Unverified Commit 1ddc3ec7 authored by Rostyslav Geyyer's avatar Rostyslav Geyyer Committed by GitHub
Browse files

Merge branch 'develop' into lwpck-756

parents e9703d5b f5ec04f0
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
namespace ck {
// GEMM:
// input : A[M, K]
// input : B[N, K]
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// D0, D1, ... and E have the same layout
template <typename ABDataType, // FIXME: don't assume A/B have same datatype
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1Value,
index_t BK1Value,
index_t MPerXdl,
index_t NPerXdl,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_KBatch_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool AThreadTransferSrcResetCoordinateAfterRun,
index_t ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_KBatch_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BThreadTransferSrcResetCoordinateAfterRun,
index_t BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEShuffleBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched,
PipelineVersion PipelineVer = PipelineVersion::v1>
struct GridwiseGemmMultipleD_xdl_splitk_cshuffle
{
static constexpr index_t NumDTensor = DsDataType::Size();
using GemmSpecialization = ck::tensor_operation::device::GemmSpecialization;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
static constexpr auto I7 = Number<7>{};
// K1 should be Number<...>
static constexpr auto AK1 = Number<AK1Value>{};
static constexpr auto BK1 = Number<BK1Value>{};
static constexpr auto AK0PerBlock = Number<KPerBlock / AK1Value>{};
static constexpr auto BK0PerBlock = Number<KPerBlock / BK1Value>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = remove_cvref_t<
decltype(GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>())>;
// denorm test fix, required to work around fp16 mfma issue
// we convert fp16->fp32->bf16 and execute bf16 mfma instruction
// when mfma if fixed, remove this section and update
// ABDataTypeAdjusted -> ABDataType throughout this file
#if CK_WORKAROUND_DENORM_FIX
using ABDataTypeAdjusted =
conditional_t<is_same_v<ABDataType, ck::half_t>, ck::bhalf_t, ABDataType>;
#else
using ABDataTypeAdjusted = ABDataType;
#endif
__host__ __device__ static constexpr auto GetABlockDescriptor_KBatch_AK0PerBlock_MPerBlock_AK1()
{
// A matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(I1, AK0PerBlock, Number<MPerBlock>{}, AK1),
make_tuple(AK0PerBlock * Number<MPerBlock + ABlockLdsExtraM>{} * AK1,
Number<MPerBlock + ABlockLdsExtraM>{} * AK1,
AK1,
I1));
}
__host__ __device__ static constexpr auto GetBBlockDescriptor_KBatch_BK0PerBlock_NPerBlock_BK1()
{
// B matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(I1, BK0PerBlock, Number<NPerBlock>{}, BK1),
make_tuple(BK0PerBlock * Number<NPerBlock + BBlockLdsExtraN>{} * BK1,
Number<NPerBlock + BBlockLdsExtraN>{} * BK1,
BK1,
I1));
}
__host__ __device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()
{
// A matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(AK0PerBlock, Number<MPerBlock>{}, AK1),
make_tuple(Number<MPerBlock + ABlockLdsExtraM>{} * AK1, AK1, I1));
}
__host__ __device__ static constexpr auto GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1()
{
// B matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(BK0PerBlock, Number<NPerBlock>{}, BK1),
make_tuple(Number<NPerBlock + BBlockLdsExtraN>{} * BK1, BK1, I1));
}
__host__ __device__ static constexpr auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock()
{
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl>{},
I1,
Number<CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>{}));
return c_shuffle_block_desc_mblock_mperblock_nblock_nperblock;
}
// ck::Tuple<const D0DataType*, const D1DataType*, ...>
static constexpr auto MakeDsGridPointer()
{
return generate_tuple(
[&](auto i) {
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
return static_cast<const DDataType*>(nullptr);
},
Number<NumDTensor>{});
}
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1, BK1);
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size_aligned = math::integer_least_multiple(
b_block_desc_bk0_n_bk1.GetElementSpaceSize(), max_lds_align);
// LDS allocation for C shuffle in LDS
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
constexpr auto c_block_size =
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
return math::max((a_block_space_size_aligned + b_block_space_size_aligned) *
sizeof(ABDataType),
c_block_size * sizeof(CShuffleDataType));
}
__host__ __device__ static auto CalculateMPadded(index_t M)
{
return math::integer_least_multiple(M, MPerBlock);
}
__host__ __device__ static auto CalculateNPadded(index_t N)
{
return math::integer_least_multiple(N, NPerBlock);
}
__host__ __device__ static auto CalculateKPadded(index_t K, index_t K_Batch)
{
return math::integer_least_multiple(K, KPerBlock * K_Batch);
}
template <typename ALayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeAGridDescriptor_KBatch_AK0_M_AK1(index_t M, index_t K, index_t StrideA, index_t KBatch)
{
const auto a_grid_desc_m_k = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
}
}();
const auto MPad = CalculateMPadded(M);
const auto KPad = CalculateKPadded(K, KBatch);
const auto a_grid_desc_m_kpad = transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_pass_through_transform(M), make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto AK0 = KPad / (KBatch * AK1);
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding)
{
// const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return transform_tensor_descriptor(
a_grid_desc_m_kpad,
make_tuple(make_unmerge_transform(make_tuple(KBatch, AK0, AK1)),
make_right_pad_transform(M, MPad - M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else
{
return transform_tensor_descriptor(
a_grid_desc_m_kpad,
make_tuple(make_unmerge_transform(make_tuple(KBatch, AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
}
template <typename BLayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeBGridDescriptor_KBatch_BK0_N_BK1(index_t K, index_t N, index_t StrideB, index_t KBatch)
{
const auto b_grid_desc_k_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
}
}();
const auto NPad = CalculateNPadded(N);
const auto KPad = CalculateKPadded(K, KBatch);
const auto b_grid_desc_kpad_n = transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_right_pad_transform(K, KPad - K), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto BK0 = KPad / (KBatch * BK1);
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::NPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::NKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding)
{
// const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
b_grid_desc_kpad_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, BK0, BK1)),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else
{
return transform_tensor_descriptor(
b_grid_desc_kpad_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
}
// E desc for destination in blockwise copy
template <typename EGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(const EGridDesc_M_N& e_grid_desc_m_n)
{
const auto M = e_grid_desc_m_n.GetLength(I0);
const auto N = e_grid_desc_m_n.GetLength(I1);
const auto MBlock = M / MPerBlock;
const auto NBlock = N / NPerBlock;
const auto e_grid_desc_mblock_mperblock_nblock_nperblock = transform_tensor_descriptor(
e_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{})),
make_unmerge_transform(make_tuple(NBlock, Number<NPerBlock>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3>{}));
return e_grid_desc_mblock_mperblock_nblock_nperblock;
}
// Ds desc for source in blockwise copy
template <typename DsGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(const DsGridDesc_M_N& ds_grid_desc_m_n)
{
return generate_tuple(
[&](auto i) {
return MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(ds_grid_desc_m_n[i]);
},
Number<NumDTensor>{});
}
// return block_id to E matrix tile idx (m0, n0) mapping
template <typename EGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeDefaultBlock2ETileMap(const EGridDesc_M_N& e_grid_desc_m_n)
{
return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, EGridDesc_M_N>(
e_grid_desc_m_n);
}
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
GemmSpecialization GemmSpec>
__host__ __device__ static constexpr bool
CheckValidity(const index_t M,
const index_t N,
const index_t K,
const index_t StrideA,
const index_t StrideB,
const std::array<index_t, NumDTensor> StrideDs,
const index_t StrideE,
const index_t KBatch)
{
const auto a_grid_desc_kbatch_ak0_m_ak1 =
MakeAGridDescriptor_KBatch_AK0_M_AK1<ALayout, GemmSpec>(M, K, StrideA, KBatch);
const auto b_grid_desc_kbatch_bk0_n_bk1 =
MakeBGridDescriptor_KBatch_BK0_N_BK1<BLayout, GemmSpec>(K, N, StrideB, KBatch);
ignore = StrideDs;
const auto e_grid_desc_m_n = MakeEGridDescriptor_M_N<ELayout, GemmSpec>(M, N, StrideE);
#if 0
// check tile size
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K % KPerBlock == 0))
{
return false;
}
#endif
// check gridwise gemm pipeline
const auto num_k_loop = K / KPerBlock;
if(!GridwiseGemmPipe::IsSupported(num_k_loop))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
// check tensor size: cannot be larger than 2GB each
constexpr long_index_t TwoGB = (long_index_t{1} << 31);
if(!(a_grid_desc_kbatch_ak0_m_ak1.GetElementSpaceSize() * sizeof(ABDataType) <= TwoGB &&
b_grid_desc_kbatch_bk0_n_bk1.GetElementSpaceSize() * sizeof(ABDataType) <= TwoGB &&
e_grid_desc_m_n.GetElementSpaceSize() * sizeof(EDataType) <= TwoGB))
{
return false;
}
return true;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / KPerBlock;
return GridwiseGemmPipe::CalculateHasMainLoop(num_loop);
}
using DsGridPointer = decltype(MakeDsGridPointer());
template <typename ELayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeEGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideE)
{
constexpr auto matrix_padder =
ck::tensor_operation::device::MatrixPadder<GemmSpec, index_t, index_t, index_t>{
MPerBlock, NPerBlock, KPerBlock};
const auto e_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ELayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(StrideE, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ELayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(I1, StrideE));
}
}();
return matrix_padder.PadCDescriptor_M_N(e_grid_desc_mraw_nraw);
}
template <typename DsLayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeDsGridDescriptor_M_N(const std::array<index_t, NumDTensor>& MRaws,
const std::array<index_t, NumDTensor>& NRaws,
const std::array<index_t, NumDTensor>& DsStride)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return MakeEGridDescriptor_M_N<DLayout, GemmSpec>(MRaws[i], NRaws[i], DsStride[i]);
},
Number<NumDTensor>{});
}
__device__ __host__ static constexpr auto GetMPerBlock() { return MPerBlock; }
template <bool HasMainKBlockLoop,
InMemoryDataOperationEnum EGlobalMemoryDataOperation,
index_t NumDTensor_,
typename DsDataType_,
typename AGridDesc_KBatch_AK0_M_AK1,
typename BGridDesc_KBatch_BK0_N_BK1,
typename DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename CDEElementwiseOperation_,
typename Block2ETileMap>
__device__ static void Run(const ABDataType* __restrict__ p_a_grid,
const ABDataType* __restrict__ p_b_grid,
DsGridPointer p_ds_grid,
EDataType* __restrict__ p_e_grid,
void* __restrict__ p_shared,
uint32_t* barrier_count_finished,
const index_t KBatch,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation_& cde_element_op,
const AGridDesc_KBatch_AK0_M_AK1& a_grid_desc_kbatch_ak0_m_ak1,
const BGridDesc_KBatch_BK0_N_BK1& b_grid_desc_kbatch_bk0_n_bk1,
const DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock&
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock&
e_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2ETileMap& block_2_etile_map)
{
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_kbatch_ak0_m_ak1.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_kbatch_bk0_n_bk1.GetElementSpaceSize());
const auto ds_grid_buf = generate_tuple(
[&](auto i) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_ds_grid[i],
ds_grid_desc_mblock_mperblock_nblock_nperblock[i].GetElementSpaceSize());
},
Number<NumDTensor_>{});
auto e_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_e_grid, e_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
// divide block work by [M, N]
const auto block_work_idx =
block_2_etile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t kbatch_id = __builtin_amdgcn_readfirstlane(block_work_idx[I0]);
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * MPerBlock);
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I2] * NPerBlock);
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1, BK1);
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_kbatch_ak0_m_ak1 =
GetABlockDescriptor_KBatch_AK0PerBlock_MPerBlock_AK1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_kbatch_bk0_n_bk1 =
GetBBlockDescriptor_KBatch_BK0PerBlock_NPerBlock_BK1();
// A matrix blockwise copy
auto a_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<1, AK0PerBlock, MPerBlock, AK1>,
ABlockTransferThreadClusterLengths_KBatch_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABDataType,
ABDataTypeAdjusted,
decltype(a_grid_desc_kbatch_ak0_m_ak1),
decltype(a_block_desc_kbatch_ak0_m_ak1),
ABlockTransferSrcAccessOrder,
Sequence<2, 0, 1, 3>,
ABlockTransferSrcVectorDim,
3,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
1,
1,
AThreadTransferSrcResetCoordinateAfterRun,
true,
NumGemmKPrefetchStage>(
a_grid_desc_kbatch_ak0_m_ak1,
make_multi_index(kbatch_id, 0, m_block_data_idx_on_grid, 0),
a_element_op,
a_block_desc_kbatch_ak0_m_ak1,
make_multi_index(0, 0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// B matrix blockwise copy
auto b_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<1, BK0PerBlock, NPerBlock, BK1>,
BBlockTransferThreadClusterLengths_KBatch_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
ABDataType,
ABDataTypeAdjusted,
decltype(b_grid_desc_kbatch_bk0_n_bk1),
decltype(b_block_desc_kbatch_bk0_n_bk1),
BBlockTransferSrcAccessOrder,
Sequence<2, 0, 1, 3>,
BBlockTransferSrcVectorDim,
3,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true,
NumGemmKPrefetchStage>(
b_grid_desc_kbatch_bk0_n_bk1,
make_multi_index(kbatch_id, 0, n_block_data_idx_on_grid, 0),
b_element_op,
b_block_desc_kbatch_bk0_n_bk1,
make_multi_index(0, 0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr index_t KPack =
math::max(math::lcm(AK1, BK1),
MfmaSelector<ABDataTypeAdjusted, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
BlockSize,
ABDataTypeAdjusted,
AccDataType,
decltype(a_block_desc_ak0_m_ak1),
decltype(b_block_desc_bk0_n_bk1),
MPerXdl,
NPerXdl,
MXdlPerWave,
NXdlPerWave,
KPack,
LoopSched>();
#if 1
if(block_work_idx[I0] == 0)
{
const index_t nThreadSize = CDEShuffleBlockTransferScalarPerVector_NPerBlock;
const index_t numNThreads = NPerBlock / nThreadSize;
const index_t numMThreads = BlockSize / numNThreads;
const index_t mThreadSize = MPerBlock / numMThreads;
const index_t m_tid = get_thread_local_1d_id() / numNThreads;
const index_t n_tid = get_thread_local_1d_id() % numNThreads;
auto c_thread_desc_mblock_mperblock_nblock_nperblock =
make_naive_tensor_descriptor_packed(
make_tuple(I1, Number<mThreadSize>{}, I1, Number<nThreadSize>{}));
StaticBuffer<AddressSpaceEnum::Vgpr,
EDataType,
c_thread_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize(),
true>
e_thread_zero_buf;
auto c_thread_copy = ThreadwiseTensorSliceTransfer_v1r3<
EDataType,
EDataType,
decltype(c_thread_desc_mblock_mperblock_nblock_nperblock),
decltype(e_grid_desc_mblock_mperblock_nblock_nperblock),
ck::tensor_operation::element_wise::PassThrough,
Sequence<1, mThreadSize, 1, nThreadSize>,
Sequence<0, 1, 2, 3>,
3,
CDEShuffleBlockTransferScalarPerVector_NPerBlock,
InMemoryDataOperationEnum::Set,
1,
true>{e_grid_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(block_work_idx[I1],
m_tid * mThreadSize,
block_work_idx[I2],
n_tid * nThreadSize),
ck::tensor_operation::element_wise::PassThrough{}};
c_thread_copy.Run(c_thread_desc_mblock_mperblock_nblock_nperblock,
make_tuple(I0, I0, I0, I0),
e_thread_zero_buf,
e_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_buf);
__syncthreads();
if(threadIdx.x == 0)
{
atomicAdd(barrier_count_finished, 1);
}
}
#endif
auto c_thread_buf = blockwise_gemm.GetCThreadBuffer();
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ABDataTypeAdjusted*>(p_shared),
a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ABDataTypeAdjusted*>(p_shared) + a_block_space_size_aligned,
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
constexpr auto a_block_slice_copy_step = make_multi_index(0, KPerBlock / AK1, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(0, KPerBlock / BK1, 0, 0);
// gridwise GEMM pipeline
const auto gridwise_gemm_pipeline =
GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>();
const index_t num_k_block_main_loop =
__builtin_amdgcn_readfirstlane((a_grid_desc_kbatch_ak0_m_ak1.GetLength(I1) *
a_grid_desc_kbatch_ak0_m_ak1.GetLength(I3)) /
KPerBlock);
gridwise_gemm_pipeline.template Run<HasMainKBlockLoop>(a_grid_desc_kbatch_ak0_m_ak1,
a_block_desc_kbatch_ak0_m_ak1,
a_blockwise_copy,
a_grid_buf,
a_block_buf,
a_block_slice_copy_step,
b_grid_desc_kbatch_bk0_n_bk1,
b_block_desc_kbatch_bk0_n_bk1,
b_blockwise_copy,
b_grid_buf,
b_block_buf,
b_block_slice_copy_step,
blockwise_gemm,
c_thread_buf,
num_k_block_main_loop);
// shuffle C and write out
{
if(threadIdx.x == 0)
{
while(__atomic_load_n(barrier_count_finished, __ATOMIC_RELAXED) == 0) {}
}
__syncthreads();
static_assert(MXdlPerWave % CShuffleMXdlPerWavePerShuffle == 0 &&
NXdlPerWave % CShuffleNXdlPerWavePerShuffle == 0,
"wrong!");
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
// TODO: hacky, fix it!
constexpr auto c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2 =
blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp =
blockwise_gemm.GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
constexpr auto M0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I0);
constexpr auto N0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I1);
constexpr auto M1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I2);
constexpr auto N1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I3);
constexpr auto M2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I4);
constexpr auto M3 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I5);
constexpr auto M4 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I6);
constexpr auto N2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I7);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
auto c_shuffle_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<CShuffleDataType*>(p_shared),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2 = transform_tensor_descriptor(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
make_tuple(
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleMXdlPerWavePerShuffle>{}, // M0 (MXdlPerWave) per shuffle
M1, // M1 = MWave
M2, // M2 * M3 * M4 = MPerXdl
M3,
M4)),
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleNXdlPerWavePerShuffle>{}, // N0 (NXdlPerWave) per shuffle
N1, // N1 = NWave
N2))), // N2 = NPerXdl
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(
Sequence<>{}, Sequence<0, 2, 4, 5, 6>{}, Sequence<>{}, Sequence<1, 3, 7>{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1];
const auto m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M0, M1, M2, M3, M4))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto m_thread_data_on_block_idx =
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_block));
const auto n_thread_data_on_block_to_n0_n1_n2_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(N0, N1, N2))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto n_thread_data_on_block_idx =
n_thread_data_on_block_to_n0_n1_n2_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_block));
// shuffle: threadwise copy C from VGPR to LDS
auto c_thread_copy_vgpr_to_lds =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
CShuffleDataType,
decltype(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2),
decltype(c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2),
ck::tensor_operation::element_wise::PassThrough,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
I1,
I1,
M2,
I1,
M4,
I1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
7,
1,
InMemoryDataOperationEnum::Set,
1,
true>{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
make_multi_index(0,
0,
m_thread_data_on_block_idx[I1],
n_thread_data_on_block_idx[I1],
m_thread_data_on_block_idx[I2],
m_thread_data_on_block_idx[I3],
m_thread_data_on_block_idx[I4],
n_thread_data_on_block_idx[I2]),
ck::tensor_operation::element_wise::PassThrough{}};
// tuple of reference to C/Ds tensor descriptors
const auto c_ds_desc_refs = concat_tuple_of_reference(
tie(c_shuffle_block_desc_mblock_mperblock_nblock_nperblock),
generate_tie(
[&](auto i) -> const auto& // return type should be reference
{ return ds_grid_desc_mblock_mperblock_nblock_nperblock[i]; },
Number<NumDTensor_>{}));
// tuple of reference to C/Ds tensor descriptors
const auto c_ds_buf_refs = concat_tuple_of_reference(
tie(c_shuffle_block_buf),
generate_tie(
[&](auto i) -> const auto& // return type should be reference
{ return ds_grid_buf[i]; },
Number<NumDTensor_>{}));
// tuple of starting index of C/Ds blockwise copy
const auto idx_c_ds_block_begin = container_concat(
make_tuple(make_multi_index(0, 0, 0, 0)),
generate_tuple(
[&](auto) {
return make_multi_index(block_work_idx[I1], 0, block_work_idx[I2], 0);
},
Number<NumDTensor_>{}));
// space filling curve for threadwise C in VGPR before shuffle
constexpr auto sfc_c_vgpr =
SpaceFillingCurve<Sequence<MXdlPerWave, NXdlPerWave, 1, 1, M2, 1, M4, 1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
1,
1,
M2,
1,
M4,
1>>{};
// space filling curve for shuffled blockwise C/D/E
constexpr auto sfc_cde_block =
SpaceFillingCurve<Sequence<1, MPerBlock, 1, NPerBlock>,
Sequence<0, 2, 1, 3>,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>>{};
constexpr index_t num_access = sfc_c_vgpr.GetNumOfAccess();
static_assert(num_access == sfc_cde_block.GetNumOfAccess(), "wrong!");
// blockwise copy C/D/E between LDS and global
auto cde_block_copy_lds_and_global = ThreadGroupTensorSliceTransfer_v7<
ThisThreadBlock,
decltype(container_concat(make_tuple(CShuffleDataType{}), DsDataType_{})),
Tuple<EDataType>,
decltype(c_ds_desc_refs),
decltype(tie(e_grid_desc_mblock_mperblock_nblock_nperblock)),
CDEElementwiseOperation_,
Sequence<static_cast<index_t>(EGlobalMemoryDataOperation)>, // FIXME: make
// Sequence support
// arbitray type
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>, // BlockSliceLengths,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
Sequence<0, 1, 2, 3>, // typename ThreadClusterArrangeOrder,
Sequence<0, 1, 2, 3>, // typename DimAccessOrder,
3, // index_t VectorDim,
CDEShuffleBlockTransferScalarPerVector_NPerBlock,
sequence_merge_t<
Sequence<true>,
uniform_sequence_gen_t<NumDTensor_,
false>>, // ThreadTransferSrcResetCoordinateAfterRunFlags
Sequence<false>> // ThreadTransferDstResetCoordinateAfterRunFlags
{c_ds_desc_refs,
idx_c_ds_block_begin,
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
make_tuple(make_multi_index(block_work_idx[I1], 0, block_work_idx[I2], 0)),
cde_element_op};
static_for<0, num_access, 1>{}([&](auto access_id) {
// make sure it's safe to write to LDS
block_sync_lds();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2,
sfc_c_vgpr.GetIndexTupleOfNumber(access_id),
c_thread_buf,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
c_shuffle_block_buf);
// make sure it's safe to read from LDS
block_sync_lds();
// each block copy its data from LDS to global
cde_block_copy_lds_and_global.Run(
c_ds_desc_refs,
c_ds_buf_refs,
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
tie(e_grid_buf));
if constexpr(access_id < num_access - 1)
{
constexpr auto cde_lds_and_global_step =
sfc_cde_block.GetForwardStep(access_id);
// move on Ds
static_for<0, NumDTensor_, 1>{}([&](auto i) {
cde_block_copy_lds_and_global.MoveSrcSliceWindow(
c_ds_desc_refs, i + I1, cde_lds_and_global_step);
});
// move on E
cde_block_copy_lds_and_global.MoveDstSliceWindow(
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
I0,
cde_lds_and_global_step);
}
});
if(threadIdx.x == 0)
{
index_t k_id_finished_t = atomicAdd(barrier_count_finished, 1);
if(k_id_finished_t == KBatch)
{
*barrier_count_finished = 0;
}
}
}
}
template <bool HasMainKBlockLoop,
InMemoryDataOperationEnum EGlobalMemoryDataOperation,
GemmSpecialization GemmSpec,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename Block2ETileMap>
__device__ static void Run(const void* __restrict__ p_a_grid_,
const void* __restrict__ p_b_grid_,
DsGridPointer p_ds_grid,
void* __restrict__ p_e_grid_,
void* __restrict__ p_shared,
uint32_t* barrier_count_finished,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op,
const index_t M,
const index_t N,
const index_t K,
const index_t StrideA,
const index_t StrideB,
const std::array<index_t, NumDTensor> StrideDs,
const index_t StrideE,
const index_t KBatch,
const Block2ETileMap& block_2_etile_map)
{
const auto p_a_grid = reinterpret_cast<const ABDataType*>(p_a_grid_);
const auto p_b_grid = reinterpret_cast<const ABDataType*>(p_b_grid_);
const auto p_e_grid = reinterpret_cast<EDataType*>(p_e_grid_);
using DsGridDesc_M_N =
remove_cvref_t<decltype(MakeDsGridDescriptor_M_N<DsLayout, GemmSpec>({}, {}, {}))>;
DsGridDesc_M_N ds_grid_desc_m_n;
static_for<0, NumDTensor, 1>{}([&](auto j) {
using DLayout = remove_cvref_t<tuple_element_t<j.value, DsLayout>>;
ds_grid_desc_m_n(j) = MakeEGridDescriptor_M_N<DLayout, GemmSpec>(M, N, StrideDs[j]);
});
const auto e_grid_desc_m_n = MakeEGridDescriptor_M_N<ELayout, GemmSpec>(M, N, StrideE);
// tensor descriptors for block/thread-wise copy
const auto a_grid_desc_kbatch_ak0_m_ak1 =
MakeAGridDescriptor_KBatch_AK0_M_AK1<ALayout, GemmSpec>(M, K, StrideA, KBatch);
const auto b_grid_desc_kbatch_bk0_n_bk1 =
MakeBGridDescriptor_KBatch_BK0_N_BK1<BLayout, GemmSpec>(K, N, StrideB, KBatch);
using DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
remove_cvref_t<decltype(MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
DsGridDesc_M_N{}))>;
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock ds_grid_desc_mblock_mperblock_nblock_nperblock;
static_for<0, NumDTensor, 1>{}([&](auto j) {
ds_grid_desc_mblock_mperblock_nblock_nperblock(j) =
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(ds_grid_desc_m_n[j]);
});
const auto e_grid_desc_mblock_mperblock_nblock_nperblock =
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(e_grid_desc_m_n);
const auto block_work_idx =
block_2_etile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
const index_t kbatch_id = __builtin_amdgcn_readfirstlane(block_work_idx[I0]);
if(kbatch_id == KBatch - 1)
{
Run<HasMainKBlockLoop, EGlobalMemoryDataOperation, NumDTensor, DsDataType>(
p_a_grid,
p_b_grid,
p_ds_grid,
p_e_grid,
p_shared,
barrier_count_finished,
KBatch,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_kbatch_ak0_m_ak1,
b_grid_desc_kbatch_bk0_n_bk1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_etile_map);
}
else
{
Run<HasMainKBlockLoop, EGlobalMemoryDataOperation, 0, Tuple<>>(
p_a_grid,
p_b_grid,
p_ds_grid,
p_e_grid,
p_shared,
barrier_count_finished,
KBatch,
a_element_op,
b_element_op,
ck::tensor_operation::element_wise::PassThrough{},
a_grid_desc_kbatch_ak0_m_ak1,
b_grid_desc_kbatch_bk0_n_bk1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_etile_map);
}
}
};
} // namespace ck
...@@ -37,7 +37,8 @@ __global__ void ...@@ -37,7 +37,8 @@ __global__ void
index_t StrideC, index_t StrideC,
typename GridwiseGemm::Block2CTileMap block_mapping) typename GridwiseGemm::Block2CTileMap block_mapping)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__)) #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
constexpr index_t shared_size = GridwiseGemm::GetSharedMemoryNumberOfByte(); constexpr index_t shared_size = GridwiseGemm::GetSharedMemoryNumberOfByte();
__shared__ uint8_t p_shared[shared_size]; __shared__ uint8_t p_shared[shared_size];
......
...@@ -116,7 +116,15 @@ struct Max ...@@ -116,7 +116,15 @@ struct Max
template <typename T> template <typename T>
__host__ __device__ static constexpr T GetIdentityValue() __host__ __device__ static constexpr T GetIdentityValue()
{ {
return NumericLimits<T>::Lowest(); if constexpr(is_same_v<T, bhalf_t>)
{
float val = NumericLimits<float>::Lowest();
return type_convert<bhalf_t>(val);
}
else
{
return NumericLimits<T>::Lowest();
}
}; };
__host__ __device__ static constexpr bool __host__ __device__ static constexpr bool
...@@ -138,6 +146,15 @@ struct Max ...@@ -138,6 +146,15 @@ struct Max
a = b; a = b;
} }
__host__ __device__ inline constexpr void operator()(bhalf_t& a, bhalf_t b) const
{
float a_ = type_convert<float>(a);
float b_ = type_convert<float>(b);
if(a_ < b_)
a = b;
}
template <typename T> template <typename T>
__host__ __device__ inline constexpr void operator()(T& a, T b, bool& changed) const __host__ __device__ inline constexpr void operator()(T& a, T b, bool& changed) const
{ {
...@@ -152,6 +169,18 @@ struct Max ...@@ -152,6 +169,18 @@ struct Max
changed = true; changed = true;
} }
} }
__host__ __device__ inline constexpr void operator()(bhalf_t& a, bhalf_t b, bool& changed) const
{
float a_ = type_convert<float>(a);
float b_ = type_convert<float>(b);
if(a_ < b_)
{
a = b;
changed = true;
}
}
}; };
struct Min struct Min
...@@ -159,6 +188,15 @@ struct Min ...@@ -159,6 +188,15 @@ struct Min
template <typename T> template <typename T>
__host__ __device__ static constexpr T GetIdentityValue() __host__ __device__ static constexpr T GetIdentityValue()
{ {
if constexpr(is_same_v<T, bhalf_t>)
{
float val = NumericLimits<float>::Max();
return type_convert<bhalf_t>(val);
}
else
{
return NumericLimits<T>::Max();
}
return NumericLimits<T>::Max(); return NumericLimits<T>::Max();
}; };
...@@ -181,6 +219,15 @@ struct Min ...@@ -181,6 +219,15 @@ struct Min
a = b; a = b;
} }
__host__ __device__ inline constexpr void operator()(bhalf_t& a, bhalf_t b) const
{
float a_ = type_convert<float>(a);
float b_ = type_convert<float>(b);
if(a_ > b_)
a = b;
}
template <typename T> template <typename T>
__host__ __device__ inline constexpr void operator()(T& a, T b, bool& changed) const __host__ __device__ inline constexpr void operator()(T& a, T b, bool& changed) const
{ {
...@@ -195,6 +242,18 @@ struct Min ...@@ -195,6 +242,18 @@ struct Min
changed = true; changed = true;
} }
} }
__host__ __device__ inline constexpr void operator()(bhalf_t& a, bhalf_t b, bool& changed) const
{
float a_ = type_convert<float>(a);
float b_ = type_convert<float>(b);
if(a_ > b_)
{
a = b;
changed = true;
}
}
}; };
struct AMax struct AMax
......
...@@ -53,7 +53,16 @@ struct ReferenceMaxPoolBwd : public device::BaseOperator ...@@ -53,7 +53,16 @@ struct ReferenceMaxPoolBwd : public device::BaseOperator
{ {
int index = arg.indices_.mData[i]; int index = arg.indices_.mData[i];
if(index >= 0 && index < din_length) if(index >= 0 && index < din_length)
buf[index] += ck::type_convert<ConputeDataType>(arg.dout_.mData[i]); {
if constexpr(is_same_v<ConputeDataType, bhalf_t>)
{
float buf_val = ck::type_convert<float>(buf[index]);
buf_val += ck::type_convert<float>(arg.dout_.mData[i]);
buf[index] = ck::type_convert<ConputeDataType>(buf_val);
}
else
buf[index] += ck::type_convert<ConputeDataType>(arg.dout_.mData[i]);
}
} }
for(int i = 0; i < din_length; ++i) for(int i = 0; i < din_length; ++i)
......
...@@ -256,10 +256,12 @@ struct ReferencePoolingFwd : public device::BaseOperator ...@@ -256,10 +256,12 @@ struct ReferencePoolingFwd : public device::BaseOperator
for(ck::index_t y = 0; y < arg.window_spatial_lengths_[0]; ++y) for(ck::index_t y = 0; y < arg.window_spatial_lengths_[0]; ++y)
{ {
ck::index_t hi = ho * arg.window_strides_[0] + y - arg.in_left_pads_[0]; ck::index_t hi = ho * arg.window_strides_[0] +
y * arg.window_dilations_[0] - arg.in_left_pads_[0];
for(ck::index_t x = 0; x < arg.window_spatial_lengths_[1]; ++x) for(ck::index_t x = 0; x < arg.window_spatial_lengths_[1]; ++x)
{ {
ck::index_t wi = wo * arg.window_strides_[1] + x - arg.in_left_pads_[1]; ck::index_t wi = wo * arg.window_strides_[1] +
x * arg.window_dilations_[1] - arg.in_left_pads_[1];
if(hi >= 0 && if(hi >= 0 &&
hi < static_cast<ck::index_t>(arg.in_.mDesc.GetLengths()[2]) && hi < static_cast<ck::index_t>(arg.in_.mDesc.GetLengths()[2]) &&
wi >= 0 && wi >= 0 &&
......
...@@ -103,6 +103,7 @@ using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd; ...@@ -103,6 +103,7 @@ using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd;
using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd; using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd;
using Gelu = ck::tensor_operation::element_wise::Gelu; using Gelu = ck::tensor_operation::element_wise::Gelu;
using Swish = ck::tensor_operation::element_wise::Swish; using Swish = ck::tensor_operation::element_wise::Swish;
using Add = ck::tensor_operation::element_wise::Add;
template <typename Activation> template <typename Activation>
using Activation_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Activation>; using Activation_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Activation>;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_operation/gpu/device/device_avgpool_bwd.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
#ifdef CK_ENABLE_FP16
void add_device_avgpool_bwd_ndhwc_f16_instances(
std::vector<std::unique_ptr<DeviceAvgPoolBwd<3, F16, F16, NDHWC, NDHWC>>>&);
#endif
#ifdef CK_ENABLE_BF16
void add_device_avgpool_bwd_ndhwc_bf16_instances(
std::vector<std::unique_ptr<DeviceAvgPoolBwd<3, BF16, BF16, NDHWC, NDHWC>>>&);
#endif
#ifdef CK_ENABLE_FP32
void add_device_avgpool_bwd_ndhwc_f32_instances(
std::vector<std::unique_ptr<DeviceAvgPoolBwd<3, F32, F32, NDHWC, NDHWC>>>&);
#endif
template <typename DOutDataType, typename DInDataType, typename InLayout, typename OutLayout>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::
DeviceAvgPoolBwd<3, DOutDataType, DInDataType, InLayout, OutLayout>>
{
using DeviceOp = DeviceAvgPoolBwd<3, DOutDataType, DInDataType, InLayout, OutLayout>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<InLayout, NDHWC> && is_same_v<OutLayout, NDHWC>)
{
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<DOutDataType, F16> && is_same_v<DInDataType, F16>)
add_device_avgpool_bwd_ndhwc_f16_instances(op_ptrs);
#endif
#ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<DOutDataType, BF16> && is_same_v<DInDataType, BF16>)
add_device_avgpool_bwd_ndhwc_bf16_instances(op_ptrs);
#endif
#ifdef CK_ENABLE_FP32
else if constexpr(is_same_v<DOutDataType, F32> && is_same_v<DInDataType, F32>)
add_device_avgpool_bwd_ndhwc_f32_instances(op_ptrs);
#endif
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// fp16_output
void add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmFixedNK<Row,
Row,
Row_Tuple,
Row,
F16,
F16,
F32_Tuple,
F16,
PassThrough,
PassThrough,
Add>>>& instances);
void add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmFixedNK<Row,
Col,
Row_Tuple,
Row,
F16,
F16,
F32_Tuple,
F16,
PassThrough,
PassThrough,
Add>>>& instances);
// fp32_output
void add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f32_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmFixedNK<Row,
Row,
Row_Tuple,
Row,
F16,
F16,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Add>>>& instances);
void add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f32_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmFixedNK<Row,
Col,
Row_Tuple,
Row,
F16,
F16,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Add>>>& instances);
template <typename ALayout,
typename BLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename EDataType>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceGroupedGemmFixedNK<ALayout,
BLayout,
Row_Tuple,
ELayout,
ADataType,
BDataType,
F32_Tuple,
EDataType,
PassThrough,
PassThrough,
Add>>
{
using DeviceOp = DeviceGroupedGemmFixedNK<ALayout,
BLayout,
Row_Tuple,
ELayout,
ADataType,
BDataType,
F32_Tuple,
EDataType,
PassThrough,
PassThrough,
Add>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
// fp16_output
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
}
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
}
}
// fp32_output
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<EDataType, float>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f32_mk_kn_mn_instances(op_ptrs);
}
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f32_mk_nk_mn_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_operation/gpu/device/device_max_pool_bwd.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
#ifdef CK_ENABLE_FP16
void add_device_maxpool_bwd_f16_instances(
std::vector<std::unique_ptr<DeviceMaxPoolBwd<F16, I32, F16>>>&);
#endif
#ifdef CK_ENABLE_BF16
void add_device_maxpool_bwd_bf16_instances(
std::vector<std::unique_ptr<DeviceMaxPoolBwd<BF16, I32, BF16>>>&);
#endif
#ifdef CK_ENABLE_FP32
void add_device_maxpool_bwd_f32_instances(
std::vector<std::unique_ptr<DeviceMaxPoolBwd<F32, I32, F32>>>&);
#endif
template <typename DOutDataType, typename IndexDataType, typename DInDataType>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceMaxPoolBwd<DOutDataType, IndexDataType, DInDataType>>
{
using DeviceOp = DeviceMaxPoolBwd<DOutDataType, IndexDataType, DInDataType>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<DOutDataType, F16> && is_same_v<DInDataType, F16> &&
is_same_v<IndexDataType, I32>)
add_device_maxpool_bwd_f16_instances(op_ptrs);
#endif
#ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<DOutDataType, BF16> && is_same_v<DInDataType, BF16> &&
is_same_v<IndexDataType, I32>)
add_device_maxpool_bwd_bf16_instances(op_ptrs);
#endif
#ifdef CK_ENABLE_FP32
else if constexpr(is_same_v<DOutDataType, F32> && is_same_v<DInDataType, F32> &&
is_same_v<IndexDataType, I32>)
add_device_maxpool_bwd_f32_instances(op_ptrs);
#endif
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -37,6 +37,21 @@ void add_device_pool3d_fwd_ndhwc_index_f16_instances( ...@@ -37,6 +37,21 @@ void add_device_pool3d_fwd_ndhwc_index_f16_instances(
std::vector<std::unique_ptr< std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, F16, F16, I32, NDHWC, NDHWC, MaxOp, true>>>&); DevicePoolFwd<InOutRank, WindowRank, F16, F16, I32, NDHWC, NDHWC, MaxOp, true>>>&);
#endif #endif
#ifdef CK_ENABLE_BF16
// BF16
void add_device_pool3d_fwd_ndhwc_bf16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, BF16, BF16, I32, NDHWC, NDHWC, MaxOp, false>>>&);
void add_device_pool3d_fwd_ndhwc_bf16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, BF16, BF16, I32, NDHWC, NDHWC, AvgOp, false>>>&);
// BF16 - return index
void add_device_pool3d_fwd_ndhwc_index_bf16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, BF16, BF16, I32, NDHWC, NDHWC, MaxOp, true>>>&);
#endif
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
// FP32 // FP32
void add_device_pool3d_fwd_ndhwc_f32_instances( void add_device_pool3d_fwd_ndhwc_f32_instances(
...@@ -98,9 +113,23 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DevicePoolFw ...@@ -98,9 +113,23 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DevicePoolFw
} }
} }
#endif #endif
#ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, BF16> && is_same_v<OutDataType, BF16> &&
is_same_v<IndexDataType, I32>)
{
if constexpr(OutputIndex && ReduceOpId == MaxOp)
{
add_device_pool3d_fwd_ndhwc_index_bf16_instances(op_ptrs);
}
else
{
add_device_pool3d_fwd_ndhwc_bf16_instances(op_ptrs);
}
}
#endif
#ifdef CK_ENABLE_FP32 #ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, F32> && is_same_v<OutDataType, F32> && else if constexpr(is_same_v<InDataType, F32> && is_same_v<OutDataType, F32> &&
is_same_v<IndexDataType, I32>) is_same_v<IndexDataType, I32>)
{ {
if constexpr(OutputIndex && ReduceOpId == MaxOp) if constexpr(OutputIndex && ReduceOpId == MaxOp)
{ {
......
...@@ -26,7 +26,9 @@ struct DeviceMem ...@@ -26,7 +26,9 @@ struct DeviceMem
void* GetDeviceBuffer() const; void* GetDeviceBuffer() const;
std::size_t GetBufferSize() const; std::size_t GetBufferSize() const;
void ToDevice(const void* p) const; void ToDevice(const void* p) const;
void ToDevice(const void* p, const std::size_t cpySize) const;
void FromDevice(void* p) const; void FromDevice(void* p) const;
void FromDevice(void* p, const std::size_t cpySize) const;
void SetZero() const; void SetZero() const;
template <typename T> template <typename T>
void SetValue(T x) const; void SetValue(T x) const;
......
set(DEVICE_AVGPOOL_BWD_INSTANCES)
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND DEVICE_AVGPOOL_BWD_INSTANCES device_avg_pool3d_bwd_ndhwc_f16_instance.cpp)
endif()
if(DTYPES MATCHES "bf16" OR NOT DEFINED DTYPES)
list(APPEND DEVICE_AVGPOOL_BWD_INSTANCES device_avg_pool3d_bwd_ndhwc_bf16_instance.cpp)
endif()
if(DTYPES MATCHES "fp32" OR NOT DEFINED DTYPES)
list(APPEND DEVICE_AVGPOOL_BWD_INSTANCES device_avg_pool3d_bwd_ndhwc_f32_instance.cpp)
endif()
add_instance_library(device_avg_pool3d_bwd_instance ${DEVICE_AVGPOOL_BWD_INSTANCES})
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_avgpool3d_bwd_ndhwc_ndhwc.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using I32 = int32_t;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using NDHWC = ck::tensor_layout::convolution::NDHWC;
using device_avgpool_bwd_ndhwc_f16_instances =
// clang-format off
std::tuple <
DeviceAvgPool3dBwd_NDHWC_NDHWC<F16, F16, F32, 256, 256, 1, 1, 1, 1>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<F16, F16, F32, 256, 256, 1, 2, 2, 2>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<F16, F16, F32, 256, 256, 1, 4, 4, 4>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<F16, F16, F32, 256, 256, 1, 8, 8, 8>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<F16, F16, F32, 256, 32, 8, 8, 8, 8>
// clang-format on
>;
using device_avgpool_bwd_ndhwc_bf16_instances =
// clang-format off
std::tuple <
DeviceAvgPool3dBwd_NDHWC_NDHWC<BF16, BF16, F32, 256, 256, 1, 1, 1, 1>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<BF16, BF16, F32, 256, 256, 1, 2, 2, 2>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<BF16, BF16, F32, 256, 256, 1, 4, 4, 4>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<BF16, BF16, F32, 256, 256, 1, 8, 8, 8>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<BF16, BF16, F32, 256, 32, 8, 8, 8, 8>
// clang-format on
>;
using device_avgpool_bwd_ndhwc_f32_instances =
// clang-format off
std::tuple <
DeviceAvgPool3dBwd_NDHWC_NDHWC<F32, F32, F32, 256, 256, 1, 1, 1, 1>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<F32, F32, F32, 256, 256, 1, 2, 2, 2>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<F32, F32, F32, 256, 256, 1, 4, 4, 4>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<F32, F32, F32, 256, 256, 1, 8, 8, 8>,
DeviceAvgPool3dBwd_NDHWC_NDHWC<F32, F32, F32, 256, 32, 8, 8, 8, 8>
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "avg_pool3d_bwd_ndhwc_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_avgpool_bwd_ndhwc_bf16_instances(
std::vector<std::unique_ptr<DeviceAvgPoolBwd<3, BF16, BF16, NDHWC, NDHWC>>>& instances)
{
add_device_operation_instances(instances, device_avgpool_bwd_ndhwc_bf16_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "avg_pool3d_bwd_ndhwc_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_avgpool_bwd_ndhwc_f16_instances(
std::vector<std::unique_ptr<DeviceAvgPoolBwd<3, F16, F16, NDHWC, NDHWC>>>& instances)
{
add_device_operation_instances(instances, device_avgpool_bwd_ndhwc_f16_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "avg_pool3d_bwd_ndhwc_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_avgpool_bwd_ndhwc_f32_instances(
std::vector<std::unique_ptr<DeviceAvgPoolBwd<3, F32, F32, NDHWC, NDHWC>>>& instances)
{
add_device_operation_instances(instances, device_avgpool_bwd_ndhwc_f32_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -83,7 +83,6 @@ using device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_tile_instanc ...@@ -83,7 +83,6 @@ using device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_tile_instanc
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v2>, DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v2> DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v2>
// clang-format on // clang-format on
// clang-format on
>; >;
void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instances( void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instances(
......
add_instance_library(device_grouped_gemm_bias_instance
device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_kn_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_nk_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f32_mk_kn_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f32_mk_nk_mn_instance.cpp
)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using D0DataType = F32;
using DsDataType = ck::Tuple<D0DataType>;
using D0Layout = Row;
using DsLayout = ck::Tuple<D0Layout>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_kn_mn_irregular_tile_instances =
std::tuple<
// clang-format off
//############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 2, 32, 32, 2, 1, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 16,16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 2, 32, 32, 1, 2, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 2, 32, 32, 2, 2, S< 1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S< 1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 2, 32, 32, 2, 2, S< 1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S< 1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>
// clang-format on
>;
void add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmFixedNK<Row,
Row,
DsLayout,
Row,
F16,
F16,
DsDataType,
F16,
PassThrough,
PassThrough,
Add>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_kn_mn_irregular_tile_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using D0DataType = F32;
using DsDataType = ck::Tuple<D0DataType>;
using D0Layout = Row;
using DsLayout = ck::Tuple<D0Layout>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_nk_mn_irregular_tile_instances =
std::tuple<
// clang-format off
//############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 128, 256, 64, 8, 8, 32, 32, 2, 4, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 128, 64, 64, 8, 8, 32, 32, 2, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 64, 128, 64, 8, 8, 32, 32, 1, 2, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 128, 128, 64, 8, 8, 32, 32, 4, 2, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 128, 64, 64, 8, 8, 32, 32, 2, 2, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 64, 128, 64, 8, 8, 32, 32, 2, 2, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 128, 32, 64, 8, 8, 32, 32, 2, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 32, 128, 64, 8, 8, 32, 32, 1, 2, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 32, 256, 64, 8, 8, 32, 32, 1, 4, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 64, 64, 64, 64, 8, 8, 32, 32, 2, 2, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 64, 64, 32, 64, 8, 8, 32, 32, 2, 1, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 64, 32, 64, 64, 8, 8, 32, 32, 1, 2, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>
// clang-format on
>;
void add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmFixedNK<Row,
Col,
DsLayout,
Row,
F16,
F16,
DsDataType,
F16,
PassThrough,
PassThrough,
Add>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_nk_mn_irregular_tile_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment