Commit 21fbf2ce authored by Adam Osewski's avatar Adam Osewski
Browse files

Calculate tile start/end in device kernel.

parent 1de7e9bc
......@@ -52,58 +52,73 @@ __global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_grouped_gemm_xdl_splitk(const void* gemm_desc_const,
kernel_grouped_gemm_xdl_splitk(const void* gemm_desc,
const index_t tile_count,
const index_t k_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
constexpr index_t shared_size = GridwiseGemm::GetSharedMemoryNumberOfByte();
__shared__ uint8_t p_shared[shared_size];
index_t tile_id = get_block_1d_id();
const index_t grid_size = get_grid_size();
const auto gemm_desc_ptr = reinterpret_cast<const GemmDesc*>(gemm_desc_const);
const auto gemm_desc_ptr = reinterpret_cast<const GemmDesc*>(gemm_desc);
static constexpr index_t MPerBlock = GridwiseGemm::GetMPerBlock();
static constexpr index_t NPerBlock = GridwiseGemm::GetNPerBlock();
static constexpr index_t B2E_M01 = 8;
using CGridDesc_M_N = typename GridwiseGemm::CGridDesc_M_N;
using Block2ETileMapKSplit =
BlockToCTileMap_KSplit_M00_N0_M01Adapt<MPerBlock, NPerBlock, CGridDesc_M_N>;
index_t group_id = 0;
index_t offset = 0;
auto M = gemm_desc_ptr[group_id].M;
auto N = gemm_desc_ptr[group_id].N;
auto StrideC = gemm_desc_ptr[group_id].StrideC;
auto c_grid_desc_m_n = GridwiseGemm::MakeCGridDescriptor_M_N(M, N, StrideC);
auto b2c_tile_map = Block2ETileMapKSplit{c_grid_desc_m_n, B2E_M01, k_batch};
index_t grid_size_grp = b2c_tile_map.CalculateGridSize(c_grid_desc_m_n);
index_t gemm_tile_id_start = 0;
index_t gemm_tile_id_end = grid_size_grp;
while(tile_id < tile_count)
{
// Find corresponding GEMM group for out tile
while(!(tile_id >= gemm_desc_ptr[group_id].block_start &&
tile_id < gemm_desc_ptr[group_id].block_end))
while(!(tile_id >= gemm_tile_id_start && tile_id < gemm_tile_id_end))
{
offset += gemm_desc_ptr[group_id].block_end - gemm_desc_ptr[group_id].block_start;
offset += grid_size_grp;
group_id++;
M = gemm_desc_ptr[group_id].M;
N = gemm_desc_ptr[group_id].N;
StrideC = gemm_desc_ptr[group_id].StrideC;
c_grid_desc_m_n = GridwiseGemm::MakeCGridDescriptor_M_N(M, N, StrideC);
b2c_tile_map = Block2ETileMapKSplit{c_grid_desc_m_n, B2E_M01, k_batch};
grid_size_grp = b2c_tile_map.CalculateGridSize(c_grid_desc_m_n);
gemm_tile_id_start = offset;
gemm_tile_id_end = offset + grid_size_grp;
}
const auto p_a_grid = reinterpret_cast<const FloatA*>(gemm_desc_ptr[group_id].p_a_grid);
const auto p_b_grid = reinterpret_cast<const FloatB*>(gemm_desc_ptr[group_id].p_b_grid);
const auto p_c_grid = reinterpret_cast<FloatC*>(gemm_desc_ptr[group_id].p_c_grid);
const auto M = gemm_desc_ptr[group_id].M;
const auto N = gemm_desc_ptr[group_id].N;
const auto K = gemm_desc_ptr[group_id].K;
const auto StrideA = gemm_desc_ptr[group_id].StrideA;
const auto StrideB = gemm_desc_ptr[group_id].StrideB;
const auto StrideC = gemm_desc_ptr[group_id].StrideC;
const auto MPadded = GridwiseGemm::CalculateMPadded(M);
const auto NPadded = GridwiseGemm::CalculateNPadded(N);
const auto KPadded = GridwiseGemm::CalculateKPadded(K, k_batch);
const auto K0 = GridwiseGemm::CalculateK0(K, k_batch);
static constexpr index_t MPerBlock = GridwiseGemm::GetMPerBlock();
static constexpr index_t NPerBlock = GridwiseGemm::GetNPerBlock();
static constexpr index_t B2E_M01 = 8;
using CGridDesc_M_N = typename GridwiseGemm::CGridDesc_M_N;
using Block2ETileMapKSplit =
BlockToCTileMap_KSplit_M00_N0_M01Adapt<MPerBlock, NPerBlock, CGridDesc_M_N>;
const auto c_grid_desc_m_n = GridwiseGemm::MakeCGridDescriptor_M_N(M, N, StrideC);
const auto b2c_tile_map = Block2ETileMapKSplit{c_grid_desc_m_n, B2E_M01, k_batch};
LocalBlockToCTileMap<Block2ETileMapKSplit> local_b2c{b2c_tile_map, tile_id - offset};
GridwiseGemm::template Run<HasMainKBlockLoop, CGlobalMemoryDataOperation>(
......@@ -128,7 +143,7 @@ __global__ void
}
#else
ignore = gemm_desc_const;
ignore = gemm_desc;
ignore = tile_count;
ignore = k_batch;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
......@@ -247,22 +262,61 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
LoopSched,
PipelineVersion::v2>;
using CGridDesc_M_N = typename GridwiseGemm::CGridDesc_M_N;
using CGridDesc_M_N = typename GridwiseGemm::CGridDesc_M_N;
using GridwiseGemmArg = typename GridwiseGemm::Argument;
using Block2ETileMapKSplit =
BlockToCTileMap_KSplit_M00_N0_M01Adapt<MPerBlock, NPerBlock, CGridDesc_M_N>;
// Block2CTileMap configuration parameter.
static constexpr index_t B2E_M01 = 8;
using KernelArgument = typename GridwiseGemm::Argument;
struct GemmTransKernelArg
/**
* @brief Structure representing single GEMM problem arguments.
*
* The pointer to the vector of those structures is passed
* to the GroupedGEMM entry point kernel.
*/
struct KernelArguments
{
KernelArgument karg;
index_t block_start, block_end;
__host__ __device__ KernelArguments(const void* p_a_grid_,
const void* p_b_grid_,
void* p_c_grid_,
index_t M_,
index_t N_,
index_t K_,
index_t StrideA_,
index_t StrideB_,
index_t StrideC_)
: p_a_grid{p_a_grid_},
p_b_grid{p_b_grid_},
p_c_grid{p_c_grid_},
M{M_},
N{N_},
K{K_},
StrideA{StrideA_},
StrideB{StrideB_},
StrideC{StrideC_}
{
}
GemmTransKernelArg() = default;
GemmTransKernelArg(KernelArgument&& karg_, index_t block_start_, index_t block_end_)
: karg{karg_}, block_start{block_start_}, block_end{block_end_}
const void* p_a_grid;
const void* p_b_grid;
void* p_c_grid;
index_t M;
index_t N;
index_t K;
index_t StrideA;
index_t StrideB;
index_t StrideC;
void Print() const
{
std::cout << "arg {"
<< "M:" << M << ", "
<< "N:" << N << ", "
<< "K:" << K << ", "
<< "SA:" << StrideA << ", "
<< "SB:" << StrideB << ", "
<< "SC:" << StrideC << "}" << std::endl;
}
};
......@@ -278,7 +332,6 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
std::vector<GemmDesc>& gemm_descs)
: Argument(p_As, p_Bs, p_Es, gemm_descs, DefaultKBatch)
{
// TODO: use occupancy api to calculate appropriate batch size.
}
Argument(std::vector<const void*>& p_As,
......@@ -286,9 +339,8 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
std::vector<void*>& p_Es,
std::vector<GemmDesc>& gemm_descs,
index_t kbatch)
: K_BATCH{kbatch}
: K_BATCH{kbatch}, group_count_{0}, skipped_group_count_{0}, grid_size_{0}
{
grid_size_ = 0;
group_count_ = ck::type_convert<ck::index_t>(gemm_descs.size());
if(!(group_count_ == ck::type_convert<ck::index_t>(p_As.size()) &&
......@@ -299,7 +351,6 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
}
gemm_kernel_args_.reserve(group_count_);
skipped_group_count_ = 0;
for(std::size_t i = 0; i < gemm_descs.size(); ++i)
{
......@@ -317,42 +368,26 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
const index_t stride_b = gemm_descs[i].stride_B_;
const index_t stride_c = gemm_descs[i].stride_C_;
const index_t m_padded = GridwiseGemm::CalculateMPadded(M);
const index_t n_padded = GridwiseGemm::CalculateNPadded(N);
const index_t k_padded = GridwiseGemm::CalculateKPadded(K, K_BATCH);
const index_t k0 = GridwiseGemm::CalculateK0(K, K_BATCH);
const auto c_grid_desc_m_n = GridwiseGemm::MakeCGridDescriptor_M_N(M, N, stride_c);
auto local_b2c_tile_map = Block2ETileMapKSplit{c_grid_desc_m_n, B2E_M01, K_BATCH};
const index_t grid_size_grp = local_b2c_tile_map.CalculateGridSize(c_grid_desc_m_n);
const index_t block_start = grid_size_;
const index_t block_end = grid_size_ + grid_size_grp;
grid_size_ += grid_size_grp;
auto karg = KernelArgument{type_convert<const ADataType*>(p_As[i]),
type_convert<const BDataType*>(p_Bs[i]),
type_convert<EDataType*>(p_Es[i]),
M,
N,
K,
stride_a,
stride_b,
stride_c,
m_padded,
n_padded,
k_padded,
k0,
K_BATCH};
gemm_kernel_args_.emplace_back(std::move(karg), block_start, block_end);
gemm_kernel_args_.emplace_back(type_convert<const ADataType*>(p_As[i]),
type_convert<const BDataType*>(p_Bs[i]),
type_convert<EDataType*>(p_Es[i]),
M,
N,
K,
stride_a,
stride_b,
stride_c);
}
}
/**
* @brief Recalculate group grid size for all gemms and update B2C maps.
* @brief Set new kbatch value.
*
* @param[in] kbatch The new splitK parameter value.
*/
......@@ -364,27 +399,14 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
for(std::size_t i = 0; i < gemm_kernel_args_.size(); ++i)
{
auto& karg = gemm_kernel_args_[i].karg;
const index_t k_padded = GridwiseGemm::CalculateKPadded(karg.K, K_BATCH);
const index_t k0 = GridwiseGemm::CalculateK0(karg.K, K_BATCH);
auto& gemm_arg = gemm_kernel_args_[i];
const auto c_grid_desc_m_n =
GridwiseGemm::MakeCGridDescriptor_M_N(karg.M, karg.N, karg.StrideC);
GridwiseGemm::MakeCGridDescriptor_M_N(gemm_arg.M, gemm_arg.N, gemm_arg.StrideC);
auto local_b2c_tile_map = Block2ETileMapKSplit{c_grid_desc_m_n, B2E_M01, K_BATCH};
const index_t grid_size_grp = local_b2c_tile_map.CalculateGridSize(c_grid_desc_m_n);
const index_t block_start = grid_size_;
const index_t block_end = grid_size_ + grid_size_grp;
grid_size_ += grid_size_grp;
karg.KPadded = k_padded;
karg.K0 = k0;
karg.k_batch = K_BATCH;
gemm_kernel_args_[i].block_start = block_start;
gemm_kernel_args_[i].block_end = block_end;
}
}
......@@ -392,10 +414,10 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
index_t K_BATCH;
index_t group_count_;
index_t skipped_group_count_;
std::vector<GemmTransKernelArg> gemm_kernel_args_;
// The overall number of output tiles to be processed.
index_t grid_size_;
std::vector<KernelArguments> gemm_kernel_args_;
};
// Invoker
......@@ -405,46 +427,42 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
// GPU.
static constexpr int BLOCK_SUBSCRIPTION_FACTOR = 1;
static constexpr int BLOCK_WAVES = BlockSize / get_warp_size();
// assume we want to have at most 2 waves per SIMD
static constexpr int CU_BLOCKS = math::integer_divide_floor(8, BLOCK_WAVES);
struct SimpleGemmArgument
{
const void* p_a_grid;
const void* p_b_grid;
void* p_c_grid;
index_t M;
index_t N;
index_t K;
index_t StrideA;
index_t StrideB;
index_t StrideC;
index_t block_start;
index_t block_end;
};
static constexpr int CU_SIMDS = 4;
// Assume we want to have at most 2 waves per SIMD
static constexpr int CU_BLOCKS = math::integer_divide_floor(2 * CU_SIMDS, BLOCK_WAVES);
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
std::vector<SimpleGemmArgument> simple_gemm_kernel_args;
simple_gemm_kernel_args.reserve(arg.gemm_kernel_args_.size());
index_t K0 = arg.gemm_kernel_args_[0].karg.K0;
bool all_have_kbatch_gt_one = arg.gemm_kernel_args_[0].karg.k_batch > 1;
index_t K0 = GridwiseGemm::CalculateK0(arg.gemm_kernel_args_[0].K, arg.K_BATCH);
bool all_have_kbatch_gt_one = arg.K_BATCH > 1;
bool all_have_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);
for(std::size_t i = 0; i < arg.gemm_kernel_args_.size(); ++i)
{
const auto& karg = arg.gemm_kernel_args_[i].karg;
// if(stream_config.log_level_ > 0)
// {
// karg.Print();
// }
auto kbatch = karg.k_batch;
const auto& gemm_arg = arg.gemm_kernel_args_[i];
if(stream_config.log_level_ > 0)
{
gemm_arg.Print();
}
if(!GridwiseGemm::CheckValidity(karg))
// Currently all groups use same kbatch value.
auto kbatch = arg.K_BATCH;
K0 = GridwiseGemm::CalculateK0(arg.gemm_kernel_args_[i].K, arg.K_BATCH);
if(!GridwiseGemm::CheckValidity(GridwiseGemmArg{nullptr,
nullptr,
nullptr,
gemm_arg.M,
gemm_arg.N,
gemm_arg.K,
gemm_arg.StrideA,
gemm_arg.StrideB,
gemm_arg.StrideC,
0, // MPadded
0, // NPadded
0, // KPadded
K0,
kbatch}))
{
std::ostringstream err;
err << "Group id: " << i << " has invalid GridwiseGemm settings!" << __FILE__
......@@ -452,7 +470,6 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
throw std::runtime_error(err.str());
}
K0 = karg.K0;
bool not_all_have_main_k0_block_loop_same =
all_have_main_k0_block_loop xor GridwiseGemm::CalculateHasMainK0BlockLoop(K0);
bool not_all_have_kbatch_value_same = all_have_kbatch_gt_one xor (kbatch > 1);
......@@ -470,46 +487,42 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
std::ostringstream err;
err << "Not all gemms have same kbatch value (=1 or >1)! "
<< "group [" << i << "], kbatch: " << kbatch
<< ", group [0], kbatch: " << arg.gemm_kernel_args_[0].karg.k_batch
<< " in " << __FILE__ << ":" << __LINE__ << ", in function: " << __func__;
<< ", group [0], kbatch: " << arg.K_BATCH << " in " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
simple_gemm_kernel_args.push_back({karg.p_a_grid,
karg.p_b_grid,
karg.p_c_grid,
karg.M,
karg.N,
karg.K,
karg.StrideA,
karg.StrideB,
karg.StrideC,
arg.gemm_kernel_args_[i].block_start,
arg.gemm_kernel_args_[i].block_end});
}
using GemmArgumentType = SimpleGemmArgument;
hip_check_error(
hipMemcpyWithStream(arg.p_workspace_,
simple_gemm_kernel_args.data(),
simple_gemm_kernel_args.size() * sizeof(GemmArgumentType),
hipMemcpyHostToDevice,
stream_config.stream_id_));
if(arg.p_workspace_ != nullptr)
{
hip_check_error(
hipMemcpyWithStream(arg.p_workspace_,
arg.gemm_kernel_args_.data(),
arg.gemm_kernel_args_.size() * sizeof(KernelArguments),
hipMemcpyHostToDevice,
stream_config.stream_id_));
}
else
{
std::ostringstream err;
err << "The argument workspace buffer is not allocated!"
<< " In " << __FILE__ << ":" << __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
float ave_time = 0;
const auto Run = [&](const auto& kernel) {
if(all_have_kbatch_gt_one)
{
for(const auto& trans_arg : arg.gemm_kernel_args_)
for(const auto& gemm_arg : arg.gemm_kernel_args_)
{
const auto& karg = trans_arg.karg;
hip_check_error(
hipMemset(karg.p_c_grid, 0, karg.M * karg.N * sizeof(EDataType)));
hip_check_error(hipMemset(
gemm_arg.p_c_grid, 0, gemm_arg.M * gemm_arg.N * sizeof(EDataType)));
}
}
// Calculate max number of workgroups that can simultaneously reside on the CU.
int num_blocks = 0;
size_t dyn_shared_mem_per_blk = 0;
hip_check_error(hipOccupancyMaxActiveBlocksPerMultiprocessor(
......@@ -521,7 +534,9 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
{
std::cout << "MaxActiveBlocksPerCU: " << num_blocks
<< ", available CUs count: " << cu_count << ", grid size: "
<< num_blocks * cu_count * BLOCK_SUBSCRIPTION_FACTOR << std::endl;
<< ck::math::min(num_blocks, CU_BLOCKS) * cu_count *
BLOCK_SUBSCRIPTION_FACTOR
<< std::endl;
}
ave_time =
......@@ -533,7 +548,7 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
0,
arg.p_workspace_,
arg.grid_size_,
arg.gemm_kernel_args_[0].karg.k_batch);
arg.K_BATCH);
};
if(all_have_main_k0_block_loop)
......@@ -542,7 +557,7 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
{
const auto kernel =
kernel_grouped_gemm_xdl_splitk<GridwiseGemm,
GemmArgumentType,
KernelArguments,
ADataType,
BDataType,
EDataType,
......@@ -555,7 +570,7 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
{
const auto kernel =
kernel_grouped_gemm_xdl_splitk<GridwiseGemm,
GemmArgumentType,
KernelArguments,
ADataType,
BDataType,
EDataType,
......@@ -571,7 +586,7 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
{
const auto kernel =
kernel_grouped_gemm_xdl_splitk<GridwiseGemm,
GemmArgumentType,
KernelArguments,
ADataType,
BDataType,
EDataType,
......@@ -584,7 +599,7 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
{
const auto kernel =
kernel_grouped_gemm_xdl_splitk<GridwiseGemm,
GemmArgumentType,
KernelArguments,
ADataType,
BDataType,
EDataType,
......@@ -598,7 +613,6 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
......@@ -628,14 +642,28 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
bool supported = true;
for(std::size_t i = 0; i < arg.gemm_kernel_args_.size(); ++i)
{
const auto& a = arg.gemm_kernel_args_[i].karg;
bool group_arg_valid = GridwiseGemm::CheckValidity(a);
const auto& gemm_arg = arg.gemm_kernel_args_[i];
const auto K0 = GridwiseGemm::CalculateK0(gemm_arg.K, arg.K_BATCH);
bool group_arg_valid = GridwiseGemm::CheckValidity(GridwiseGemmArg{nullptr,
nullptr,
nullptr,
gemm_arg.M,
gemm_arg.N,
gemm_arg.K,
gemm_arg.StrideA,
gemm_arg.StrideB,
gemm_arg.StrideC,
0, // MPadded
0, // NPadded
0, // KPadded
K0,
arg.K_BATCH});
if(not group_arg_valid)
{
#if DEBUG_LOG
std::cout << "[" << __func__ << "] group id: " << i
<< " has invalid GridwiseGemm settings!" << std::endl;
a.Print();
gemm_arg.Print();
#endif // DEBUG_LOG
}
supported = supported && group_arg_valid;
......@@ -643,7 +671,6 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
return supported;
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
......@@ -663,7 +690,6 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument>
MakeArgumentPointer(std::vector<const void*>& p_As,
std::vector<const void*>& p_Bs,
......@@ -677,19 +703,17 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
return std::make_unique<Argument>(p_As, p_Bs, p_Es, gemm_descs);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGroupedGemm_XdlSplitK"
str << "DeviceGroupedGemm_XdlSplitKTileLoop"
<< "<"
<< std::string(ALayout::name)[0] << ","
<< std::string(BLayout::name)[0] << ","
......@@ -718,12 +742,11 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
size_t GetWorkSpaceSize(const BaseArgument* p_arg) const override
{
return dynamic_cast<const Argument*>(p_arg)->gemm_kernel_args_.size() *
sizeof(GemmTransKernelArg);
sizeof(KernelArguments);
}
static void SetKBatchSize(Argument& arg, index_t kbatch) { arg.UpdateKBatch(kbatch); }
// polymorphic
void SetKBatchSize(BaseArgument* p_arg, index_t kbatch) const override
{
return SetKBatchSize(*dynamic_cast<Argument*>(p_arg), kbatch);
......
......@@ -269,7 +269,8 @@ struct BlockToCTileMap_KSplit_M00_N0_M01Adapt
{
}
__host__ constexpr index_t CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n) const
__host__ __device__ constexpr index_t
CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n) const
{
const auto M0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I0), MPerBlock);
const auto N0 = math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I1), NPerBlock);
......
......@@ -610,9 +610,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
p_c_grid, c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
// divide block work by [KBatch, M, N]
const auto block_work_idx =
// block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
block_2_ctile_map.CalculateBottomIndex();
const auto block_work_idx = block_2_ctile_map.CalculateBottomIndex();
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment