"wstride", {}}, {"pad1", {}}, {"pad2", {}}};
bool parse_opt(int argc, char* argv[], const std::string& key, int i)
{
if(std::string("--") + key == argv[i])
{
int pos = i;
while(++i < argc && argv[i][0] != '-') {}
int end = i;
for(int j = pos + 1; j < end; j++)
{
long_opts[key].push_back(std::stoi(argv[j]));
}
return true;
}
return false;
}
void operator()(int argc, char* argv[])
{
for(auto& kv : long_opts)
{
for(int i = 1; i < argc; i++)
{
if(parse_opt(argc, argv, kv.first, i))
break;
}
}
}
};
void print_help_avg_pool2d_fwd()
{
std::cout << "arg1: data type (0: fp16; 1: fp32)\n"
<< "arg2: verification (0: no; 1: yes)\n"
<< "arg3: initialization (0: no init; 1: integer value; 2: decimal value)\n"
<< "arg4: print tensor value (0: no; 1: yes)\n"
<< "arg5: time kernel (0=no, 1=yes)\n"
<< "--length: input tensor length for NDHW(e.g, --length 2 32 30 30) \n"
<< "--wsize: window size for YX (e.g, --wsize 2 2) \n"
<< "--wstride: window stride for HW (e.g, --wstride 2 2) \n"
<< "--pad1: left side of padding in HW (e.g, --pad1 1 1) \n"
<< "--pad2: right side of padding in HW (e.g, --pad2 1 1) \n"
<< "eg: ckProfiler avg_pool2d_fwd 0 1 2 0 1 0 --length 2 32 30 30 --wsize 2 2 "
"--wstride 2 2 --pad1 1 1 --pad2 1 1"
<< std::endl;
}
int profile_avg_pool2d_fwd(int argc, char* argv[])
{
ck::DataTypeEnum data_type = ck::DataTypeEnum::Half;
bool do_verification = true;
int init_method = 0;
bool do_log = false;
bool time_kernel = true;
std::vector<index_t> in_length = {2, 32, 30, 30};
std::vector<index_t> wsize = {2, 2};
std::vector<index_t> wstride = {2, 2};
std::vector<index_t> pad1 = {1, 1};
std::vector<index_t> pad2 = {1, 1};
if(argc != 2 && argc != 25)
{
print_help_avg_pool2d_fwd();
return 0;
}
else if(argc == 25)
{
data_type = static_cast<ck::DataTypeEnum>(std::stoi(argv[2]));
do_verification = std::stoi(argv[3]);
init_method = std::stoi(argv[4]);
do_log = std::stoi(argv[5]);
time_kernel = std::stoi(argv[6]);
// parse the long options
avgPoolFwdArgParser arg_parser;
arg_parser(argc, argv);
in_length = arg_parser.long_opts["length"];
wsize = arg_parser.long_opts["wsize"];
wstride = arg_parser.long_opts["wstride"];
pad1 = arg_parser.long_opts["pad1"];
pad2 = arg_parser.long_opts["pad2"];
}
using F16 = ck::half_t;
using F32 = float;
using I32 = int32_t;
constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
if(data_type == ck::DataTypeEnum::Half)
{
ck::profiler::profile_pool2d_fwd_impl<F16, F16, F32, I32, ReduceOpId, false, false>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
pad1,
pad2);
}
else if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_pool2d_fwd_impl<F32, F32, F32, I32, ReduceOpId, false, false>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
pad1,
pad2);
}
else
{
throw std::runtime_error("not implemented yet");
}
return 0;
}
REGISTER_PROFILER_OPERATION("avg_pool2d_fwd", "avg_pool2d fwd", profile_avg_pool2d_fwd);
......@@ -64,7 +64,7 @@ int profile_groupnorm(int argc, char* argv[])
ck::DataTypeEnum data_type = ck::DataTypeEnum::Half;
bool do_verification = false;
int init_method = 0;
bool do_log = 0;
bool do_log = false;
bool time_kernel = 1;
std::vector<index_t> length = {64, 16, 16, 32, 40};
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment