Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
1ddc3ec7
Unverified
Commit
1ddc3ec7
authored
Aug 31, 2023
by
Rostyslav Geyyer
Committed by
GitHub
Aug 31, 2023
Browse files
Merge branch 'develop' into lwpck-756
parents
e9703d5b
f5ec04f0
Changes
66
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2534 additions
and
13 deletions
+2534
-13
client_example/05_layernorm/layernorm2d.cpp
client_example/05_layernorm/layernorm2d.cpp
+8
-0
client_example/18_groupnorm/groupnorm_swish.cpp
client_example/18_groupnorm/groupnorm_swish.cpp
+8
-0
client_example/19_pool/CMakeLists.txt
client_example/19_pool/CMakeLists.txt
+11
-0
client_example/19_pool/avg_pool3d_bwd.cpp
client_example/19_pool/avg_pool3d_bwd.cpp
+191
-0
client_example/19_pool/avg_pool3d_fwd.cpp
client_example/19_pool/avg_pool3d_fwd.cpp
+0
-0
client_example/19_pool/max_pool2d_bwd.cpp
client_example/19_pool/max_pool2d_bwd.cpp
+280
-0
client_example/19_pool/max_pool2d_fwd.cpp
client_example/19_pool/max_pool2d_fwd.cpp
+0
-0
client_example/21_grouped_gemm_bias/CMakeLists.txt
client_example/21_grouped_gemm_bias/CMakeLists.txt
+2
-0
client_example/21_grouped_gemm_bias/grouped_gemm_fixed_nk_bias_fp16.cpp
.../21_grouped_gemm_bias/grouped_gemm_fixed_nk_bias_fp16.cpp
+244
-0
example/15_grouped_gemm/CMakeLists.txt
example/15_grouped_gemm/CMakeLists.txt
+6
-1
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_bias_fp16.cpp
...e/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_bias_fp16.cpp
+353
-0
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
+329
-0
example/49_maxpool2d_bwd/maxpool2d_bwd_common.hpp
example/49_maxpool2d_bwd/maxpool2d_bwd_common.hpp
+4
-3
include/ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp
...sor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp
+63
-0
include/ck/tensor_operation/gpu/device/device_max_pool_bwd.hpp
...de/ck/tensor_operation/gpu/device/device_max_pool_bwd.hpp
+3
-2
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp
...tion/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp
+836
-0
include/ck/tensor_operation/gpu/device/impl/device_max_pool_bwd_impl.hpp
...or_operation/gpu/device/impl/device_max_pool_bwd_impl.hpp
+15
-6
include/ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp
...r_operation/gpu/element/binary_element_wise_operation.hpp
+7
-0
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
+2
-1
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp
...ration/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp
+172
-0
No files found.
client_example/05_layernorm/layernorm2d.cpp
View file @
1ddc3ec7
...
@@ -100,6 +100,10 @@ int main(int argc, char* argv[])
...
@@ -100,6 +100,10 @@ int main(int argc, char* argv[])
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_byte
=
sizeof
(
XDataType
)
*
M
*
N
+
sizeof
(
GammaDataType
)
*
N
+
std
::
size_t
num_byte
=
sizeof
(
XDataType
)
*
M
*
N
+
sizeof
(
GammaDataType
)
*
N
+
...
@@ -153,6 +157,10 @@ int main(int argc, char* argv[])
...
@@ -153,6 +157,10 @@ int main(int argc, char* argv[])
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
}
...
...
client_example/18_groupnorm/groupnorm_swish.cpp
View file @
1ddc3ec7
...
@@ -129,6 +129,10 @@ int main(int argc, char* argv[])
...
@@ -129,6 +129,10 @@ int main(int argc, char* argv[])
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_byte
=
std
::
size_t
num_byte
=
...
@@ -184,6 +188,10 @@ int main(int argc, char* argv[])
...
@@ -184,6 +188,10 @@ int main(int argc, char* argv[])
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
}
...
...
client_example/19_pool
_fwd
/CMakeLists.txt
→
client_example/19_pool/CMakeLists.txt
View file @
1ddc3ec7
add_executable
(
client_max_pool2d_fwd max_pool2d_fwd.cpp
)
add_executable
(
client_max_pool2d_fwd max_pool2d_fwd.cpp
)
target_link_libraries
(
client_max_pool2d_fwd PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_max_pool2d_fwd PRIVATE composable_kernel::device_operations
)
add_executable
(
client_max_pool2d_bwd max_pool2d_bwd.cpp
)
target_link_libraries
(
client_max_pool2d_bwd PRIVATE composable_kernel::device_operations
)
add_executable
(
client_avg_pool3d_fwd avg_pool3d_fwd.cpp
)
add_executable
(
client_avg_pool3d_fwd avg_pool3d_fwd.cpp
)
target_link_libraries
(
client_avg_pool3d_fwd PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_avg_pool3d_fwd PRIVATE composable_kernel::device_operations
)
add_executable
(
client_avg_pool3d_bwd avg_pool3d_bwd.cpp
)
target_link_libraries
(
client_avg_pool3d_bwd PRIVATE composable_kernel::device_operations
)
client_example/19_pool/avg_pool3d_bwd.cpp
0 → 100644
View file @
1ddc3ec7
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/avg_pool3d_bwd.hpp"
using
DOutDataType
=
ck
::
half_t
;
using
DInDataType
=
ck
::
half_t
;
using
DOutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWC
;
using
DInLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWC
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{},
mMemSize_
(
mem_size
)
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
void
SetZero
()
const
{
(
void
)
hipMemset
(
p_mem_
,
0
,
mMemSize_
);
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
std
::
size_t
mMemSize_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
index_t
N
=
2
;
ck
::
index_t
C
=
32
;
ck
::
index_t
Z
=
2
;
ck
::
index_t
Y
=
2
;
ck
::
index_t
X
=
2
;
ck
::
index_t
Di
=
30
;
ck
::
index_t
Hi
=
30
;
ck
::
index_t
Wi
=
30
;
ck
::
index_t
window_stride_d
=
2
;
ck
::
index_t
window_stride_h
=
2
;
ck
::
index_t
window_stride_w
=
2
;
ck
::
index_t
window_dilation_d
=
1
;
ck
::
index_t
window_dilation_h
=
1
;
ck
::
index_t
window_dilation_w
=
1
;
ck
::
index_t
in_left_pad_d
=
1
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_d
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
const
ck
::
index_t
Zs
=
(
Z
-
1
)
*
window_dilation_d
+
1
;
const
ck
::
index_t
Ys
=
(
Y
-
1
)
*
window_dilation_h
+
1
;
const
ck
::
index_t
Xs
=
(
X
-
1
)
*
window_dilation_w
+
1
;
ck
::
index_t
Do
=
(
Di
+
in_left_pad_d
+
in_right_pad_d
-
Zs
)
/
window_stride_d
+
1
;
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
Ys
)
/
window_stride_h
+
1
;
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
Xs
)
/
window_stride_w
+
1
;
// Pool API only support the order of NCDHW
std
::
vector
<
ck
::
index_t
>
in_length
=
{
N
,
C
,
Di
,
Hi
,
Wi
};
std
::
vector
<
ck
::
index_t
>
out_length
=
{
N
,
C
,
Do
,
Ho
,
Wo
};
std
::
vector
<
ck
::
index_t
>
window_spatial_lengths
=
{
Z
,
Y
,
X
};
std
::
vector
<
ck
::
index_t
>
window_strides
=
{
window_stride_d
,
window_stride_h
,
window_stride_w
};
std
::
vector
<
ck
::
index_t
>
window_dilations
{
window_dilation_d
,
window_dilation_h
,
window_dilation_w
};
std
::
vector
<
ck
::
index_t
>
input_left_pads
=
{
in_left_pad_d
,
in_left_pad_h
,
in_left_pad_w
};
std
::
vector
<
ck
::
index_t
>
input_right_pads
=
{
in_right_pad_d
,
in_right_pad_h
,
in_right_pad_w
};
std
::
size_t
in_tensor_size
=
N
*
C
*
Di
*
Hi
*
Wi
;
std
::
size_t
out_tensor_size
=
N
*
C
*
Do
*
Ho
*
Wo
;
// tensor layout = NDHWC
std
::
vector
<
ck
::
index_t
>
in_tensor_stride
=
{
Di
*
C
*
Hi
*
Wi
,
1
,
C
*
Hi
*
Wi
,
Wi
*
C
,
C
};
std
::
vector
<
ck
::
index_t
>
out_tensor_stride
=
{
Do
*
C
*
Ho
*
Wo
,
1
,
C
*
Ho
*
Wo
,
Wo
*
C
,
C
};
SimpleDeviceMem
dout_device_buf
(
sizeof
(
DOutDataType
)
*
out_tensor_size
);
SimpleDeviceMem
din_device_buf
(
sizeof
(
DInDataType
)
*
in_tensor_size
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceAvgPoolBwd
<
3
,
DOutDataType
,
DInDataType
,
DOutLayout
,
DInLayout
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
DOutDataType
*>
(
dout_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DInDataType
*>
(
din_device_buf
.
GetDeviceBuffer
()),
out_length
,
in_length
,
out_tensor_stride
,
in_tensor_stride
,
window_spatial_lengths
,
window_strides
,
window_dilations
,
input_left_pads
,
input_right_pads
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
din_device_buf
.
SetZero
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_bytes
=
in_tensor_size
*
sizeof
(
DInDataType
)
+
out_tensor_size
*
sizeof
(
DOutDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
// run the best intance
if
(
found
)
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
DOutDataType
*>
(
dout_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DInDataType
*>
(
din_device_buf
.
GetDeviceBuffer
()),
out_length
,
in_length
,
out_tensor_stride
,
in_tensor_stride
,
window_spatial_lengths
,
window_strides
,
window_dilations
,
input_left_pads
,
input_right_pads
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
din_device_buf
.
SetZero
();
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/19_pool
_fwd
/avg_pool3d_fwd.cpp
→
client_example/19_pool/avg_pool3d_fwd.cpp
View file @
1ddc3ec7
File moved
client_example/19_pool/max_pool2d_bwd.cpp
0 → 100644
View file @
1ddc3ec7
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_pool_fwd.hpp"
#include "ck/tensor_operation/gpu/device/device_max_pool_bwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/pool3d_fwd.hpp"
#include "ck/library/tensor_operation_instance/gpu/max_pool_bwd.hpp"
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
DOutDataType
=
ck
::
half_t
;
using
DInDataType
=
ck
::
half_t
;
using
IndexDataType
=
int32_t
;
// We use pool3d to implement pool2d in this example
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWC
;
constexpr
ck
::
index_t
InOutRank
=
5
;
constexpr
ck
::
index_t
WindowRank
=
3
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
void
TransformPool2dparamToPool3d
(
std
::
vector
<
ck
::
index_t
>&
input_lengths
,
std
::
vector
<
ck
::
index_t
>&
window_lengths
,
std
::
vector
<
ck
::
index_t
>&
output_lengths
,
std
::
vector
<
ck
::
index_t
>&
input_stride
,
std
::
vector
<
ck
::
index_t
>&
output_stride
,
std
::
vector
<
ck
::
index_t
>&
indices_stride
,
std
::
vector
<
ck
::
index_t
>&
window_strides
,
std
::
vector
<
ck
::
index_t
>&
window_dilations
,
std
::
vector
<
ck
::
index_t
>&
input_left_pads
,
std
::
vector
<
ck
::
index_t
>&
input_right_pads
,
std
::
vector
<
ck
::
index_t
>&
pooling_dims
)
{
// NCHW to NCDHW
input_lengths
.
insert
(
input_lengths
.
begin
()
+
2
,
1
);
output_lengths
.
insert
(
output_lengths
.
begin
()
+
2
,
1
);
input_stride
.
insert
(
input_stride
.
begin
()
+
2
,
0
);
output_stride
.
insert
(
output_stride
.
begin
()
+
2
,
0
);
indices_stride
.
insert
(
indices_stride
.
begin
()
+
2
,
0
);
// YX to ZYX
window_lengths
.
insert
(
window_lengths
.
begin
(),
1
);
window_strides
.
insert
(
window_strides
.
begin
(),
0
);
window_dilations
.
insert
(
window_dilations
.
begin
(),
0
);
input_left_pads
.
insert
(
input_left_pads
.
begin
(),
0
);
input_right_pads
.
insert
(
input_right_pads
.
begin
(),
0
);
pooling_dims
=
{
2
,
3
,
4
};
}
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
index_t
N
=
2
;
ck
::
index_t
C
=
32
;
ck
::
index_t
Y
=
2
;
ck
::
index_t
X
=
2
;
ck
::
index_t
Hi
=
30
;
ck
::
index_t
Wi
=
30
;
ck
::
index_t
window_stride_h
=
2
;
ck
::
index_t
window_stride_w
=
2
;
ck
::
index_t
window_dilation_h
=
1
;
ck
::
index_t
window_dilation_w
=
1
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
const
ck
::
index_t
Ys
=
(
Y
-
1
)
*
window_dilation_h
+
1
;
const
ck
::
index_t
Xs
=
(
X
-
1
)
*
window_dilation_w
+
1
;
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
Ys
)
/
window_stride_h
+
1
;
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
Xs
)
/
window_stride_w
+
1
;
// Pool API only support the order of NCHW
std
::
vector
<
ck
::
index_t
>
in_length
=
{
N
,
C
,
Hi
,
Wi
};
std
::
vector
<
ck
::
index_t
>
out_length
=
{
N
,
C
,
Ho
,
Wo
};
std
::
vector
<
ck
::
index_t
>
window_spatial_lengths
=
{
Y
,
X
};
std
::
vector
<
ck
::
index_t
>
window_strides
=
{
window_stride_h
,
window_stride_w
};
std
::
vector
<
ck
::
index_t
>
window_dilations
=
{
window_dilation_h
,
window_dilation_w
};
std
::
vector
<
ck
::
index_t
>
input_left_pads
=
{
in_left_pad_h
,
in_left_pad_w
};
std
::
vector
<
ck
::
index_t
>
input_right_pads
=
{
in_right_pad_h
,
in_right_pad_w
};
std
::
vector
<
ck
::
index_t
>
pooling_dims
=
{
2
,
3
};
std
::
size_t
in_tensor_size
=
N
*
C
*
Hi
*
Wi
;
std
::
size_t
out_tensor_size
=
N
*
C
*
Ho
*
Wo
;
// tensor layout = NHWC
std
::
vector
<
ck
::
index_t
>
in_tensor_stride
=
{
C
*
Hi
*
Wi
,
1
,
Wi
*
C
,
C
};
std
::
vector
<
ck
::
index_t
>
out_tensor_stride
=
{
C
*
Ho
*
Wo
,
1
,
Wo
*
C
,
C
};
TransformPool2dparamToPool3d
(
in_length
,
window_spatial_lengths
,
out_length
,
in_tensor_stride
,
out_tensor_stride
,
out_tensor_stride
,
window_strides
,
window_dilations
,
input_left_pads
,
input_right_pads
,
pooling_dims
);
SimpleDeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_tensor_size
);
SimpleDeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_tensor_size
);
SimpleDeviceMem
indices_device_buf
(
sizeof
(
IndexDataType
)
*
out_tensor_size
);
SimpleDeviceMem
dout_device_buf
(
sizeof
(
DOutDataType
)
*
out_tensor_size
);
SimpleDeviceMem
din_device_buf
(
sizeof
(
DInDataType
)
*
in_tensor_size
);
// Generate index data from max pool forward
{
using
MaxPoolFwdDeviceOp
=
ck
::
tensor_operation
::
device
::
DevicePoolFwd
<
InOutRank
,
WindowRank
,
InDataType
,
OutDataType
,
IndexDataType
,
InLayout
,
OutLayout
,
ck
::
ReduceTensorOp
::
MAX
,
true
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
MaxPoolFwdDeviceOp
>::
GetInstances
();
auto
&
op_ptr
=
op_ptrs
[
0
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
indices_device_buf
.
GetDeviceBuffer
()),
in_length
,
window_spatial_lengths
,
out_length
,
in_tensor_stride
,
out_tensor_stride
,
out_tensor_stride
,
window_strides
,
window_dilations
,
input_left_pads
,
input_right_pads
,
pooling_dims
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
}
// Run MaxPool bwd
using
MaxPoolBwdDeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceMaxPoolBwd
<
DOutDataType
,
IndexDataType
,
DInDataType
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
MaxPoolBwdDeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
dout_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
indices_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DInDataType
*>
(
din_device_buf
.
GetDeviceBuffer
()),
out_tensor_size
,
in_tensor_size
,
window_spatial_lengths
,
window_strides
,
window_dilations
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_bytes
=
in_tensor_size
*
sizeof
(
DInDataType
)
+
out_tensor_size
*
sizeof
(
IndexDataType
)
+
out_tensor_size
*
sizeof
(
DOutDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
"GB / s,"
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
// run the best intance
if
(
found
)
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
dout_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
indices_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DInDataType
*>
(
din_device_buf
.
GetDeviceBuffer
()),
out_tensor_size
,
in_tensor_size
,
window_spatial_lengths
,
window_strides
,
window_dilations
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/19_pool
_fwd
/max_pool2d_fwd.cpp
→
client_example/19_pool/max_pool2d_fwd.cpp
View file @
1ddc3ec7
File moved
client_example/21_grouped_gemm_bias/CMakeLists.txt
0 → 100644
View file @
1ddc3ec7
add_executable
(
client_grouped_gemm_fixed_nk_bias_fp16 grouped_gemm_fixed_nk_bias_fp16.cpp
)
target_link_libraries
(
client_grouped_gemm_fixed_nk_bias_fp16 PRIVATE composable_kernel::device_operations
)
client_example/21_grouped_gemm_bias/grouped_gemm_fixed_nk_bias_fp16.cpp
0 → 100644
View file @
1ddc3ec7
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include <random>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_bias.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
D0DataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
>
;
using
EDataType
=
F32
;
using
ALayout
=
Row
;
using
BLayout
=
Row
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Add
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
()
{
std
::
vector
<
int
>
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideEs
;
int
sum_of_m
=
0
;
Ms
=
{
167
,
183
,
177
,
181
,
153
,
139
,
156
,
173
,
163
,
150
,
204
,
184
,
168
,
156
,
168
,
148
};
int
group_count
=
Ms
.
size
();
for
(
int
i
=
0
;
i
<
group_count
;
++
i
)
{
Ns
.
push_back
(
768
);
Ks
.
push_back
(
4608
);
StrideAs
.
push_back
(
std
::
is_same
<
Row
,
ALayout
>::
value
?
Ks
[
i
]
:
Ms
[
i
]);
StrideBs
.
push_back
(
std
::
is_same
<
Row
,
BLayout
>::
value
?
Ns
[
i
]
:
Ks
[
i
]);
StrideEs
.
push_back
(
std
::
is_same
<
Row
,
ELayout
>::
value
?
Ns
[
i
]
:
Ms
[
i
]);
sum_of_m
+=
Ms
[
i
];
}
auto
f_matrix_space_size
=
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
else
{
return
(
nCol
-
1
)
*
stride
+
nRow
;
}
};
std
::
vector
<
SimpleDeviceMem
>
a_dev_bufs
,
b_dev_bufs
,
d0_dev_bufs
,
e_dev_bufs
;
a_dev_bufs
.
reserve
(
group_count
);
b_dev_bufs
.
reserve
(
group_count
);
d0_dev_bufs
.
reserve
(
group_count
);
e_dev_bufs
.
reserve
(
group_count
);
std
::
vector
<
void
*>
p_e
;
p_e
.
reserve
(
group_count
);
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
gemm_descs
.
reserve
(
group_count
);
std
::
vector
<
ck
::
tensor_operation
::
device
::
GroupedGemmKernelArgument
<
1
>>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
++
i
)
{
a_dev_bufs
.
emplace_back
(
sizeof
(
ADataType
)
*
f_matrix_space_size
(
Ms
[
i
],
Ks
[
i
],
StrideAs
[
i
],
ALayout
{}));
b_dev_bufs
.
emplace_back
(
sizeof
(
BDataType
)
*
f_matrix_space_size
(
Ks
[
i
],
Ns
[
i
],
StrideBs
[
i
],
BLayout
{}));
d0_dev_bufs
.
emplace_back
(
sizeof
(
D0DataType
)
*
f_matrix_space_size
(
Ms
[
i
],
Ns
[
i
],
0
,
D0Layout
{}));
e_dev_bufs
.
emplace_back
(
sizeof
(
EDataType
)
*
f_matrix_space_size
(
Ms
[
i
],
Ns
[
i
],
StrideEs
[
i
],
ELayout
{}));
gemm_descs
.
push_back
({
sum_of_m
,
Ns
[
i
],
Ks
[
i
],
1
,
StrideBs
[
i
],
1
,
{
0
}});
p_e
.
push_back
(
e_dev_bufs
[
i
].
GetDeviceBuffer
());
grouped_gemm_kernel_args_
.
push_back
(
{
a_dev_bufs
[
i
].
GetDeviceBuffer
(),
b_dev_bufs
[
i
].
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d0_dev_bufs
[
i
].
GetDeviceBuffer
()},
e_dev_bufs
[
i
].
GetDeviceBuffer
(),
Ms
[
i
],
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
std
::
array
<
ck
::
index_t
,
1
>
{
0
},
StrideEs
[
i
]});
}
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmFixedNK
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{};
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
std
::
vector
<
const
void
*>
p_a
=
{},
p_b
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
1
>>
p_ds
=
{};
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
p_a
,
p_b
,
p_ds
,
p_e
,
gemm_descs
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
SimpleDeviceMem
grouped_gemm_kernel_args_dev
(
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()));
SimpleDeviceMem
grouped_gemm_workspace_dev
(
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
()));
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
hipGetErrorString
(
hipMemcpy
(
grouped_gemm_kernel_args_dev
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()),
hipMemcpyHostToDevice
));
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
grouped_gemm_workspace_dev
.
GetDeviceBuffer
());
op_ptr
->
SetDeviceKernelArgs
(
argument_ptr
.
get
(),
grouped_gemm_kernel_args_dev
.
GetDeviceBuffer
());
op_ptr
->
SetKBatch
(
argument_ptr
.
get
(),
2
);
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
j
=
0
;
j
<
gemm_descs
.
size
();
++
j
)
{
flop
+=
std
::
size_t
(
2
)
*
Ms
[
j
]
*
Ns
[
j
]
*
Ks
[
j
];
num_btype
+=
sizeof
(
ADataType
)
*
Ms
[
j
]
*
Ks
[
j
]
+
sizeof
(
BDataType
)
*
Ks
[
j
]
*
Ns
[
j
]
+
sizeof
(
EDataType
)
*
Ms
[
j
]
*
Ns
[
j
];
}
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
0
;
}
example/15_grouped_gemm/CMakeLists.txt
View file @
1ddc3ec7
add_custom_target
(
example_grouped_gemm_xdl
)
add_custom_target
(
example_grouped_gemm_xdl
)
if
(
DTYPES MATCHES
"fp32"
OR NOT DEFINED DTYPES
)
if
(
DTYPES MATCHES
"fp32"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_grouped_gemm_xdl_fp32 grouped_gemm_xdl_fp32.cpp
)
add_example_executable
(
example_grouped_gemm_xdl_fp32 grouped_gemm_xdl_fp32.cpp
)
add_dependencies
(
example_grouped_gemm_xdl example_grouped_gemm_xdl_fp32
)
add_dependencies
(
example_grouped_gemm_xdl example_grouped_gemm_xdl_fp32
)
...
@@ -7,10 +8,14 @@ if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
...
@@ -7,10 +8,14 @@ if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
add_example_executable
(
example_grouped_gemm_xdl_fp16 grouped_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_xdl_fp16 grouped_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_multiple_d_dl_fp16 grouped_gemm_multiple_d_dl_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_multiple_d_dl_fp16 grouped_gemm_multiple_d_dl_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_xdl_splitk_fp16 grouped_gemm_xdl_splitk_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_xdl_splitk_fp16 grouped_gemm_xdl_splitk_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_xdl_fixed_nk_fp16 grouped_gemm_xdl_fixed_nk_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_xdl_fixed_nk_bias_fp16 grouped_gemm_xdl_fixed_nk_bias_fp16.cpp
)
add_dependencies
(
example_grouped_gemm_xdl
add_dependencies
(
example_grouped_gemm_xdl
example_grouped_gemm_xdl_fp16
example_grouped_gemm_xdl_fp16
example_grouped_gemm_multiple_d_dl_fp16
example_grouped_gemm_multiple_d_dl_fp16
example_grouped_gemm_xdl_splitk_fp16
)
example_grouped_gemm_xdl_splitk_fp16
example_grouped_gemm_xdl_fixed_nk_fp16
example_grouped_gemm_xdl_fixed_nk_bias_fp16
)
endif
()
endif
()
if
(
DTYPES MATCHES
"bf16"
OR NOT DEFINED DTYPES
)
if
(
DTYPES MATCHES
"bf16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_grouped_gemm_xdl_bfp16 grouped_gemm_xdl_bfp16.cpp
)
add_example_executable
(
example_grouped_gemm_xdl_bfp16 grouped_gemm_xdl_bfp16.cpp
)
...
...
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_bias_fp16.cpp
0 → 100644
View file @
1ddc3ec7
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
>
;
using
EDataType
=
F32
;
using
ALayout
=
Row
;
using
BLayout
=
Row
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Add
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MPadding
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm_Xdl_Fixed_NK
// clang-format off
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
128
,
16
,
128
,
32
,
8
,
8
,
16
,
16
,
1
,
4
,
S
<
1
,
4
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
>
;
// clang-format on
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
k_batch
=
1
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
auto
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
gemm_descs
.
reserve
(
group_count
);
int
sum_of_m
=
0
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
D0DataType
>>
d0_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_host_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_device_tensors
;
a_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
d0_tensors
.
reserve
(
group_count
);
c_host_tensors
.
reserve
(
group_count
);
c_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
d0_tensors_device
,
c_tensors_device
;
a_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
d0_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
sum_of_m
+=
problem_size
.
Ms
[
i
];
a_tensors
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
ALayout
{})));
b_tensors
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ks
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Bs
[
i
],
BLayout
{})));
d0_tensors
.
push_back
(
Tensor
<
D0DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
0
,
ELayout
{})));
c_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
c_device_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" d_m_n: "
<<
d0_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
c_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
problem_size
.
Ms
[
i
]
*
problem_size
.
Ks
[
i
]
*
problem_size
.
Ns
[
i
];
num_btype
+=
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
D0DataType
)
*
d0_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
EDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
d0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmKernelArgument
<
1
>
;
std
::
vector
<
GroupedGemmKernelArgument
>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
sum_of_m
*
problem_size
.
Ks
[
i
]));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
problem_size
.
Ns
[
i
]
*
problem_size
.
Ks
[
i
]));
d0_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
D0DataType
)
*
problem_size
.
Ns
[
i
]));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
i
]));
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
].
mData
.
data
(),
a_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
ADataType
));
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
(),
b_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
BDataType
));
d0_tensors_device
[
i
]
->
ToDevice
(
d0_tensors
[
i
].
mData
.
data
());
c_tensors_device
[
i
]
->
SetZero
();
gemm_descs
.
push_back
({
sum_of_m
,
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
1
,
problem_size
.
stride_Bs
[
i
],
1
,
{
0
}});
grouped_gemm_kernel_args_
.
push_back
(
{
a_tensors_device
[
i
]
->
GetDeviceBuffer
(),
b_tensors_device
[
i
]
->
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d0_tensors_device
[
i
]
->
GetDeviceBuffer
()},
c_tensors_device
[
i
]
->
GetDeviceBuffer
(),
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
problem_size
.
stride_Bs
[
i
],
std
::
array
<
ck
::
index_t
,
1
>
{
0
},
problem_size
.
stride_Cs
[
i
]});
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
std
::
vector
<
const
void
*>
p_As
=
{};
std
::
vector
<
const
void
*>
p_Bs
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
1
>>
p_Ds
=
{};
std
::
vector
<
void
*>
p_Cs
=
{};
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
DeviceMem
gemm_workspace_dev
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_workspace_dev
.
GetDeviceBuffer
());
DeviceMem
gemm_kernel_args_dev
(
gemm
.
GetDeviceKernelArgSize
(
&
argument
));
hip_check_error
(
hipMemcpy
(
gemm_kernel_args_dev
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
gemm
.
GetDeviceKernelArgSize
(
&
argument
),
hipMemcpyHostToDevice
));
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_kernel_args_dev
.
GetDeviceBuffer
());
gemm
.
SetKBatch
(
argument
,
config
.
k_batch
);
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
if
(
config
.
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
c_tensors_device
[
i
]
->
FromDevice
(
c_device_tensors
[
i
].
mData
.
data
(),
c_device_tensors
[
i
].
mDesc
.
GetElementSize
()
*
sizeof
(
EDataType
));
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
c_host_tensors
[
i
],
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
problem_size
.
Ms
[
i
];
++
m
)
{
for
(
int
n
=
0
;
n
<
problem_size
.
Ns
[
i
];
++
n
)
{
cde_element_op
(
c_host_tensors
[
i
](
m
,
n
),
c_host_tensors
[
i
](
m
,
n
),
d0_tensors
[
i
](
m
,
n
));
}
}
pass
&=
ck
::
utils
::
check_err
(
c_device_tensors
[
i
],
c_host_tensors
[
i
]);
}
}
return
pass
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
problem_size
.
group_count
=
16
;
problem_size
.
Ms
=
{
0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
0
};
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
problem_size
.
Ns
.
push_back
(
768
);
problem_size
.
Ks
.
push_back
(
4608
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ns
[
i
]);
problem_size
.
stride_Cs
.
push_back
(
problem_size
.
Ns
[
i
]);
}
if
(
argc
==
5
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
config
.
k_batch
=
std
::
stoi
(
argv
[
4
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4: k_batch (>0)
\n
"
);
exit
(
0
);
}
return
!
run_grouped_gemm
(
problem_size
,
config
);
}
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
0 → 100644
View file @
1ddc3ec7
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F32
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm_Xdl_Fixed_NK
// clang-format off
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
;
// clang-format on
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
int
k_batch
=
1
;
bool
time_kernel
=
false
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
auto
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
std
::
vector
<
void
*>
p_Cs
;
gemm_descs
.
reserve
(
group_count
);
int
sum_of_m
=
0
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_host_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_device_tensors
;
a_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
c_host_tensors
.
reserve
(
group_count
);
c_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
c_tensors_device
;
a_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
sum_of_m
+=
problem_size
.
Ms
[
i
];
a_tensors
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
ALayout
{})));
b_tensors
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ks
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Bs
[
i
],
BLayout
{})));
c_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
c_device_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
c_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
problem_size
.
Ms
[
i
]
*
problem_size
.
Ks
[
i
]
*
problem_size
.
Ns
[
i
];
num_btype
+=
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
EDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
}
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmKernelArgument
<>
;
std
::
vector
<
GroupedGemmKernelArgument
>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
sum_of_m
*
problem_size
.
Ks
[
i
]));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
problem_size
.
Ns
[
i
]
*
problem_size
.
Ks
[
i
]));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
i
]));
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
].
mData
.
data
(),
a_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
ADataType
));
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
(),
b_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
BDataType
));
c_tensors_device
[
i
]
->
SetZero
();
p_Cs
.
push_back
(
c_tensors_device
[
i
]
->
GetDeviceBuffer
());
gemm_descs
.
push_back
({
sum_of_m
,
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
1
,
problem_size
.
stride_Bs
[
i
],
1
,
{}});
grouped_gemm_kernel_args_
.
push_back
({
a_tensors_device
[
i
]
->
GetDeviceBuffer
(),
b_tensors_device
[
i
]
->
GetDeviceBuffer
(),
{},
c_tensors_device
[
i
]
->
GetDeviceBuffer
(),
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
problem_size
.
stride_Bs
[
i
],
{},
problem_size
.
stride_Cs
[
i
]});
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
std
::
vector
<
const
void
*>
p_As
=
{};
std
::
vector
<
const
void
*>
p_Bs
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
p_Ds
=
{};
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
DeviceMem
gemm_arg_dev_mem
(
gemm
.
GetDeviceKernelArgSize
(
&
argument
));
DeviceMem
gemm_workspace_dev
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_workspace_dev
.
GetDeviceBuffer
());
hip_check_error
(
hipMemcpy
(
gemm_arg_dev_mem
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
gemm
.
GetDeviceKernelArgSize
(
&
argument
),
hipMemcpyHostToDevice
));
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
gemm
.
SetKBatch
(
argument
,
config
.
k_batch
);
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
if
(
config
.
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
c_tensors_device
[
i
]
->
FromDevice
(
c_device_tensors
[
i
].
mData
.
data
(),
c_device_tensors
[
i
].
mDesc
.
GetElementSize
()
*
sizeof
(
EDataType
));
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
c_host_tensors
[
i
],
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
pass
&=
ck
::
utils
::
check_err
(
c_device_tensors
[
i
],
c_host_tensors
[
i
]);
}
}
return
pass
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
problem_size
.
group_count
=
16
;
problem_size
.
Ms
=
{
167
,
183
,
177
,
181
,
153
,
139
,
156
,
173
,
163
,
150
,
204
,
184
,
168
,
156
,
168
,
148
};
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
problem_size
.
Ns
.
push_back
(
768
);
problem_size
.
Ks
.
push_back
(
4608
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Cs
.
push_back
(
problem_size
.
Ns
[
i
]);
}
if
(
argc
==
5
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
config
.
k_batch
=
std
::
stoi
(
argv
[
4
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4: k_batch (> 0)
\n
"
);
exit
(
0
);
}
return
!
run_grouped_gemm
(
problem_size
,
config
);
}
example/49_maxpool2d_bwd/maxpool2d_bwd_common.hpp
View file @
1ddc3ec7
...
@@ -8,7 +8,7 @@
...
@@ -8,7 +8,7 @@
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_
inde
x_pool_bwd_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_
ma
x_pool_bwd_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
...
@@ -60,7 +60,7 @@ bool maxpool_bwd_test(bool do_verification,
...
@@ -60,7 +60,7 @@ bool maxpool_bwd_test(bool do_verification,
1
>
;
// InSrcOutDstVectorSize
1
>
;
// InSrcOutDstVectorSize
using
DeviceMaxPoolBwdInstance
=
ck
::
tensor_operation
::
device
::
using
DeviceMaxPoolBwdInstance
=
ck
::
tensor_operation
::
device
::
Device
Inde
xPoolBwdImpl
<
DOutDataType
,
IndexDataType
,
DInDataType
,
4
>
;
Device
Ma
xPoolBwdImpl
<
DOutDataType
,
IndexDataType
,
DInDataType
,
4
>
;
const
ck
::
index_t
Ys
=
(
Y
-
1
)
*
window_dilation_h
+
1
;
const
ck
::
index_t
Ys
=
(
Y
-
1
)
*
window_dilation_h
+
1
;
const
ck
::
index_t
Xs
=
(
X
-
1
)
*
window_dilation_w
+
1
;
const
ck
::
index_t
Xs
=
(
X
-
1
)
*
window_dilation_w
+
1
;
...
@@ -155,7 +155,8 @@ bool maxpool_bwd_test(bool do_verification,
...
@@ -155,7 +155,8 @@ bool maxpool_bwd_test(bool do_verification,
dout_n_c_ho_wo
.
mDesc
.
GetElementSpaceSize
(),
dout_n_c_ho_wo
.
mDesc
.
GetElementSpaceSize
(),
din_n_c_hi_wi_device
.
mDesc
.
GetElementSpaceSize
(),
din_n_c_hi_wi_device
.
mDesc
.
GetElementSpaceSize
(),
window_spatial_lengths
,
window_spatial_lengths
,
window_strides
);
window_strides
,
window_dilations
);
if
(
!
pool_bwd
.
IsSupportedArgument
(
pool_bwd_argument_ptr
.
get
()))
if
(
!
pool_bwd
.
IsSupportedArgument
(
pool_bwd_argument_ptr
.
get
()))
{
{
...
...
include/ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp
0 → 100644
View file @
1ddc3ec7
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <array>
#include "device_grouped_gemm.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
index_t
NumDTensor
=
0
>
struct
GroupedGemmKernelArgument
{
const
void
*
p_a_grid
;
const
void
*
p_b_grid
;
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
;
void
*
p_e_grid
;
index_t
M
;
index_t
N
;
index_t
K
;
index_t
StrideA
;
index_t
StrideB
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
;
index_t
StrideE
;
};
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
DeviceGroupedGemmFixedNK
:
DeviceGroupedGemm
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
virtual
void
SetDeviceKernelArgs
(
BaseArgument
*
p_arg
,
const
void
*
kernel_args
)
const
=
0
;
virtual
size_t
GetDeviceKernelArgSize
(
const
BaseArgument
*
p_arg
)
const
=
0
;
virtual
void
SetKBatch
(
BaseArgument
*
p_arg
,
index_t
k_batch
)
const
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_
inde
x_pool_bwd.hpp
→
include/ck/tensor_operation/gpu/device/device_
ma
x_pool_bwd.hpp
View file @
1ddc3ec7
...
@@ -13,7 +13,7 @@ namespace device {
...
@@ -13,7 +13,7 @@ namespace device {
// For pooling which used indexable operation, such as MaxPool, MinPool...etc
// For pooling which used indexable operation, such as MaxPool, MinPool...etc
template
<
typename
DOutDataType
,
typename
IndexDataType
,
typename
DInDataType
>
template
<
typename
DOutDataType
,
typename
IndexDataType
,
typename
DInDataType
>
struct
Device
Inde
xPoolBwd
:
public
BaseOperator
struct
Device
Ma
xPoolBwd
:
public
BaseOperator
{
{
virtual
std
::
unique_ptr
<
BaseArgument
>
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_dout
,
MakeArgumentPointer
(
const
void
*
p_dout
,
...
@@ -22,7 +22,8 @@ struct DeviceIndexPoolBwd : public BaseOperator
...
@@ -22,7 +22,8 @@ struct DeviceIndexPoolBwd : public BaseOperator
index_t
dout_length
,
index_t
dout_length
,
index_t
din_length
,
index_t
din_length
,
std
::
vector
<
ck
::
index_t
>
window_lengths
,
std
::
vector
<
ck
::
index_t
>
window_lengths
,
std
::
vector
<
ck
::
index_t
>
window_strides
)
=
0
;
std
::
vector
<
ck
::
index_t
>
window_strides
,
std
::
vector
<
ck
::
index_t
>
window_dilations
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
};
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp
0 → 100644
View file @
1ddc3ec7
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_splitk_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
GridwiseGemm
,
typename
GemmDesc
,
GemmSpecialization
GemmSpec
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
DsDataType
,
typename
Block2ETileMap
,
typename
GroupedGemmBlock2ETileMap
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
InMemoryDataOperationEnum
EGlobalMemoryDataOperation
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_grouped_gemm_xdl_fixed_nk
(
const
void
CK_CONSTANT_ADDRESS_SPACE
*
gemm_descs_const
,
uint32_t
*
barrier_count
,
const
index_t
barrier_size_grp
,
const
index_t
group_count
,
const
index_t
grid_size_grp
,
const
index_t
KBatch
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
c_element_op
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
block_id
=
get_block_1d_id
();
const
auto
gemm_desc_ptr
=
reinterpret_cast
<
const
GemmDesc
*>
(
cast_pointer_to_generic_address_space
(
gemm_descs_const
));
const
index_t
group_id
=
block_id
/
grid_size_grp
;
if
(
group_id
>=
group_count
)
return
;
const
index_t
M
=
gemm_desc_ptr
[
group_id
].
M
;
const
index_t
N
=
gemm_desc_ptr
[
group_id
].
N
;
const
index_t
K
=
gemm_desc_ptr
[
group_id
].
K
;
if
(
M
*
N
*
K
==
0
)
return
;
const
auto
StrideA
=
gemm_desc_ptr
[
group_id
].
StrideA
;
const
auto
StrideB
=
gemm_desc_ptr
[
group_id
].
StrideB
;
const
auto
StrideDs
=
gemm_desc_ptr
[
group_id
].
StrideDs
;
const
auto
StrideE
=
gemm_desc_ptr
[
group_id
].
StrideE
;
const
auto
e_grid_desc_m_n
=
GridwiseGemm
::
template
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>(
M
,
N
,
StrideE
);
const
index_t
BlockStart
=
group_id
*
grid_size_grp
;
const
auto
local_b2e_tile_map
=
Block2ETileMap
{
e_grid_desc_m_n
,
KBatch
};
const
auto
local_grid_size
=
local_b2e_tile_map
.
CalculateGridSize
(
e_grid_desc_m_n
);
constexpr
auto
NumDTensor
=
DsDataType
::
Size
();
using
DsGridPointer
=
decltype
(
GridwiseGemm
::
MakeDsGridPointer
());
DsGridPointer
p_ds_grid_
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
gemm_desc_ptr
[
group_id
].
p_ds_grid
[
i
]);
});
index_t
id_off
=
0
;
index_t
id_local
=
get_block_1d_id
()
-
BlockStart
;
const
index_t
mn_blocks
=
local_grid_size
/
KBatch
;
while
(
id_local
<
local_grid_size
)
{
const
auto
block_2_etile_map
=
GroupedGemmBlock2ETileMap
(
local_b2e_tile_map
,
BlockStart
,
id_off
);
auto
barrier_count_finished
=
barrier_count
+
group_id
*
barrier_size_grp
+
id_local
%
mn_blocks
;
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
,
EGlobalMemoryDataOperation
,
GemmSpec
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
>(
gemm_desc_ptr
[
group_id
].
p_a_grid
,
gemm_desc_ptr
[
group_id
].
p_b_grid
,
p_ds_grid_
,
gemm_desc_ptr
[
group_id
].
p_e_grid
,
p_shared
,
barrier_count_finished
,
a_element_op
,
b_element_op
,
c_element_op
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
KBatch
,
block_2_etile_map
);
id_off
+=
grid_size_grp
;
id_local
+=
grid_size_grp
;
}
#else
ignore
=
gemm_descs_const
;
ignore
=
barrier_count
;
ignore
=
barrier_size_grp
;
ignore
=
group_count
;
ignore
=
grid_size_grp
;
ignore
=
KBatch
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
c_element_op
;
#endif
}
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
ck
::
index_t
NumPrefetch
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
KPerBlock
,
ck
::
index_t
AK1
,
ck
::
index_t
BK1
,
ck
::
index_t
MPerXDL
,
ck
::
index_t
NPerXDL
,
ck
::
index_t
MXdlPerWave
,
ck
::
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
ck
::
index_t
ABlockTransferSrcVectorDim
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
ABlockTransferDstScalarPerVector_K1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
ck
::
index_t
BBlockTransferSrcVectorDim
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferDstScalarPerVector_K1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
struct
DeviceGroupedGemm_Xdl_Fixed_NK
:
public
DeviceGroupedGemmFixedNK
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedGemm_Xdl_Fixed_NK
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_splitk_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
NumPrefetch
,
// NumGemmKPrefetchStage
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_K0_M_K1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
,
false
,
// AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_K0_N_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
template
<
typename
UnderlyingBlockToCTileMap
>
struct
OffsettedBlockToCTileMapMLoops
{
using
underlying_type
=
UnderlyingBlockToCTileMap
;
__host__
__device__
OffsettedBlockToCTileMapMLoops
(
UnderlyingBlockToCTileMap
block_to_ctile_map
,
index_t
block_start
,
index_t
id_off
=
0
)
{
block_to_ctile_map_
=
block_to_ctile_map
;
block_start_
=
block_start
;
id_off_
=
id_off
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
auto
idx_bot
=
block_to_ctile_map_
.
CalculateBottomIndex
(
make_multi_index
(
idx_top
[
Number
<
0
>
{}]
-
block_start_
+
id_off_
));
return
make_tuple
(
idx_bot
[
Number
<
0
>
{}],
idx_bot
[
Number
<
1
>
{}],
idx_bot
[
Number
<
2
>
{}]);
}
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
c_tile_idx
,
const
CTileDim
&
c_tile_dim
)
const
{
return
block_to_ctile_map_
.
ValidCTileIndex
(
c_tile_idx
,
c_tile_dim
);
}
template
<
typename
CGridDesc_M_N
>
__host__
bool
CheckValidity
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
return
block_to_ctile_map_
.
CheckValidity
(
c_grid_desc_m_n
);
}
template
<
typename
CGridDesc_M_N
>
__host__
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
return
block_to_ctile_map_
.
CalculateGridSize
(
c_grid_desc_m_n
);
}
UnderlyingBlockToCTileMap
block_to_ctile_map_
;
index_t
block_start_
;
index_t
id_off_
;
};
template
<
index_t
MPerBlock_
,
index_t
NPerBlock_
>
struct
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
()
=
default
;
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
(
const
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&
)
=
default
;
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
(
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&&
)
=
default
;
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&
operator
=
(
const
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&
)
=
default
;
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&
operator
=
(
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&&
)
=
default
;
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
(
index_t
M
,
index_t
N
,
index_t
KBatch
,
index_t
M01
=
8
)
:
M_
(
M
),
N_
(
N
),
KBatch_
(
KBatch
),
M01_
(
M01
)
{
}
template
<
typename
CGridDesc_M_N
>
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
KBatch
,
index_t
M01
=
8
)
:
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
(
c_grid_desc_m_n
.
GetLength
(
I0
),
c_grid_desc_m_n
.
GetLength
(
I1
),
KBatch
,
M01
)
{
}
__host__
__device__
constexpr
index_t
CalculateGridSize
(
index_t
M
,
index_t
N
)
const
{
const
auto
M0
=
math
::
integer_divide_ceil
(
M
,
MPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
N
,
NPerBlock
);
return
M0
*
N0
*
KBatch_
;
}
template
<
typename
CGridDesc_M_N
>
__host__
__device__
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
return
CalculateGridSize
(
c_grid_desc_m_n
.
GetLength
(
I0
),
c_grid_desc_m_n
.
GetLength
(
I1
));
}
template
<
typename
CGridDesc_M_N
>
__host__
bool
CheckValidity
(
const
CGridDesc_M_N
&
/* c_grid_desc_m_n */
)
const
{
return
true
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
auto
block_1d_id
=
idx_top
[
I0
];
const
auto
M0
=
math
::
integer_divide_ceil
(
M_
,
MPerBlock_
);
const
auto
N0
=
math
::
integer_divide_ceil
(
N_
,
NPerBlock_
);
block_1d_id
=
block_1d_id
%
(
M0
*
N0
*
KBatch_
);
// hide groups
const
index_t
idx_ksplit
=
block_1d_id
/
(
M0
*
N0
);
block_1d_id
=
block_1d_id
%
(
M0
*
N0
);
index_t
idx_N0
=
block_1d_id
%
N0
;
index_t
idx_M0
=
block_1d_id
/
N0
;
const
auto
M01_adapt
=
(
idx_M0
<
M0
-
M0
%
M01_
)
?
M01_
:
M0
%
M01_
;
index_t
idx_M00
=
idx_M0
/
M01_
;
index_t
idx_M01
=
idx_M0
%
M01_
;
index_t
idx_N0_M01_local
=
idx_N0
+
idx_M01
*
N0
;
return
make_tuple
(
idx_ksplit
,
idx_N0_M01_local
%
M01_adapt
+
idx_M00
*
M01_
,
idx_N0_M01_local
/
M01_adapt
);
}
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
/* c_tile_idx */
,
const
CTileDim
&
/* c_tile_dim */
)
const
{
return
true
;
// always valid provided that user gets grid size from CalculateGridSize()
}
private:
index_t
M_
;
index_t
N_
;
index_t
KBatch_
;
index_t
M01_
;
};
using
Block2ETileMap
=
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
<
MPerBlock
,
NPerBlock
>
;
using
GroupedGemmBlock2ETileMap
=
OffsettedBlockToCTileMapMLoops
<
Block2ETileMap
>
;
struct
GemmBiasTransKernelArg
{
// pointers
const
void
*
a_ptr_
;
const
void
*
b_ptr_
;
std
::
array
<
const
void
*
,
NumDTensor
>
ds_ptr_
;
void
*
e_ptr_
;
index_t
M_
,
N_
,
K_
;
index_t
StrideA_
,
StrideB_
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs_
;
index_t
StrideE_
;
};
// Argument
struct
Argument
:
public
BaseArgument
{
void
UpdateKBatch
(
index_t
k_batch
)
{
k_batch_
=
k_batch
;
if
(
k_batch_
<
1
)
{
throw
std
::
runtime_error
(
"wrong! k_batch must be > 0"
);
}
const
index_t
AverM
=
math
::
integer_divide_ceil
(
sum_of_m
,
group_count_
);
const
index_t
StrideE
=
gemm_desc_kernel_arg_
[
0
].
StrideE_
;
const
index_t
N
=
gemm_desc_kernel_arg_
[
0
].
N_
;
const
auto
e_grid_desc_m_n
=
GridwiseGemm
::
template
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>(
AverM
,
N
,
StrideE
);
const
auto
local_b2c_tile_map
=
Block2ETileMap
{
e_grid_desc_m_n
,
k_batch_
};
grid_size_grp_
=
local_b2c_tile_map
.
CalculateGridSize
(
e_grid_desc_m_n
);
grid_size_
=
grid_size_grp_
*
group_count_
;
}
Argument
(
std
::
vector
<
const
void
*>&
,
std
::
vector
<
const
void
*>&
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
,
std
::
vector
<
void
*>&
,
std
::
vector
<
GemmDesc
>&
gemm_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
c_element_op
)
:
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
grid_size_
=
0
;
k_batch_
=
1
;
grouped_gemm_kernel_args_dev
=
nullptr
;
group_count_
=
ck
::
type_convert
<
ck
::
index_t
>
(
gemm_descs
.
size
());
gemm_desc_kernel_arg_
.
reserve
(
group_count_
);
index_t
group_id
=
0
;
sum_of_m
=
gemm_descs
[
0
].
M_
;
const
index_t
AverM
=
math
::
integer_divide_ceil
(
sum_of_m
,
group_count_
);
const
index_t
N
=
gemm_descs
[
0
].
N_
;
const
index_t
K
=
gemm_descs
[
0
].
K_
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
if
(
sum_of_m
!=
gemm_descs
[
i
].
M_
||
N
!=
gemm_descs
[
i
].
N_
||
K
!=
gemm_descs
[
i
].
K_
)
{
throw
std
::
runtime_error
(
"wrong! M/N/K is not identical"
);
}
a_mtx_mraw_kraw_
.
emplace_back
(
sum_of_m
,
K
);
b_mtx_nraw_kraw_
.
emplace_back
(
N
,
K
);
const
index_t
StrideA
=
gemm_descs
[
i
].
stride_A_
;
const
index_t
StrideB
=
gemm_descs
[
i
].
stride_B_
;
const
index_t
StrideE
=
gemm_descs
[
i
].
stride_C_
;
// pointer
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
p_ds_grid
[
j
]
=
nullptr
;
});
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
// using DLayout = remove_cvref_t<tuple_element_t<j.value, DsLayout>>;
if
(
gemm_descs
[
i
].
stride_Ds_
.
size
()
!=
NumDTensor
)
{
throw
std
::
runtime_error
(
"wrong! gemm_descs[i].stride_Ds_.size() does not match NumDTensor"
);
}
StrideDs
[
j
]
=
gemm_descs
[
i
].
stride_Ds_
[
j
];
});
const
auto
e_grid_desc_m_n
=
GridwiseGemm
::
template
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>(
AverM
,
N
,
StrideE
);
// block-to-e-tile map
const
auto
local_b2c_tile_map
=
Block2ETileMap
{
e_grid_desc_m_n
,
k_batch_
};
grid_size_grp_
=
local_b2c_tile_map
.
CalculateGridSize
(
e_grid_desc_m_n
);
if
(
group_id
*
grid_size_grp_
!=
grid_size_
)
{
throw
std
::
runtime_error
(
"wrong! grid_size_grp_ is not identical!"
);
}
grid_size_
+=
grid_size_grp_
;
// check block-to-E-tile
if
(
!
local_b2c_tile_map
.
CheckValidity
(
e_grid_desc_m_n
))
{
throw
std
::
runtime_error
(
"wrong! block_2_etile_map validation failed"
);
}
if
(
!
GridwiseGemm
::
template
CheckValidity
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
GemmSpec
>(
AverM
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
1
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting"
);
}
gemm_desc_kernel_arg_
.
push_back
(
GemmBiasTransKernelArg
{
nullptr
,
nullptr
,
p_ds_grid
,
nullptr
,
AverM
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
});
group_id
++
;
}
const
auto
e_grid_desc_sum_m_n
=
GridwiseGemm
::
template
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>(
sum_of_m
,
gemm_desc_kernel_arg_
[
0
].
N_
,
gemm_desc_kernel_arg_
[
0
].
StrideE_
);
const
auto
local_b2c_tile_map
=
Block2ETileMap
{
e_grid_desc_sum_m_n
,
1
};
barrier_size_grp_
=
local_b2c_tile_map
.
CalculateGridSize
(
e_grid_desc_sum_m_n
);
}
// private:
index_t
group_count_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
c_element_op_
;
std
::
vector
<
GemmBiasTransKernelArg
>
gemm_desc_kernel_arg_
;
std
::
vector
<
Tuple
<
index_t
,
index_t
>>
a_mtx_mraw_kraw_
;
std
::
vector
<
Tuple
<
index_t
,
index_t
>>
b_mtx_nraw_kraw_
;
const
void
*
grouped_gemm_kernel_args_dev
;
index_t
grid_size_
;
index_t
grid_size_grp_
;
index_t
barrier_size_grp_
;
index_t
sum_of_m
;
index_t
k_batch_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
bool
has_main_k_block_loop
=
true
;
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
gemm_desc_kernel_arg_
.
size
();
i
++
)
{
const
auto
KPad
=
GridwiseGemm
::
CalculateKPadded
(
arg
.
gemm_desc_kernel_arg_
[
i
].
K_
,
arg
.
k_batch_
);
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
KPad
)
!=
has_main_k_block_loop
)
{
throw
std
::
runtime_error
(
"wrong! not all gemm has_main_k_block_loop"
);
}
}
if
(
arg
.
grouped_gemm_kernel_args_dev
==
nullptr
)
{
throw
std
::
runtime_error
(
"wrong! grouped_gemm_kernel_args_dev is nullpr"
);
}
float
ave_time
=
0
;
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop_
,
auto
e_global_memory_operation_
)
{
const
auto
kernel
=
kernel_grouped_gemm_xdl_fixed_nk
<
GridwiseGemm
,
GroupedGemmKernelArgument
<
NumDTensor
>
,
GemmSpec
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
DsDataType
,
Block2ETileMap
,
GroupedGemmBlock2ETileMap
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
e_global_memory_operation_
,
has_main_k_block_loop_
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
grid_size_
),
dim3
(
BlockSize
),
0
,
cast_pointer_to_constant_address_space
(
arg
.
grouped_gemm_kernel_args_dev
),
reinterpret_cast
<
uint32_t
*>
(
arg
.
p_workspace_
),
arg
.
barrier_size_grp_
,
arg
.
gemm_desc_kernel_arg_
.
size
(),
arg
.
grid_size_grp_
,
arg
.
k_batch_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
);
};
constexpr
auto
AtomicAdd
=
InMemoryDataOperationEnum
::
AtomicAdd
;
constexpr
auto
Set
=
InMemoryDataOperationEnum
::
Set
;
if
(
arg
.
k_batch_
>
1
)
{
if
(
has_main_k_block_loop
)
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
true
>
{},
integral_constant
<
InMemoryDataOperationEnum
,
AtomicAdd
>
{});
}
else
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
false
>
{},
integral_constant
<
InMemoryDataOperationEnum
,
AtomicAdd
>
{});
}
}
else
{
if
(
has_main_k_block_loop
)
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
true
>
{},
integral_constant
<
InMemoryDataOperationEnum
,
Set
>
{});
}
else
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
false
>
{},
integral_constant
<
InMemoryDataOperationEnum
,
Set
>
{});
}
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
ck
::
type_convert
<
ck
::
index_t
>
(
arg
.
gemm_desc_kernel_arg_
.
size
())
!=
arg
.
group_count_
)
{
return
false
;
}
bool
supported
=
true
;
// If we use padding we do not support vector loads for dimensions not divisible by vector
// load size.
if
constexpr
(
GemmSpec
!=
GemmSpecialization
::
Default
)
{
// [A|B]BlockTransferSrcVectorDim value define dimension in the block {K0,M,K1} layout,
// thus we have to adapt it to the {M,K} or {N,K} layout.
const
auto
a_raw_vector_dim
=
ABlockTransferSrcVectorDim
!=
1
?
1
:
0
;
const
auto
b_raw_vector_dim
=
BBlockTransferSrcVectorDim
!=
1
?
1
:
0
;
for
(
index_t
i
=
0
;
i
<
arg
.
group_count_
;
++
i
)
{
const
auto
a_vector_dim
=
arg
.
a_mtx_mraw_kraw_
[
i
].
At
(
Number
<
a_raw_vector_dim
>
{});
const
auto
b_vector_dim
=
arg
.
b_mtx_nraw_kraw_
[
i
].
At
(
Number
<
b_raw_vector_dim
>
{});
supported
=
supported
&
(
a_vector_dim
%
ABlockTransferSrcScalarPerVector
==
0
);
supported
=
supported
&
(
b_vector_dim
%
BBlockTransferSrcScalarPerVector
==
0
);
}
}
return
supported
;
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
std
::
vector
<
const
void
*>&
p_As
,
std
::
vector
<
const
void
*>&
p_Bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_Ds
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmDesc
>
gemm_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
c_element_op
)
{
return
Argument
{
p_As
,
p_Bs
,
p_Ds
,
p_Es
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
vector
<
const
void
*>&
p_As
,
std
::
vector
<
const
void
*>&
p_Bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_Ds
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmDesc
>&
gemm_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
c_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_As
,
p_Bs
,
p_Ds
,
p_Es
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedGemm_Xdl_Fixed_NK"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
MPerXDL
<<
", "
<<
NPerXDL
<<
", "
<<
MXdlPerWave
<<
", "
<<
NXdlPerWave
<<
", "
<<
ABlockTransferSrcScalarPerVector
<<
", "
<<
BBlockTransferSrcScalarPerVector
<<
", "
<<
CShuffleMXdlPerWavePerShuffle
<<
", "
<<
CShuffleNXdlPerWavePerShuffle
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
static
void
SetDeviceKernelArgs
(
Argument
&
arg
,
const
void
*
kernel_args
)
{
arg
.
grouped_gemm_kernel_args_dev
=
kernel_args
;
}
// polymorphic
void
SetDeviceKernelArgs
(
BaseArgument
*
p_arg
,
const
void
*
kernel_args
)
const
override
{
return
SetDeviceKernelArgs
(
*
dynamic_cast
<
Argument
*>
(
p_arg
),
kernel_args
);
}
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
p_arg
)
const
override
{
auto
arg
=
*
dynamic_cast
<
const
Argument
*>
(
p_arg
);
return
arg
.
group_count_
*
arg
.
barrier_size_grp_
*
sizeof
(
uint32_t
);
}
size_t
GetDeviceKernelArgSize
(
const
BaseArgument
*
p_arg
)
const
override
{
auto
arg
=
*
dynamic_cast
<
const
Argument
*>
(
p_arg
);
return
arg
.
group_count_
*
sizeof
(
GroupedGemmKernelArgument
<
NumDTensor
>
);
}
void
SetWorkSpacePointer
(
BaseArgument
*
p_arg
,
void
*
p_workspace
)
const
override
{
auto
p_arg_
=
dynamic_cast
<
Argument
*>
(
p_arg
);
p_arg_
->
p_workspace_
=
p_workspace
;
hip_check_error
(
hipMemset
(
p_workspace
,
0
,
GetWorkSpaceSize
(
p_arg
)));
}
static
void
SetKBatch
(
Argument
&
arg
,
index_t
k_batch
)
{
arg
.
UpdateKBatch
(
k_batch
);
}
// polymorphic
void
SetKBatch
(
BaseArgument
*
p_arg
,
index_t
k_batch
)
const
override
{
return
SetKBatch
(
*
dynamic_cast
<
Argument
*>
(
p_arg
),
k_batch
);
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_
inde
x_pool_bwd_impl.hpp
→
include/ck/tensor_operation/gpu/device/impl/device_
ma
x_pool_bwd_impl.hpp
View file @
1ddc3ec7
...
@@ -8,7 +8,7 @@
...
@@ -8,7 +8,7 @@
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/device_
inde
x_pool_bwd.hpp"
#include "ck/tensor_operation/gpu/device/device_
ma
x_pool_bwd.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_put_element_1d.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_put_element_1d.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_elementwise_1d.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_elementwise_1d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
...
@@ -25,7 +25,7 @@ template <typename DOutDataType,
...
@@ -25,7 +25,7 @@ template <typename DOutDataType,
typename
IndexDataType
,
typename
IndexDataType
,
typename
DInDataType
,
typename
DInDataType
,
ck
::
index_t
InOutVectorSize
>
ck
::
index_t
InOutVectorSize
>
struct
Device
Inde
xPoolBwdImpl
:
public
Device
Inde
xPoolBwd
<
DOutDataType
,
IndexDataType
,
DInDataType
>
struct
Device
Ma
xPoolBwdImpl
:
public
Device
Ma
xPoolBwd
<
DOutDataType
,
IndexDataType
,
DInDataType
>
{
{
using
DInDataType_AutomicAddPreCast
=
using
DInDataType_AutomicAddPreCast
=
conditional_t
<
is_same_v
<
DInDataType
,
float
>
||
is_same_v
<
DInDataType
,
double
>
,
conditional_t
<
is_same_v
<
DInDataType
,
float
>
||
is_same_v
<
DInDataType
,
double
>
,
...
@@ -91,7 +91,8 @@ struct DeviceIndexPoolBwdImpl : public DeviceIndexPoolBwd<DOutDataType, IndexDat
...
@@ -91,7 +91,8 @@ struct DeviceIndexPoolBwdImpl : public DeviceIndexPoolBwd<DOutDataType, IndexDat
index_t
dout_length
,
index_t
dout_length
,
index_t
din_length
,
index_t
din_length
,
const
std
::
vector
<
ck
::
index_t
>&
window_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
window_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
window_strides
)
const
std
::
vector
<
ck
::
index_t
>&
window_strides
,
const
std
::
vector
<
ck
::
index_t
>&
window_dilations
)
:
p_dout_
{
p_dout
},
:
p_dout_
{
p_dout
},
p_indices_
{
p_indices
},
p_indices_
{
p_indices
},
p_din_
{
p_din
},
p_din_
{
p_din
},
...
@@ -102,7 +103,8 @@ struct DeviceIndexPoolBwdImpl : public DeviceIndexPoolBwd<DOutDataType, IndexDat
...
@@ -102,7 +103,8 @@ struct DeviceIndexPoolBwdImpl : public DeviceIndexPoolBwd<DOutDataType, IndexDat
{
{
for
(
size_t
i
=
0
;
i
<
window_lengths
.
size
();
++
i
)
for
(
size_t
i
=
0
;
i
<
window_lengths
.
size
();
++
i
)
{
{
windowOverlap_
|=
window_lengths
.
at
(
i
)
>
window_strides
.
at
(
i
);
auto
eff
=
(
window_lengths
.
at
(
i
)
-
1
)
*
window_dilations
.
at
(
i
)
+
1
;
windowOverlap_
|=
eff
>
window_strides
.
at
(
i
);
}
}
}
}
...
@@ -228,6 +230,11 @@ struct DeviceIndexPoolBwdImpl : public DeviceIndexPoolBwd<DOutDataType, IndexDat
...
@@ -228,6 +230,11 @@ struct DeviceIndexPoolBwdImpl : public DeviceIndexPoolBwd<DOutDataType, IndexDat
}
}
else
else
{
{
hip_check_error
(
hipMemsetAsync
(
arg
.
p_din_
,
0
,
arg
.
din_length_raw_
*
sizeof
(
DInDataType
),
stream_config
.
stream_id_
));
const
auto
put_kernel
=
kernel_put_element_1d
<
GridwisePutElementSet
,
const
auto
put_kernel
=
kernel_put_element_1d
<
GridwisePutElementSet
,
InOutGrid1dDesc
,
InOutGrid1dDesc
,
DOutDataType
,
DOutDataType
,
...
@@ -292,7 +299,8 @@ struct DeviceIndexPoolBwdImpl : public DeviceIndexPoolBwd<DOutDataType, IndexDat
...
@@ -292,7 +299,8 @@ struct DeviceIndexPoolBwdImpl : public DeviceIndexPoolBwd<DOutDataType, IndexDat
index_t
dout_length
,
index_t
dout_length
,
index_t
din_length
,
index_t
din_length
,
std
::
vector
<
ck
::
index_t
>
window_lengths
,
std
::
vector
<
ck
::
index_t
>
window_lengths
,
std
::
vector
<
ck
::
index_t
>
window_strides
)
override
std
::
vector
<
ck
::
index_t
>
window_strides
,
std
::
vector
<
ck
::
index_t
>
window_dilations
)
override
{
{
// Assume p_dout, p_indices, p_din are packed memory space, dout_length and din_length are
// Assume p_dout, p_indices, p_din are packed memory space, dout_length and din_length are
// physical size of the packed tensor
// physical size of the packed tensor
...
@@ -302,7 +310,8 @@ struct DeviceIndexPoolBwdImpl : public DeviceIndexPoolBwd<DOutDataType, IndexDat
...
@@ -302,7 +310,8 @@ struct DeviceIndexPoolBwdImpl : public DeviceIndexPoolBwd<DOutDataType, IndexDat
dout_length
,
dout_length
,
din_length
,
din_length
,
window_lengths
,
window_lengths
,
window_strides
);
window_strides
,
window_dilations
);
}
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
...
...
include/ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp
View file @
1ddc3ec7
...
@@ -36,6 +36,13 @@ struct Add
...
@@ -36,6 +36,13 @@ struct Add
y
=
x0
+
type_convert
<
half_t
>
(
x1
);
y
=
x0
+
type_convert
<
half_t
>
(
x1
);
};
};
template
<
>
__host__
__device__
constexpr
void
operator
()
<
half_t
>
(
half_t
&
y
,
const
float
&
x0
,
const
float
&
x1
)
const
{
y
=
type_convert
<
half_t
>
(
x0
+
x1
);
};
template
<
>
template
<
>
__host__
__device__
constexpr
void
__host__
__device__
constexpr
void
operator
()
<
half_t
>
(
half_t
&
y
,
const
float
&
x0
,
const
half_t
&
x1
)
const
operator
()
<
half_t
>
(
half_t
&
y
,
const
float
&
x0
,
const
half_t
&
x1
)
const
...
...
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
View file @
1ddc3ec7
...
@@ -587,7 +587,8 @@ struct OffsettedBlockToCTileMap
...
@@ -587,7 +587,8 @@ struct OffsettedBlockToCTileMap
{
{
using
underlying_type
=
UnderlyingBlockToCTileMap
;
using
underlying_type
=
UnderlyingBlockToCTileMap
;
OffsettedBlockToCTileMap
(
UnderlyingBlockToCTileMap
block_to_ctile_map
,
index_t
block_start
)
__host__
__device__
OffsettedBlockToCTileMap
(
UnderlyingBlockToCTileMap
block_to_ctile_map
,
index_t
block_start
)
{
{
block_to_ctile_map_
=
block_to_ctile_map
;
block_to_ctile_map_
=
block_to_ctile_map
;
block_start_
=
block_start
;
block_start_
=
block_start
;
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp
View file @
1ddc3ec7
...
@@ -15,6 +15,9 @@
...
@@ -15,6 +15,9 @@
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
namespace
ck
{
namespace
ck
{
// GEMM:
// GEMM:
...
@@ -74,6 +77,8 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
...
@@ -74,6 +77,8 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
{
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
using
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
...
@@ -330,6 +335,94 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
...
@@ -330,6 +335,94 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
using
DsGridPointer
=
decltype
(
MakeDsGridPointer
());
using
DsGridPointer
=
decltype
(
MakeDsGridPointer
());
template
<
typename
ALayout
,
GemmSpecialization
GemmSpec
>
__host__
__device__
static
auto
MakeAGridDescriptor_M_K
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
{
constexpr
auto
matrix_padder
=
ck
::
tensor_operation
::
device
::
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
I1
,
StrideA
));
}
}();
return
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
}
template
<
typename
BLayout
,
GemmSpecialization
GemmSpec
>
__host__
__device__
static
auto
MakeBGridDescriptor_N_K
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
constexpr
auto
matrix_padder
=
ck
::
tensor_operation
::
device
::
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
}();
return
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
}
template
<
typename
ELayout
,
GemmSpecialization
GemmSpec
>
__host__
__device__
static
auto
MakeEGridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideE
)
{
constexpr
auto
matrix_padder
=
ck
::
tensor_operation
::
device
::
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
const
auto
e_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
StrideE
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
I1
,
StrideE
));
}
}();
return
matrix_padder
.
PadCDescriptor_M_N
(
e_grid_desc_mraw_nraw
);
}
template
<
typename
DsLayout
,
GemmSpecialization
GemmSpec
>
__host__
__device__
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NumDTensor
>&
MRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
NRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
DsStride
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
MakeEGridDescriptor_M_N
<
DLayout
,
GemmSpec
>
(
MRaws
[
i
],
NRaws
[
i
],
DsStride
[
i
]);
},
Number
<
NumDTensor
>
{});
}
__device__
__host__
static
constexpr
auto
GetMPerBlock
()
{
return
MPerBlock
;
}
template
<
bool
HasMainKBlockLoop
,
template
<
bool
HasMainKBlockLoop
,
typename
AGridDesc_AK0_M_AK1
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
BGridDesc_BK0_N_BK1
,
...
@@ -758,6 +851,85 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
...
@@ -758,6 +851,85 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
});
});
}
}
}
}
template
<
bool
HasMainKBlockLoop
,
GemmSpecialization
GemmSpec
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
Block2ETileMap
>
__device__
static
void
Run
(
const
void
*
__restrict__
p_a_grid_
,
const
void
*
__restrict__
p_b_grid_
,
DsGridPointer
p_ds_grid
,
void
*
__restrict__
p_e_grid_
,
void
*
__restrict__
p_shared
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
,
const
index_t
M
,
const
index_t
N
,
const
index_t
K
,
const
index_t
StrideA
,
const
index_t
StrideB
,
const
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
const
index_t
StrideE
,
const
Block2ETileMap
&
block_2_etile_map
)
{
const
auto
p_a_grid
=
reinterpret_cast
<
const
ADataType
*>
(
p_a_grid_
);
const
auto
p_b_grid
=
reinterpret_cast
<
const
BDataType
*>
(
p_b_grid_
);
const
auto
p_e_grid
=
reinterpret_cast
<
EDataType
*>
(
p_e_grid_
);
// tensor descriptors for problem definiton
const
auto
a_grid_desc_m_k
=
MakeAGridDescriptor_M_K
<
ALayout
,
GemmSpec
>
(
M
,
K
,
StrideA
);
const
auto
b_grid_desc_n_k
=
MakeBGridDescriptor_N_K
<
BLayout
,
GemmSpec
>
(
K
,
N
,
StrideB
);
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
<
DsLayout
,
GemmSpec
>
({},
{},
{}))
>
;
DsGridDesc_M_N
ds_grid_desc_m_n
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsLayout
>>
;
ds_grid_desc_m_n
(
j
)
=
MakeEGridDescriptor_M_N
<
DLayout
,
GemmSpec
>
(
M
,
N
,
StrideDs
[
j
]);
});
const
auto
e_grid_desc_m_n
=
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>
(
M
,
N
,
StrideE
);
// tensor descriptors for block/thread-wise copy
const
auto
a_grid_desc_ak0_m_ak1
=
MakeDefaultAGridDescriptor_AK0_M_AK1
(
a_grid_desc_m_k
);
const
auto
b_grid_desc_bk0_n_bk1
=
MakeDefaultBGridDescriptor_BK0_N_BK1
(
b_grid_desc_n_k
);
using
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
DsGridDesc_M_N
{}))
>
;
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
ds_grid_desc_mblock_mperblock_nblock_nperblock
(
j
)
=
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
[
j
]);
});
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n
);
Run
<
HasMainKBlockLoop
>
(
p_a_grid
,
p_b_grid
,
p_ds_grid
,
p_e_grid
,
p_shared
,
a_element_op
,
b_element_op
,
cde_element_op
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
block_2_etile_map
);
}
};
};
}
// namespace ck
}
// namespace ck
Prev
1
2
3
4
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment