Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
1b5af83d
"src/map.cpp" did not exist on "ffaf6a19caf7713eae96b69d138474e1ed46f0da"
Commit
1b5af83d
authored
Oct 20, 2023
by
illsilin
Browse files
Merge branch 'develop' into lwpck-976
parents
aac26d32
1fd27d52
Changes
176
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1751 additions
and
3 deletions
+1751
-3
example/61_contraction_multi_ABD/contraction_multi_ABD_xdl_fp16.cpp
..._contraction_multi_ABD/contraction_multi_ABD_xdl_fp16.cpp
+328
-0
example/62_conv_fwd_activ/CMakeLists.txt
example/62_conv_fwd_activ/CMakeLists.txt
+35
-0
example/62_conv_fwd_activ/convnd_fwd_activ_common.hpp
example/62_conv_fwd_activ/convnd_fwd_activ_common.hpp
+238
-0
example/62_conv_fwd_activ/convnd_fwd_xdl_abs_fp16.cpp
example/62_conv_fwd_activ/convnd_fwd_xdl_abs_fp16.cpp
+11
-0
example/62_conv_fwd_activ/convnd_fwd_xdl_clippedrelu_fp16.cpp
...ple/62_conv_fwd_activ/convnd_fwd_xdl_clippedrelu_fp16.cpp
+11
-0
example/62_conv_fwd_activ/convnd_fwd_xdl_elu_fp16.cpp
example/62_conv_fwd_activ/convnd_fwd_xdl_elu_fp16.cpp
+11
-0
example/62_conv_fwd_activ/convnd_fwd_xdl_leakyrelu_fp16.cpp
example/62_conv_fwd_activ/convnd_fwd_xdl_leakyrelu_fp16.cpp
+11
-0
example/62_conv_fwd_activ/convnd_fwd_xdl_pow_fp16.cpp
example/62_conv_fwd_activ/convnd_fwd_xdl_pow_fp16.cpp
+11
-0
example/62_conv_fwd_activ/convnd_fwd_xdl_relu_fp16.cpp
example/62_conv_fwd_activ/convnd_fwd_xdl_relu_fp16.cpp
+11
-0
example/62_conv_fwd_activ/convnd_fwd_xdl_sigmoid_fp16.cpp
example/62_conv_fwd_activ/convnd_fwd_xdl_sigmoid_fp16.cpp
+11
-0
example/62_conv_fwd_activ/convnd_fwd_xdl_softrelu_fp16.cpp
example/62_conv_fwd_activ/convnd_fwd_xdl_softrelu_fp16.cpp
+11
-0
example/62_conv_fwd_activ/convnd_fwd_xdl_tanh_fp16.cpp
example/62_conv_fwd_activ/convnd_fwd_xdl_tanh_fp16.cpp
+11
-0
example/62_conv_fwd_activ/run_convnd_fwd_activ_example.inc
example/62_conv_fwd_activ/run_convnd_fwd_activ_example.inc
+91
-0
example/CMakeLists.txt
example/CMakeLists.txt
+6
-0
include/ck/ck.hpp
include/ck/ck.hpp
+4
-0
include/ck/host_utility/hip_check_error.hpp
include/ck/host_utility/hip_check_error.hpp
+15
-0
include/ck/tensor_operation/gpu/device/device_contraction_multiple_abd.hpp
..._operation/gpu/device/device_contraction_multiple_abd.hpp
+61
-0
include/ck/tensor_operation/gpu/device/device_normalization.hpp
...e/ck/tensor_operation/gpu/device/device_normalization.hpp
+5
-3
include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp
...ice/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp
+847
-0
include/ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp
...sor_operation/gpu/device/impl/device_elementwise_impl.hpp
+22
-0
No files found.
example/61_contraction_multi_ABD/contraction_multi_ABD_xdl_fp16.cpp
0 → 100644
View file @
1b5af83d
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_contraction.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/numeric.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
A0DataType
=
F16
;
using
A1DataType
=
F32
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DDataType
=
F16
;
using
EDataType
=
F16
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
struct
AlphaBetaAdd
{
AlphaBetaAdd
(
float
alpha
,
float
beta
)
:
alpha_
(
alpha
),
beta_
(
beta
){};
template
<
typename
E
,
typename
C
,
typename
D
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D
&
d
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
ck
::
half_t
,
float
,
ck
::
half_t
>
(
ck
::
half_t
&
e
,
const
float
&
c
,
const
ck
::
half_t
&
d
)
const
{
e
=
ck
::
type_convert
<
ck
::
half_t
>
(
alpha_
*
c
+
beta_
*
ck
::
type_convert
<
float
>
(
d
));
};
float
alpha_
;
float
beta_
;
};
struct
Multiply
{
__host__
__device__
constexpr
void
operator
()(
ck
::
half_t
&
a
,
const
ck
::
half_t
&
a0
,
const
float
&
a1
)
const
{
a
=
ck
::
type_convert
<
ck
::
half_t
>
(
ck
::
type_convert
<
float
>
(
a0
)
*
a1
);
}
};
using
AElementOp
=
Multiply
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AlphaBetaAdd
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceContractionMultipleABD_Xdl_CShuffle
<
NumDimM
,
NumDimN
,
NumDimK
,
ck
::
Tuple
<
A0DataType
,
A1DataType
>
,
ck
::
Tuple
<
BDataType
>
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
DDataType
>
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
float
alpha
=
1.0
f
;
float
beta
=
1.0
f
;
// A0[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a0_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a0_ms_ks_strides
{
128
*
32
*
64
,
32
*
64
,
64
,
1
};
// A1[M1, K1] -> A1[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a1_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a1_ms_ks_strides
{
0
,
64
,
0
,
1
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
64
*
32
*
64
,
32
*
64
,
64
,
1
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
128
*
32
*
64
,
32
*
64
,
64
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
128
*
32
*
64
,
32
*
64
,
64
,
1
};
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
exit
(
0
);
}
Tensor
<
A0DataType
>
a0_ms_ks
(
a0_ms_ks_lengths
,
a0_ms_ks_strides
);
Tensor
<
A1DataType
>
a1_ms_ks
(
a1_ms_ks_lengths
,
a1_ms_ks_strides
);
Tensor
<
BDataType
>
b_ns_ks
(
b_ns_ks_lengths
,
b_ns_ks_strides
);
Tensor
<
EDataType
>
d_ms_ns
(
d_ms_ns_lengths
,
d_ms_ns_strides
);
Tensor
<
EDataType
>
e_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
Tensor
<
EDataType
>
e_ms_ns_device_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
std
::
cout
<<
"a0_ms_ks: "
<<
a0_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a1_ms_ks: "
<<
a1_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_ns_ks: "
<<
b_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_ms_ns: "
<<
d_ms_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_ms_ns: "
<<
e_ms_ns_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a0_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
5
,
5
});
a1_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
A1DataType
>
{
-
5
,
5
});
b_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a0_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
a1_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
A1DataType
>
{
0.0
,
1.0
});
b_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
a0_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a1_device_buf
(
sizeof
(
A1DataType
)
*
a1_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_ms_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_ms_ns_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_device_buf
.
ToDevice
(
a0_ms_ks
.
mData
.
data
());
a1_device_buf
.
ToDevice
(
a1_ms_ks
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_ns_ks
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_ms_ns
.
mData
.
data
());
// set zero
e_device_buf
.
SetZero
();
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{
alpha
,
beta
};
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
std
::
array
<
const
void
*
,
2
>
{
a0_device_buf
.
GetDeviceBuffer
(),
a1_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
1
>
{
b_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
2
>
{
a0_ms_ks_lengths
,
a1_ms_ks_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
2
>
{
a0_ms_ks_strides
,
a1_ms_ks_strides
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
b_ns_ks_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
b_ns_ks_strides
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_strides
},
e_ms_ns_lengths
,
e_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_contraction with the specified compilation parameters does "
"not support this problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
if
(
time_kernel
)
{
ck
::
index_t
M
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
(),
NumDimM
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
N
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
K
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a0_ms_ks_lengths
.
begin
()
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
}
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
Tensor
<
A0DataType
>
a_ms_ks
(
a0_ms_ks_lengths
,
a0_ms_ks_strides
);
for
(
size_t
m0
=
0
;
m0
<
a_ms_ks
.
mDesc
.
GetLengths
()[
0
];
++
m0
)
{
for
(
size_t
m1
=
0
;
m1
<
a_ms_ks
.
mDesc
.
GetLengths
()[
1
];
++
m1
)
{
for
(
size_t
k0
=
0
;
k0
<
a_ms_ks
.
mDesc
.
GetLengths
()[
2
];
++
k0
)
{
for
(
size_t
k1
=
0
;
k1
<
a_ms_ks
.
mDesc
.
GetLengths
()[
3
];
++
k1
)
{
a_element_op
(
a_ms_ks
(
m0
,
m1
,
k0
,
k1
),
a0_ms_ks
(
m0
,
m1
,
k0
,
k1
),
a1_ms_ks
(
m0
,
m1
,
k0
,
k1
));
}
}
}
}
using
ReferenceOpInstance
=
ck
::
tensor_operation
::
host
::
ReferenceContraction_M2_N2_K2
<
NumDimM
,
NumDimN
,
NumDimK
,
A0DataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
PassThrough
,
BElementOp
>
;
auto
ref_op
=
ReferenceOpInstance
{};
auto
ref_invoker
=
ref_op
.
MakeInvoker
();
Tensor
<
float
>
empty_tensor
(
std
::
vector
<
ck
::
index_t
>
{},
std
::
vector
<
ck
::
index_t
>
{});
auto
ref_argument
=
ref_op
.
MakeArgument
(
a_ms_ks
,
b_ns_ks
,
c_ms_ns_host_result
,
PassThrough
{},
b_element_op
);
ref_invoker
.
Run
(
ref_argument
);
for
(
size_t
m0
=
0
;
m0
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
0
];
++
m0
)
{
for
(
size_t
m1
=
0
;
m1
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
1
];
++
m1
)
{
for
(
size_t
n0
=
0
;
n0
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
2
];
++
n0
)
{
for
(
size_t
n1
=
0
;
n1
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
3
];
++
n1
)
{
cde_element_op
(
e_ms_ns_host_result
(
m0
,
m1
,
n0
,
n1
),
c_ms_ns_host_result
(
m0
,
m1
,
n0
,
n1
),
d_ms_ns
(
m0
,
m1
,
n0
,
n1
));
}
}
}
}
e_device_buf
.
FromDevice
(
e_ms_ns_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_ms_ns_device_result
,
e_ms_ns_host_result
)
?
0
:
1
;
}
return
0
;
}
example/62_conv_fwd_activ/CMakeLists.txt
0 → 100644
View file @
1b5af83d
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_custom_target
(
example_convnd_fwd_activ_xdl
)
# Sigmoid
add_example_executable
(
example_convnd_fwd_xdl_sigmoid_fp16 convnd_fwd_xdl_sigmoid_fp16.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_sigmoid_fp16
)
# Tanh
add_example_executable
(
example_convnd_fwd_xdl_tanh_fp16 convnd_fwd_xdl_tanh_fp16.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_tanh_fp16
)
# Relu
add_example_executable
(
example_convnd_fwd_xdl_relu_fp16 convnd_fwd_xdl_relu_fp16.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_relu_fp16
)
# SoftRelu
add_example_executable
(
example_convnd_fwd_xdl_softrelu_fp16 convnd_fwd_xdl_softrelu_fp16.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_softrelu_fp16
)
# Abs
add_example_executable
(
example_convnd_fwd_xdl_abs_fp16 convnd_fwd_xdl_abs_fp16.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_abs_fp16
)
# Pow
add_example_executable
(
example_convnd_fwd_xdl_pow_fp16 convnd_fwd_xdl_pow_fp16.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_pow_fp16
)
# Clipped Relu
add_example_executable
(
example_convnd_fwd_xdl_clippedrelu_fp16 convnd_fwd_xdl_clippedrelu_fp16.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_clippedrelu_fp16
)
# Leaky Relu
add_example_executable
(
example_convnd_fwd_xdl_leakyrelu_fp16 convnd_fwd_xdl_leakyrelu_fp16.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_leakyrelu_fp16
)
# Elu
add_example_executable
(
example_convnd_fwd_xdl_elu_fp16 convnd_fwd_xdl_elu_fp16.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_elu_fp16
)
set
(
target 1
)
endif
()
endforeach
()
example/62_conv_fwd_activ/convnd_fwd_activ_common.hpp
0 → 100644
View file @
1b5af83d
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
constexpr
ck
::
index_t
NDimSpatial
=
3
;
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNDHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNDHWK
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
typename
OutElementOp
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
DeviceConvNDFwdInstance
>
bool
run_grouped_conv_fwd
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
{
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
2
,
2
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
2
,
2
});
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
1.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.05
,
0.05
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
// do Conv
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
out_host
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
out_element_op
);
ref_invoker
.
Run
(
ref_argument
);
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
out_device
,
out_host
,
"Error: incorrect results!"
);
}
return
true
;
}
example/62_conv_fwd_activ/convnd_fwd_xdl_abs_fp16.cpp
0 → 100644
View file @
1b5af83d
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_common.hpp"
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryAbs
;
using
DeviceGroupedConvNDFwdActivInstance
=
DeviceGroupedConvNDFwdInstance
<
OutElementOp
>
;
#include "run_convnd_fwd_activ_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_example
(
argc
,
argv
);
}
example/62_conv_fwd_activ/convnd_fwd_xdl_clippedrelu_fp16.cpp
0 → 100644
View file @
1b5af83d
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_common.hpp"
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
ClippedRelu
;
using
DeviceGroupedConvNDFwdActivInstance
=
DeviceGroupedConvNDFwdInstance
<
OutElementOp
>
;
#include "run_convnd_fwd_activ_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_example
(
argc
,
argv
);
}
example/62_conv_fwd_activ/convnd_fwd_xdl_elu_fp16.cpp
0 → 100644
View file @
1b5af83d
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_common.hpp"
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
Elu
;
using
DeviceGroupedConvNDFwdActivInstance
=
DeviceGroupedConvNDFwdInstance
<
OutElementOp
>
;
#include "run_convnd_fwd_activ_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_example
(
argc
,
argv
);
}
example/62_conv_fwd_activ/convnd_fwd_xdl_leakyrelu_fp16.cpp
0 → 100644
View file @
1b5af83d
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_common.hpp"
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
LeakyRelu
;
using
DeviceGroupedConvNDFwdActivInstance
=
DeviceGroupedConvNDFwdInstance
<
OutElementOp
>
;
#include "run_convnd_fwd_activ_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_example
(
argc
,
argv
);
}
example/62_conv_fwd_activ/convnd_fwd_xdl_pow_fp16.cpp
0 → 100644
View file @
1b5af83d
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_common.hpp"
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
Power
;
using
DeviceGroupedConvNDFwdActivInstance
=
DeviceGroupedConvNDFwdInstance
<
OutElementOp
>
;
#include "run_convnd_fwd_activ_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_example
(
argc
,
argv
);
}
example/62_conv_fwd_activ/convnd_fwd_xdl_relu_fp16.cpp
0 → 100644
View file @
1b5af83d
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_common.hpp"
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
DeviceGroupedConvNDFwdActivInstance
=
DeviceGroupedConvNDFwdInstance
<
OutElementOp
>
;
#include "run_convnd_fwd_activ_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_example
(
argc
,
argv
);
}
example/62_conv_fwd_activ/convnd_fwd_xdl_sigmoid_fp16.cpp
0 → 100644
View file @
1b5af83d
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_common.hpp"
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
Sigmoid
;
using
DeviceGroupedConvNDFwdActivInstance
=
DeviceGroupedConvNDFwdInstance
<
OutElementOp
>
;
#include "run_convnd_fwd_activ_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_example
(
argc
,
argv
);
}
example/62_conv_fwd_activ/convnd_fwd_xdl_softrelu_fp16.cpp
0 → 100644
View file @
1b5af83d
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_common.hpp"
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
SoftRelu
;
using
DeviceGroupedConvNDFwdActivInstance
=
DeviceGroupedConvNDFwdInstance
<
OutElementOp
>
;
#include "run_convnd_fwd_activ_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_example
(
argc
,
argv
);
}
example/62_conv_fwd_activ/convnd_fwd_xdl_tanh_fp16.cpp
0 → 100644
View file @
1b5af83d
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_common.hpp"
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
TanH
;
using
DeviceGroupedConvNDFwdActivInstance
=
DeviceGroupedConvNDFwdInstance
<
OutElementOp
>
;
#include "run_convnd_fwd_activ_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_example
(
argc
,
argv
);
}
example/62_conv_fwd_activ/run_convnd_fwd_activ_example.inc
0 → 100644
View file @
1b5af83d
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
void
print_helper_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
}
bool
run_convnd_fwd_example
(
int
argc
,
char
*
argv
[])
{
print_helper_msg
();
bool
do_verification
=
true
;
// Use floats for SoftRelu by default to avoid overflow after e^x.
int
init_method
=
std
::
is_same_v
<
OutElementOp
,
ck
::
tensor_operation
::
element_wise
::
SoftRelu
>
?
2
:
1
;
bool
time_kernel
=
false
;
// Following shapes are selected to avoid overflow. Expect inf in case of
// size increase for some elementwise ops.
ck
::
utils
::
conv
::
ConvParam
conv_param
{
3
,
1
,
16
,
128
,
8
,
{
3
,
3
,
3
},
{
17
,
17
,
17
},
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}};
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_param
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
5
,
argv
);
}
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{};
const
auto
run
=
[
&
]()
{
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_grouped_conv_fwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceGroupedConvNDFwdActivInstance
>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
};
if
(
conv_param
.
num_dim_spatial_
==
3
)
{
return
run
();
}
return
false
;
}
example/CMakeLists.txt
View file @
1b5af83d
...
@@ -62,6 +62,12 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
...
@@ -62,6 +62,12 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
set
(
result
${
result
}
PARENT_SCOPE
)
set
(
result
${
result
}
PARENT_SCOPE
)
endfunction
(
add_example_executable EXAMPLE_NAME
)
endfunction
(
add_example_executable EXAMPLE_NAME
)
function
(
add_example_dependencies EXAMPLE_NAME FILE_NAME
)
if
(
result EQUAL 0
)
add_dependencies
(
${
EXAMPLE_NAME
}
${
FILE_NAME
}
)
endif
()
endfunction
(
add_example_dependencies EXAMPLE_NAME
)
function
(
add_example_executable_no_testing EXAMPLE_NAME FILE_NAME
)
function
(
add_example_executable_no_testing EXAMPLE_NAME FILE_NAME
)
message
(
"adding example
${
EXAMPLE_NAME
}
"
)
message
(
"adding example
${
EXAMPLE_NAME
}
"
)
set
(
result 1
)
set
(
result 1
)
...
...
include/ck/ck.hpp
View file @
1b5af83d
...
@@ -66,6 +66,10 @@
...
@@ -66,6 +66,10 @@
#define CK_USE_AMD_V_FMAC_F32
#define CK_USE_AMD_V_FMAC_F32
#define CK_USE_AMD_V_DOT2_F32_F16
#define CK_USE_AMD_V_DOT2_F32_F16
#define CK_USE_AMD_V_DOT4_I32_I8
#define CK_USE_AMD_V_DOT4_I32_I8
#elif defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__)
#define CK_USE_AMD_V_FMAC_F32
#define CK_USE_AMD_V_DOT2_F32_F16
#define CK_USE_AMD_V_DOT4_I32_I8_GFX11
#endif
#endif
// MFMA instruction
// MFMA instruction
...
...
include/ck/host_utility/hip_check_error.hpp
View file @
1b5af83d
...
@@ -3,8 +3,10 @@
...
@@ -3,8 +3,10 @@
#pragma once
#pragma once
#include <sstream>
#include <hip/hip_runtime.h>
#include <hip/hip_runtime.h>
// To be removed, which really does not tell the location of failed HIP functional call
inline
void
hip_check_error
(
hipError_t
x
)
inline
void
hip_check_error
(
hipError_t
x
)
{
{
if
(
x
!=
hipSuccess
)
if
(
x
!=
hipSuccess
)
...
@@ -15,3 +17,16 @@ inline void hip_check_error(hipError_t x)
...
@@ -15,3 +17,16 @@ inline void hip_check_error(hipError_t x)
throw
std
::
runtime_error
(
ss
.
str
());
throw
std
::
runtime_error
(
ss
.
str
());
}
}
}
}
#define HIP_CHECK_ERROR(retval_or_funcall) \
do \
{ \
hipError_t _tmpVal = retval_or_funcall; \
if(_tmpVal != hipSuccess) \
{ \
std::ostringstream ostr; \
ostr << "HIP Function Failed (" << __FILE__ << "," << __LINE__ << ") " \
<< hipGetErrorString(_tmpVal); \
throw std::runtime_error(ostr.str()); \
} \
} while(0)
include/ck/tensor_operation/gpu/device/device_contraction_multiple_abd.hpp
0 → 100644
View file @
1b5af83d
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// GEMM:
// input : A0[M0, M1, ... K0, K1, ...], ...
// input : B0[N0, N1, ... K0, K1, ...], ...
// input : D0[M0, M1, ... N0, N1, ...], D1[M0, M1, ... N0, N1, ...], ...
// output : E[M0, M1, ... N0, N1, ...]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// D0, D1, ... and E have the same layout
template
<
index_t
NumDimM
,
index_t
NumDimN
,
index_t
NumDimK
,
typename
AsDataType
,
typename
BsDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
struct
DeviceContractionMultipleABD
:
public
BaseOperator
{
static
constexpr
index_t
NumATensor
=
AsDataType
::
Size
();
static
constexpr
index_t
NumBTensor
=
BsDataType
::
Size
();
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
array
<
const
void
*
,
NumATensor
>
p_as
,
std
::
array
<
const
void
*
,
NumBTensor
>
p_bs
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumATensor
>&
a_ms_ks_lengths
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumATensor
>&
a_ms_ks_strides
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumBTensor
>&
b_ns_ks_lengths
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumBTensor
>&
b_ns_ks_strides
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
d_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
d_ms_ns_strides
,
const
std
::
vector
<
index_t
>&
e_ms_ns_length
,
const
std
::
vector
<
index_t
>&
e_ms_ns_stride
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_normalization.hpp
View file @
1b5af83d
...
@@ -14,8 +14,8 @@ namespace device {
...
@@ -14,8 +14,8 @@ namespace device {
template
<
typename
XDataType
,
template
<
typename
XDataType
,
typename
GammaDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
BetaDataType
,
typename
ComputeDataType
,
typename
YDataType
,
typename
YDataType
,
typename
SaveMeanInvStdDataType
,
typename
YElementwiseOperation
,
typename
YElementwiseOperation
,
index_t
Rank
,
index_t
Rank
,
index_t
NumReduceDim
>
index_t
NumReduceDim
>
...
@@ -27,6 +27,8 @@ struct DeviceNormalization : public BaseOperator
...
@@ -27,6 +27,8 @@ struct DeviceNormalization : public BaseOperator
const
std
::
vector
<
index_t
>
gammaStrides
,
const
std
::
vector
<
index_t
>
gammaStrides
,
const
std
::
vector
<
index_t
>
betaStrides
,
const
std
::
vector
<
index_t
>
betaStrides
,
const
std
::
vector
<
index_t
>
yStrides
,
const
std
::
vector
<
index_t
>
yStrides
,
const
std
::
vector
<
index_t
>
saveMeanStrides
,
const
std
::
vector
<
index_t
>
saveInvStdStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
const
std
::
vector
<
index_t
>
reduceDims
,
double
epsilon
,
double
epsilon
,
const
void
*
p_x
,
const
void
*
p_x
,
...
@@ -43,16 +45,16 @@ struct DeviceNormalization : public BaseOperator
...
@@ -43,16 +45,16 @@ struct DeviceNormalization : public BaseOperator
template
<
typename
XDataType
,
template
<
typename
XDataType
,
typename
GammaDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
BetaDataType
,
typename
ComputeDataType
,
typename
YDataType
,
typename
YDataType
,
typename
SaveMeanInvStdDataType
,
typename
YElementwiseOperation
,
typename
YElementwiseOperation
,
index_t
Rank
,
index_t
Rank
,
index_t
NumReduceDim
>
index_t
NumReduceDim
>
using
DeviceNormalizationPtr
=
std
::
unique_ptr
<
DeviceNormalization
<
XDataType
,
using
DeviceNormalizationPtr
=
std
::
unique_ptr
<
DeviceNormalization
<
XDataType
,
GammaDataType
,
GammaDataType
,
BetaDataType
,
BetaDataType
,
ComputeDataType
,
YDataType
,
YDataType
,
SaveMeanInvStdDataType
,
YElementwiseOperation
,
YElementwiseOperation
,
Rank
,
Rank
,
NumReduceDim
>>
;
NumReduceDim
>>
;
...
...
include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp
0 → 100644
View file @
1b5af83d
This diff is collapsed.
Click to expand it.
include/ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp
View file @
1b5af83d
...
@@ -296,6 +296,28 @@ struct DeviceElementwiseImpl
...
@@ -296,6 +296,28 @@ struct DeviceElementwiseImpl
{
{
return
std
::
make_unique
<
Invoker
>
();
return
std
::
make_unique
<
Invoker
>
();
};
};
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceElementwiseImpl<"
;
str
<<
"NumDim_"
<<
NumDim
<<
","
;
str
<<
"MPerThread_"
<<
MPerThread
<<
","
;
str
<<
"InScalarPerVector"
;
static_for
<
0
,
InScalarPerVectorSeq
::
Size
(),
1
>
{}([
&
](
auto
i
)
{
str
<<
"_"
<<
InScalarPerVectorSeq
::
At
(
i
).
value
;
});
str
<<
","
;
str
<<
"OutScalarPerVector"
;
static_for
<
0
,
OutScalarPerVectorSeq
::
Size
(),
1
>
{}([
&
](
auto
i
)
{
str
<<
"_"
<<
OutScalarPerVectorSeq
::
At
(
i
).
value
;
});
str
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
// namespace device
};
// namespace device
}
// namespace device
}
// namespace device
...
...
Prev
1
2
3
4
5
6
7
…
9
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment