Commit 1b5af83d authored by illsilin's avatar illsilin
Browse files

Merge branch 'develop' into lwpck-976

parents aac26d32 1fd27d52
......@@ -127,7 +127,50 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
PipelineVer,
ComputeType>;
using Argument = typename GridwiseGemm::Argument;
struct Argument : public GridwiseGemm::Argument
{
Argument(const ADataType* p_a_grid_,
const BDataType* p_b_grid_,
CDataType* p_c_grid_,
index_t M_,
index_t N_,
index_t K_,
index_t StrideA_,
index_t StrideB_,
index_t StrideC_,
index_t MPadded_,
index_t NPadded_,
index_t KPadded_,
index_t K0_,
index_t k_batch_,
AElementwiseOperation a_element_op_,
BElementwiseOperation b_element_op_,
CElementwiseOperation c_element_op_)
: GridwiseGemm::Argument(p_a_grid_,
p_b_grid_,
p_c_grid_,
M_,
N_,
K_,
StrideA_,
StrideB_,
StrideC_,
MPadded_,
NPadded_,
KPadded_,
K0_,
k_batch_),
a_element_op(a_element_op_),
b_element_op(b_element_op_),
c_element_op(c_element_op_)
{
}
AElementwiseOperation a_element_op;
BElementwiseOperation b_element_op;
CElementwiseOperation c_element_op;
};
using DefaultBlock2CTileMap = typename GridwiseGemm::DefaultBlock2CTileMap;
// Invoker
......@@ -168,8 +211,17 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
karg.M * karg.N * sizeof(CDataType),
stream_config.stream_id_));
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(gdx, gdy, gdz), dim3(BlockSize), 0, karg, b2c_map);
ave_time =
launch_and_time_kernel(stream_config,
kernel,
dim3(gdx, gdy, gdz),
dim3(BlockSize),
0,
static_cast<typename GridwiseGemm::Argument>(karg),
b2c_map,
karg.a_element_op,
karg.b_element_op,
karg.c_element_op);
};
if(has_main_k0_block_loop)
......@@ -180,7 +232,10 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
kernel_gemm_xdlops_v2r4r2_simplified<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
DefaultBlock2CTileMap>;
DefaultBlock2CTileMap,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>;
Run(kernel);
}
......@@ -190,7 +245,10 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
kernel_gemm_xdlops_v2r4r2_simplified<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
DefaultBlock2CTileMap>;
DefaultBlock2CTileMap,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>;
Run(kernel);
}
......@@ -203,7 +261,10 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
kernel_gemm_xdlops_v2r4r2_simplified<GridwiseGemm,
false,
InMemoryDataOperationEnum::Set,
DefaultBlock2CTileMap>;
DefaultBlock2CTileMap,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>;
Run(kernel);
}
......@@ -213,7 +274,10 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
kernel_gemm_xdlops_v2r4r2_simplified<GridwiseGemm,
false,
InMemoryDataOperationEnum::AtomicAdd,
DefaultBlock2CTileMap>;
DefaultBlock2CTileMap,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>;
Run(kernel);
}
......@@ -261,12 +325,12 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
index_t KBatch)
{
return Argument{p_a,
return Argument(p_a,
p_b,
p_c,
M,
......@@ -279,7 +343,10 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
GridwiseGemm::CalculateNPadded(N),
GridwiseGemm::CalculateKPadded(K, KBatch),
GridwiseGemm::CalculateK0(K, KBatch),
KBatch};
KBatch,
a_element_op,
b_element_op,
c_element_op);
}
static auto MakeInvoker() { return Invoker{}; }
......@@ -294,9 +361,9 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
ck::index_t KBatch = 1) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
......@@ -312,7 +379,10 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
GridwiseGemm::CalculateNPadded(N),
GridwiseGemm::CalculateKPadded(K, KBatch),
GridwiseGemm::CalculateK0(K, KBatch),
KBatch);
KBatch,
a_element_op,
b_element_op,
c_element_op);
}
// polymorphic
......
......@@ -565,7 +565,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
auto launch_kernel = [&](auto has_main_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
const auto kernel = kernel_grouped_conv_fwd_multiple_d_wmma_cshuffle<
const auto kernel = kernel_grouped_conv_multiple_d_wmma_cshuffle<
GridwiseGemm,
ADataType,
BDataType,
......
......@@ -12,6 +12,7 @@
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_dl_v1r3.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
......@@ -22,32 +23,6 @@ namespace ck {
namespace tensor_operation {
namespace device {
namespace {
struct ComputePtrOffsetOfStridedBatch
{
__host__ __device__ constexpr long_index_t GetAPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideA_);
}
__host__ __device__ constexpr long_index_t GetBPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideB_);
}
__host__ __device__ constexpr long_index_t GetCPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideC_);
}
index_t BatchStrideA_;
index_t BatchStrideB_;
index_t BatchStrideC_;
};
} // namespace
template <typename GridwiseGemm,
typename FloatAB,
typename FloatC,
......@@ -952,7 +927,7 @@ struct DeviceGroupedConvBwdWeight_Dl : public DeviceGroupedConvBwdWeight<NDimSpa
Block2CTileMap block_2_ctile_map_;
// for computing batch offset
ComputePtrOffsetOfStridedBatch compute_ptr_offset_of_batch_;
ComputePtrOffsetOfStridedBatch<I0> compute_ptr_offset_of_batch_;
// element-wise op
OutElementwiseOperation a_element_op_;
......@@ -1024,7 +999,7 @@ struct DeviceGroupedConvBwdWeight_Dl : public DeviceGroupedConvBwdWeight<NDimSpa
remove_reference_t<DeviceOp::BGridDesc_B_K0_N0_N1_K1>,
remove_reference_t<DeviceOp::CGridDesc_M0_M10_M11_N0_N10_N11>,
remove_reference_t<DeviceOp::Block2CTileMap>,
ComputePtrOffsetOfStridedBatch,
ComputePtrOffsetOfStridedBatch<I0>,
has_main_loop,
has_double_loop>;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <numeric>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename AccDataType,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation,
ConvolutionBackwardWeightSpecialization ConvBackwardWeightSpecialization,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t K1,
index_t MPerWMMA,
index_t NPerWMMA,
index_t MRepeat,
index_t NRepeat,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_K1,
bool ABlockLdsAddExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsAddExtraN,
index_t CShuffleMRepeatPerShuffle,
index_t CShuffleNRepeatPerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
index_t NumGemmKPrefetchStage = 1,
LoopScheduler LoopSched = make_default_loop_scheduler(),
ck::PipelineVersion PipelineVer = ck::PipelineVersion::v1,
typename ck::enable_if<NDimSpatial == 3, bool>::type = false>
struct DeviceGroupedConvBwdWeight_Wmma_CShuffle
: public DeviceGroupedConvBwdWeight<NDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation>
{
using DeviceOp = DeviceGroupedConvBwdWeight_Wmma_CShuffle;
using ADataType = OutDataType;
using BDataType = InDataType;
using CDataType = WeiDataType;
using AElementwiseOperation = OutElementwiseOperation;
using BElementwiseOperation = InElementwiseOperation;
using CElementwiseOperation = WeiElementwiseOperation;
// TODO make A/B datatype different
using ABDataType = InDataType;
// 3d
static constexpr bool is_NDHWGK_GKZYXC_NDHWGC =
is_same_v<InLayout, tensor_layout::convolution::NDHWGC> &&
is_same_v<WeiLayout, tensor_layout::convolution::GKZYXC> &&
is_same_v<OutLayout, tensor_layout::convolution::NDHWGK>;
static constexpr bool is_GNDHWK_GKZYXC_GNDHWC =
is_same_v<InLayout, tensor_layout::convolution::GNDHWC> &&
is_same_v<WeiLayout, tensor_layout::convolution::GKZYXC> &&
is_same_v<OutLayout, tensor_layout::convolution::GNDHWK>;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto GemmK1Number = Number<K1>{};
static constexpr index_t KPerBlock = K0PerBlock * GemmK1Number;
template <index_t NDim, typename ck::enable_if<NDim == 3, bool>::type = false>
constexpr static auto
make_out_grid_desc(const index_t N,
const index_t Do,
const index_t Ho,
const index_t Wo,
const index_t K,
const std::array<index_t, NDimSpatial + 3>& output_strides)
{
const index_t WoStride = output_strides[5];
const auto KStride = Number<1>{};
return make_naive_tensor_descriptor(make_tuple(N * Do * Ho * Wo, K),
make_tuple(WoStride, KStride));
}
template <index_t NDim, typename ck::enable_if<NDim == 3, bool>::type = false>
constexpr static auto
make_in_grid_desc(const index_t N,
const index_t Di,
const index_t Hi,
const index_t Wi,
const index_t C,
const std::array<index_t, NDimSpatial + 3>& input_strides)
{
const index_t NStride = input_strides[1];
const index_t DiStride = input_strides[3];
const index_t HiStride = input_strides[4];
const index_t WiStride = input_strides[5];
const auto CStride = input_strides[2];
if constexpr(ConvBackwardWeightSpecialization ==
ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
return make_naive_tensor_descriptor(make_tuple(N * Di * Hi * Wi, C),
make_tuple(WiStride, CStride));
}
else
{
return make_naive_tensor_descriptor(
make_tuple(N, Di, Hi, Wi, C),
make_tuple(NStride, DiStride, HiStride, WiStride, CStride));
}
}
template <index_t NDim, typename ck::enable_if<NDim == 3, bool>::type = false>
constexpr static auto
make_wei_grid_desc(const index_t K,
const index_t Z,
const index_t Y,
const index_t X,
const index_t C,
const std::array<index_t, NDimSpatial + 3>& weights_strides)
{
const auto CStride = Number<1>{};
const auto KStride = weights_strides[1];
return make_naive_tensor_descriptor(make_tuple(K, Z * Y * X * C),
make_tuple(KStride, CStride));
}
template <index_t NDim, typename ck::enable_if<NDim == 3, bool>::type = false>
static auto MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
const index_t N,
const index_t K,
const index_t C,
const std::array<index_t, NDimSpatial>& input_spatial_lengths,
const std::array<index_t, NDimSpatial>& filter_spatial_lengths,
const std::array<index_t, NDimSpatial>& output_spatial_lengths,
const std::array<index_t, NDimSpatial + 3>& input_strides,
const std::array<index_t, NDimSpatial + 3>& weights_strides,
const std::array<index_t, NDimSpatial + 3>& output_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
{
using namespace ck;
const index_t Di = input_spatial_lengths[0];
const index_t Hi = input_spatial_lengths[1];
const index_t Wi = input_spatial_lengths[2];
const index_t Do = output_spatial_lengths[0];
const index_t Ho = output_spatial_lengths[1];
const index_t Wo = output_spatial_lengths[2];
const index_t Z = filter_spatial_lengths[0];
const index_t Y = filter_spatial_lengths[1];
const index_t X = filter_spatial_lengths[2];
const index_t ConvStrideD = conv_filter_strides[0];
const index_t ConvStrideH = conv_filter_strides[1];
const index_t ConvStrideW = conv_filter_strides[2];
const index_t ConvDilationD = conv_filter_dilations[0];
const index_t ConvDilationH = conv_filter_dilations[1];
const index_t ConvDilationW = conv_filter_dilations[2];
const index_t InLeftPadD = input_left_pads[0];
const index_t InLeftPadH = input_left_pads[1];
const index_t InLeftPadW = input_left_pads[2];
const index_t InRightPadD = input_right_pads[0];
const index_t InRightPadH = input_right_pads[1];
const index_t InRightPadW = input_right_pads[2];
const index_t GemmKTotal = N * Do * Ho * Wo;
const index_t GemmM = K;
const index_t GemmN = C * Z * X * Y;
const auto PadGemmM = (MPerBlock - GemmM % MPerBlock) % MPerBlock;
const auto PadGemmN = (NPerBlock - GemmN % NPerBlock) % NPerBlock;
const index_t GemmK0 =
math::integer_divide_ceil(GemmKTotal, GemmK1Number * K0PerBlock) * K0PerBlock;
const index_t GemmKPad = GemmK0 * GemmK1Number;
const auto out_grid_desc = make_out_grid_desc<NDim>(N, Do, Ho, Wo, K, output_strides);
const auto in_grid_desc = make_in_grid_desc<NDim>(N, Di, Hi, Wi, C, input_strides);
const auto wei_grid_desc = make_wei_grid_desc<NDim>(K, Z, Y, X, C, weights_strides);
if constexpr(ConvBackwardWeightSpecialization ==
ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
// A: output tensor
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// B: input tensor
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmK0, GemmK1Number)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_grid_desc);
}
else
{
// A: output tensor
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// B: input tensor
const auto in_n_dip_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Di, InLeftPadD, InRightPadD),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_n_z_do_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_dip_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Z, Do), make_tuple(ConvDilationD, ConvStrideD)),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{},
Sequence<1, 2>{},
Sequence<3, 4>{},
Sequence<5, 6>{},
Sequence<7>{}));
const auto in_gemmktotal_gemmn_grid_desc = transform_tensor_descriptor(
in_n_z_do_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(Z, Y, X, C)),
make_merge_transform(make_tuple(N, Do, Ho, Wo))),
make_tuple(Sequence<1, 3, 5, 7>{}, Sequence<0, 2, 4, 6>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmK0, GemmK1Number)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// Pad
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_pad_grid_desc =
transform_tensor_descriptor(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(GemmK0),
make_right_pad_transform(GemmM, PadGemmM),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_pad_grid_desc =
transform_tensor_descriptor(
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(GemmK0),
make_right_pad_transform(GemmN, PadGemmN),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto wei_gemmm_gemmn_pad_grid_desc =
transform_tensor_descriptor(wei_grid_desc,
make_tuple(make_right_pad_transform(GemmM, PadGemmM),
make_right_pad_transform(GemmN, PadGemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_pad_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_pad_grid_desc,
wei_gemmm_gemmn_pad_grid_desc);
}
}
template <index_t NDim, typename ck::enable_if<NDim == 3, bool>::type = false>
static auto GetABCGridDesc()
{
const index_t dim = 1;
const std::array<index_t, NDimSpatial> lengths{1, 1, 1};
const std::array<index_t, NDimSpatial + 3> strides{1, 1, 1, 1, 1, 1};
const std::array<index_t, NDimSpatial> params{1, 1, 1};
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<3>(dim,
dim,
dim,
lengths,
lengths,
lengths,
strides,
strides,
strides,
params,
params,
params,
params);
}
using ABCGridDescs = decltype(GetABCGridDesc<NDimSpatial>());
using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I0])>;
using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I1])>;
using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>;
using GridwiseGemm = GridwiseGemmMultipleD_k0mk1_k0nk1_mn_wmma_cshuffle<
// DataType Family
ADataType,
BDataType,
AccDataType,
CDataType,
Tuple<>,
CDataType,
// InMemory Data Descriptor
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
Tuple<>,
CGridDesc_M_N,
// ElementwiseOp Family
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
InMemoryDataOperationEnum::Set,
// Tiling Family
MPerBlock,
NPerBlock,
K0PerBlock,
MPerWMMA,
NPerWMMA,
K1,
MRepeat,
NRepeat,
// ThreadCluster Family
BlockSize,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false,
ABlockLdsAddExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false,
BBlockLdsAddExtraN,
CShuffleMRepeatPerShuffle,
CShuffleNRepeatPerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock,
NumGemmKPrefetchStage,
LoopSched,
PipelineVer>;
using DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
decltype(GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(Tuple<>{}));
using CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
decltype(GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
CGridDesc_M_N{}));
using Block2CTileMap = decltype(GridwiseGemm::MakeDefaultBlock2CTileMap(
CGridDesc_M_N{}, I1 /* M01 */, I1 /* N01 */));
struct Argument : public BaseArgument
{
Argument(const InDataType* p_in_grid,
WeiDataType* p_wei_grid,
const OutDataType* p_out_grid,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths, // input
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths, // weight
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths, // output
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op,
index_t split_k)
: p_a_grid_{p_out_grid},
p_b_grid_{p_in_grid},
p_c_grid_{p_wei_grid},
a_grid_desc_kbatch_k0_m_k1_{},
b_grid_desc_kbatch_k0_n_k1_{},
c_grid_desc_m_n_{},
c_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_ctile_map_{},
compute_ptr_offset_of_batch_{},
a_element_op_{out_element_op},
b_element_op_{in_element_op},
c_element_op_{wei_element_op},
Conv_G_{a_g_n_c_wis_lengths[0]},
Conv_N_{a_g_n_c_wis_lengths[1]},
Conv_K_{b_g_k_c_xs_lengths[1]},
Conv_C_{a_g_n_c_wis_lengths[2]},
input_spatial_lengths_{},
filter_spatial_lengths_{},
output_spatial_lengths_{},
conv_filter_strides_{conv_filter_strides},
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads},
k_batch_{split_k}
{
constexpr index_t spatial_offset = 3;
std::copy(begin(a_g_n_c_wis_lengths) + spatial_offset,
end(a_g_n_c_wis_lengths),
begin(input_spatial_lengths_));
std::copy(begin(b_g_k_c_xs_lengths) + spatial_offset,
end(b_g_k_c_xs_lengths),
begin(filter_spatial_lengths_));
std::copy(begin(e_g_n_k_wos_lengths) + spatial_offset,
end(e_g_n_k_wos_lengths),
begin(output_spatial_lengths_));
const auto descs =
DeviceOp::MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<NDimSpatial>(
Conv_N_,
Conv_K_,
Conv_C_,
input_spatial_lengths_,
filter_spatial_lengths_,
output_spatial_lengths_,
a_g_n_c_wis_strides,
b_g_k_c_xs_strides,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
a_grid_desc_kbatch_k0_m_k1_ = descs[I0];
b_grid_desc_kbatch_k0_n_k1_ = descs[I1];
c_grid_desc_m_n_ = descs[I2];
block_2_ctile_map_ = GridwiseGemm::MakeDefaultBlock2CTileMap(
c_grid_desc_m_n_, I1 /* M01 */, I1 /* N01 */);
// A/B/C Batch Stride
compute_ptr_offset_of_batch_.BatchStrideA_ = e_g_n_k_wos_strides[0];
compute_ptr_offset_of_batch_.BatchStrideB_ = a_g_n_c_wis_strides[0];
compute_ptr_offset_of_batch_.BatchStrideE_ =
Conv_K_ * Conv_C_ *
std::accumulate(begin(filter_spatial_lengths_),
end(filter_spatial_lengths_),
index_t{1},
std::multiplies<>{});
if(GridwiseGemm::CheckValidity(a_grid_desc_kbatch_k0_m_k1_,
b_grid_desc_kbatch_k0_n_k1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n_);
}
}
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
AGridDesc_K0_M_K1 a_grid_desc_kbatch_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_kbatch_k0_n_k1_;
CGridDesc_M_N c_grid_desc_m_n_;
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock c_grid_desc_mblock_mperblock_nblock_nperblock_;
Block2CTileMap block_2_ctile_map_;
// for computing batch offset
ComputePtrOffsetOfStridedBatch<I0> compute_ptr_offset_of_batch_;
OutElementwiseOperation a_element_op_;
InElementwiseOperation b_element_op_;
WeiElementwiseOperation c_element_op_;
// for checking IsSupportedArgument()
const index_t Conv_G_;
const index_t Conv_N_;
const index_t Conv_K_;
const index_t Conv_C_;
std::array<index_t, NDimSpatial> input_spatial_lengths_;
std::array<index_t, NDimSpatial> filter_spatial_lengths_;
std::array<index_t, NDimSpatial> output_spatial_lengths_;
const std::array<index_t, NDimSpatial>& conv_filter_strides_;
const std::array<index_t, NDimSpatial>& input_left_pads_;
const std::array<index_t, NDimSpatial>& input_right_pads_;
const index_t k_batch_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
void Print(const Argument& arg)
{
std::cout << "arg.a_grid_desc_kbatch_k0_m_k1_{"
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I0) << ", "
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_kbatch_k0_n_k1_{"
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I0) << ", "
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I1) << ", "
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{" << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(stream_config.log_level_ > 0)
{
Print(arg);
}
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_))
{
throw std::runtime_error(
"wrong! GridwiseGemmMultipleD_k0mk1_k0nk1_mn_wmma_cshuffle has invalid "
"setting");
}
const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_) * arg.Conv_G_;
const auto K0 = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1);
const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainKBlockLoop(K0);
auto launch_kernel = [&](auto has_main_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
const auto kernel = kernel_grouped_conv_multiple_d_wmma_cshuffle<
GridwiseGemm,
ADataType,
BDataType,
typename GridwiseGemm::DsGridPointer,
CDataType,
OutElementwiseOperation,
InElementwiseOperation,
WeiElementwiseOperation,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
ComputePtrOffsetOfStridedBatch<I0>,
has_main_loop>;
using EmptyTuple = Tuple<>;
return launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
EmptyTuple{}, // Ds
arg.p_c_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.Conv_G_,
arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock{},
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_ctile_map_,
arg.compute_ptr_offset_of_batch_);
};
if(has_main_k0_block_loop)
{
return launch_kernel(integral_constant<bool, true>{});
}
else
{
return launch_kernel(integral_constant<bool, false>{});
}
}
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
// check device
if(get_device_name() == "gfx1100" || get_device_name() == "gfx1101" ||
get_device_name() == "gfx1102")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, int32_t>))
{
return false;
}
}
else
{
return false;
}
// TODO: Add support for split_k > 1
if(arg.k_batch_ != 1)
{
return false;
}
if constexpr(!(is_NDHWGK_GKZYXC_NDHWGC || is_GNDHWK_GKZYXC_GNDHWC))
{
return false;
}
if constexpr(ConvBackwardWeightSpecialization ==
ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
// check if it's a 1x1 convolution with stride=1 and no padding
for(int i = 0; i < NDimSpatial; i++)
{
if(!(arg.filter_spatial_lengths_[i] == 1 && arg.conv_filter_strides_[i] == 1 &&
arg.input_left_pads_[i] == 0 && arg.input_right_pads_[i] == 0))
{
return false;
}
}
}
// vector load A/B matrix from global memory
if(!(ABlockTransferSrcVectorDim == 1 && BBlockTransferSrcVectorDim == 1 &&
arg.Conv_K_ % ABlockTransferSrcScalarPerVector == 0 &&
arg.Conv_C_ % BBlockTransferSrcScalarPerVector == 0))
{
return false;
}
// vector store C matrix into global memory
if(!(arg.Conv_C_ % CShuffleBlockTransferScalarPerVector_NPerBlock == 0))
{
return false;
}
// Gridwise GEMM size
return GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_);
}
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto
MakeArgument(const InDataType* p_in_grid,
WeiDataType* p_wei_grid,
const OutDataType* p_out_grid,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths, // input
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths, // weight
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths, // output
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op,
const index_t split_k)
{
return Argument{p_in_grid,
p_wei_grid,
p_out_grid,
a_g_n_c_wis_lengths, // input
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths, // weight
b_g_k_c_xs_strides,
e_g_n_k_wos_lengths, // output
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op,
split_k};
}
static auto MakeInvoker() { return Invoker{}; }
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in_grid,
void* p_wei_grid,
const void* p_out_grid,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths, // input
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths, // weight
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths, // output
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op,
const index_t split_k) override
{
return std::make_unique<Argument>(static_cast<const InDataType*>(p_in_grid),
static_cast<WeiDataType*>(p_wei_grid),
static_cast<const OutDataType*>(p_out_grid),
a_g_n_c_wis_lengths, // input
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths, // weight
b_g_k_c_xs_strides,
e_g_n_k_wos_lengths, // output
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op,
split_k);
}
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGroupedConvBwdWeight_Wmma_CShuffle"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock << ", "
<< getConvBackwardWeightSpecializationString(ConvBackwardWeightSpecialization) << ", "
<< K1 << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< ABlockTransferDstScalarPerVector_K1 << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< BBlockTransferDstScalarPerVector_K1 << ", "
<< CShuffleMRepeatPerShuffle << ", "
<< CShuffleNRepeatPerShuffle << ", "
<< CShuffleBlockTransferScalarPerVector_NPerBlock
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -14,6 +14,7 @@
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
......@@ -21,32 +22,6 @@ namespace ck {
namespace tensor_operation {
namespace device {
namespace {
struct ComputePtrOffsetOfStridedBatch
{
__host__ __device__ constexpr long_index_t GetAPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideA_);
}
__host__ __device__ constexpr long_index_t GetBPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideB_);
}
__host__ __device__ constexpr long_index_t GetCPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideC_);
}
index_t BatchStrideA_;
index_t BatchStrideB_;
index_t BatchStrideC_;
};
} // namespace
template <typename GridwiseGemm,
typename FloatA,
typename FloatB,
......@@ -1222,7 +1197,7 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
Block2CTileMap block_2_ctile_map_;
// for computing batch offset
ComputePtrOffsetOfStridedBatch compute_ptr_offset_of_batch_;
ComputePtrOffsetOfStridedBatch<I0> compute_ptr_offset_of_batch_;
index_t M01_;
index_t N01_;
......@@ -1301,7 +1276,7 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
remove_reference_t<DeviceOp::Block2CTileMap>,
ComputePtrOffsetOfStridedBatch,
ComputePtrOffsetOfStridedBatch<I0>,
has_main_loop>;
return launch_and_time_kernel(stream_config,
......@@ -1348,6 +1323,10 @@ struct DeviceGroupedConvBwdWeight_Xdl_CShuffle
static bool IsSupportedArgument(const Argument& arg)
{
if(!ck::is_xdl_supported())
{
return false;
}
if constexpr(NDimSpatial == 1)
{
if constexpr(!is_GNWK_GKXC_GNWC)
......
......@@ -471,7 +471,7 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
auto launch_kernel = [&](auto has_main_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
const auto kernel = kernel_grouped_conv_fwd_multiple_d_wmma_cshuffle<
const auto kernel = kernel_grouped_conv_multiple_d_wmma_cshuffle<
GridwiseOp,
ADataType,
BDataType,
......
......@@ -43,7 +43,13 @@ struct ComputePtrOffsetOfStridedBatch
return ds_offset;
}
__host__ __device__ constexpr long_index_t GetEPtrOffset(index_t g_idx) const
[[maybe_unused]] __host__ __device__ constexpr long_index_t GetEPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideE_);
}
// alias for kernels without multiple D
[[maybe_unused]] __host__ __device__ constexpr long_index_t GetCPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideE_);
}
......@@ -52,6 +58,7 @@ struct ComputePtrOffsetOfStridedBatch
index_t BatchStrideB_;
Array<ck::index_t, NumDTensor> BatchStrideDs_;
index_t BatchStrideE_;
index_t& BatchStrideC_ = BatchStrideE_; // alias for kernels without multiple D
};
} // namespace device
......
......@@ -28,6 +28,7 @@ template <typename XDataType,
typename BetaDataType,
typename ComputeDataType,
typename YDataType,
typename SaveMeanInvStdDataType,
typename YElementwiseOperation,
index_t Rank,
index_t NumReduceDim,
......@@ -43,12 +44,13 @@ template <typename XDataType,
index_t BetaSrcVectorDim,
index_t BetaSrcVectorSize,
index_t YDstVectorSize,
index_t SaveMeanInvStdDstVectorSize,
bool UseWelford = true>
struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
ComputeDataType,
YDataType,
SaveMeanInvStdDataType,
YElementwiseOperation,
Rank,
NumReduceDim>
......@@ -64,18 +66,24 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
(BetaSrcVectorDim == 1 && KThreadSliceSize % BetaSrcVectorSize == 0)),
"Invalid thread slice sizes and/or beta vector sizes configuration, please check!");
static_assert(MThreadSliceSize % SaveMeanInvStdDstVectorSize == 0,
"Invalid thread slice sizes and/or save mean and inverse std vector sizes "
"configuration, please check!");
using PassThrough = tensor_operation::element_wise::PassThrough;
static constexpr index_t NumInvariantDim = Rank - NumReduceDim;
static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
static constexpr bool reduceAllDim = (NumInvariantDim == 0);
static_assert(!reduceAllDim); // TODO
static auto MakeSrc2dDescriptor(const std::vector<index_t>& inLengths,
const std::vector<index_t>& inStrides,
int numBlockTileIteration)
{
constexpr index_t NumInvariantDim = Rank - NumReduceDim;
static constexpr index_t numSrcDim = Rank;
static constexpr bool reduceAllDim = (NumInvariantDim == 0);
const auto tupleSrcLengths = make_tuple_from_array(inLengths, Number<numSrcDim>{});
const auto tupleSrcStrides = make_tuple_from_array(inStrides, Number<numSrcDim>{});
......@@ -133,7 +141,37 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
return (in_grid_desc_m_k_padded);
};
static auto MakeSaveMeanInvStdDescriptor_M(const std::vector<index_t>& lengths,
const std::vector<index_t>& strides)
{
using InvariantDims = typename arithmetic_sequence_gen<0, NumInvariantDim, 1>::type;
const auto tupleSrcLengths = make_tuple_from_array_and_index_seq(lengths, InvariantDims{});
const auto tupleSrcStrides = make_tuple_from_array_and_index_seq(strides, InvariantDims{});
const auto desc = make_naive_tensor_descriptor(tupleSrcLengths, tupleSrcStrides);
const auto grid_desc_m =
transform_tensor_descriptor(desc,
make_tuple(make_merge_transform(tupleSrcLengths)),
make_tuple(InvariantDims{}),
make_tuple(Sequence<0>{}));
const auto invariantLength = grid_desc_m.GetLength(Number<0>{});
const auto pad_M =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
auto grid_desc_m_padded = transform_tensor_descriptor(
grid_desc_m,
make_tuple(make_right_pad_transform(invariantLength, pad_M)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return grid_desc_m_padded;
}
using GridDesc_M_K = decltype(MakeSrc2dDescriptor({1}, {1}, 1));
using GridDesc_M = decltype(MakeSaveMeanInvStdDescriptor_M({1}, {1}));
struct Argument : public BaseArgument
{
......@@ -142,17 +180,23 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
const std::vector<index_t> gammaStrides,
const std::vector<index_t> betaStrides,
const std::vector<index_t> yStrides,
const std::vector<index_t> saveMeanStrides,
const std::vector<index_t> saveInvStdStrides,
const std::vector<index_t> reduceDims,
YElementwiseOperation y_elementwise_op,
double epsilon,
const XDataType* p_x,
const GammaDataType* p_gamma,
const BetaDataType* p_beta,
YDataType* p_y)
YDataType* p_y,
SaveMeanInvStdDataType* p_saveMean,
SaveMeanInvStdDataType* p_saveInvStd)
: p_x_(p_x),
p_gamma_(p_gamma),
p_beta_(p_beta),
p_y_(p_y),
p_saveMean_(p_saveMean),
p_saveInvStd_(p_saveInvStd),
y_elementwise_op_(y_elementwise_op)
{
epsilon_ = static_cast<ComputeDataType>(epsilon);
......@@ -162,16 +206,14 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
yStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(yStrides, reduceDims);
gammaStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(gammaStrides, reduceDims);
betaStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(betaStrides, reduceDims);
saveMeanStrides_ = saveMeanStrides;
saveInvStdStrides_ = saveInvStdStrides;
long_index_t invariant_length;
long_index_t reduce_length;
std::tie(invariant_length, reduce_length) =
get_2d_lengths<Rank, NumReduceDim>(Lengths_);
std::tie(MRaw_, KRaw_) = get_2d_lengths<Rank, NumReduceDim>(Lengths_);
numBlockTileIteration_ = math::integer_divide_ceil(reduce_length, K_BlockTileSize);
numBlockTileIteration_ = math::integer_divide_ceil(KRaw_, K_BlockTileSize);
gridSize_ = math::integer_divide_ceil(invariant_length, M_BlockTileSize);
gridSize_ = math::integer_divide_ceil(MRaw_, M_BlockTileSize);
x_grid_desc_m_k_ = MakeSrc2dDescriptor(Lengths_, xStrides_, numBlockTileIteration_);
gamma_grid_desc_m_k_ =
......@@ -179,9 +221,16 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
beta_grid_desc_m_k_ =
MakeSrc2dDescriptor(Lengths_, betaStrides_, numBlockTileIteration_);
y_grid_desc_m_k_ = MakeSrc2dDescriptor(Lengths_, yStrides_, numBlockTileIteration_);
save_mean_grid_desc_m_ = MakeSaveMeanInvStdDescriptor_M(Lengths_, saveMeanStrides);
save_inv_std_grid_desc_m_ = MakeSaveMeanInvStdDescriptor_M(Lengths_, saveInvStdStrides);
isSweeponce_ =
x_grid_desc_m_k_.GetLength(Number<1>{}) <= KThreadClusterSize * KThreadSliceSize;
if constexpr(NumInvariantDim == 0)
invariant_lowest_length_ = 1;
else
invariant_lowest_length_ = Lengths_[NumInvariantDim - 1];
}
ComputeDataType epsilon_;
......@@ -190,12 +239,16 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
const GammaDataType* p_gamma_;
const BetaDataType* p_beta_;
YDataType* p_y_;
SaveMeanInvStdDataType* p_saveMean_;
SaveMeanInvStdDataType* p_saveInvStd_;
std::vector<index_t> Lengths_;
std::vector<index_t> xStrides_;
std::vector<index_t> gammaStrides_;
std::vector<index_t> betaStrides_;
std::vector<index_t> yStrides_;
std::vector<index_t> saveMeanStrides_;
std::vector<index_t> saveInvStdStrides_;
YElementwiseOperation y_elementwise_op_;
......@@ -206,7 +259,14 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
GridDesc_M_K gamma_grid_desc_m_k_;
GridDesc_M_K beta_grid_desc_m_k_;
GridDesc_M_K y_grid_desc_m_k_;
GridDesc_M save_mean_grid_desc_m_;
GridDesc_M save_inv_std_grid_desc_m_;
bool isSweeponce_;
index_t MRaw_; // invarient length
index_t KRaw_; // reduce length
index_t invariant_lowest_length_;
};
struct Invoker : public BaseInvoker
......@@ -217,9 +277,11 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K,
GridDesc_M,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
......@@ -233,6 +295,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
BetaSrcVectorSize,
XYSrcVectorDim,
YDstVectorSize,
SaveMeanInvStdDstVectorSize,
UseWelford>(arg.isSweeponce_);
float avg_time = 0;
......@@ -245,12 +308,16 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
arg.gamma_grid_desc_m_k_,
arg.beta_grid_desc_m_k_,
arg.y_grid_desc_m_k_,
arg.save_mean_grid_desc_m_,
arg.save_inv_std_grid_desc_m_,
arg.numBlockTileIteration_,
arg.epsilon_,
arg.p_x_,
arg.p_gamma_,
arg.p_beta_,
arg.p_y_,
arg.p_saveMean_,
arg.p_saveInvStd_,
arg.y_elementwise_op_);
return (avg_time);
......@@ -267,8 +334,6 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
{
const Argument* p_arg_ = dynamic_cast<const Argument*>(p_arg);
constexpr index_t NumInvariantDim = Rank - NumReduceDim;
if constexpr(XYSrcVectorDim == 0)
{
if constexpr(NumInvariantDim == 0)
......@@ -277,13 +342,15 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
}
else
{
printf("!!!! %d\n", p_arg_->invariant_lowest_length_);
if(p_arg_->xStrides_[NumInvariantDim - 1] != 1)
return false;
if(p_arg_->invariant_lowest_length % XSrcVectorSize != 0)
if(p_arg_->invariant_lowest_length_ % XSrcVectorSize != 0)
return false;
if(p_arg_->invariant_lowest_length % YDstVectorSize != 0)
if(p_arg_->invariant_lowest_length_ % YDstVectorSize != 0)
return false;
};
}
......@@ -325,7 +392,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
if(p_arg_->betaStrides_[NumInvariantDim - 1] != 1)
return (false);
if(p_arg_->invariant_lowest_length % BetaSrcVectorSize != 0)
if(p_arg_->invariant_lowest_length_ % BetaSrcVectorSize != 0)
return (false);
}
else // if fastest dim is reduced
......@@ -337,6 +404,9 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
return (false);
}
if(p_arg_->invariant_lowest_length_ % SaveMeanInvStdDstVectorSize != 0)
return false;
return true;
};
......@@ -346,6 +416,8 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
const std::vector<index_t> gammaStrides,
const std::vector<index_t> betaStrides,
const std::vector<index_t> yStrides,
const std::vector<index_t> saveMeanStrides,
const std::vector<index_t> saveInvStdStrides,
const std::vector<index_t> reduceDims,
double epsilon,
const void* p_x,
......@@ -353,27 +425,30 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
const void* p_beta,
void* p_y,
void* p_saveMean,
void* p_saveInvVar,
void* p_saveInvStd,
YElementwiseOperation y_elementwise_op) override
{
// TODO
// Optional cache of the intermediate results (mean and InvVariance) during the
// forward pass could speedup in the backward
ignore = p_saveMean;
ignore = p_saveInvVar;
if(lengths.size() != Rank || xStrides.size() != Rank || gammaStrides.size() != Rank ||
betaStrides.size() != Rank || yStrides.size() != Rank ||
saveMeanStrides.size() != NumInvariantDim || saveInvStdStrides.size() != NumInvariantDim)
throw std::runtime_error("dimension is incorrect");
return std::make_unique<Argument>(lengths,
xStrides,
gammaStrides,
betaStrides,
yStrides,
saveMeanStrides,
saveInvStdStrides,
reduceDims,
y_elementwise_op,
epsilon,
static_cast<const XDataType*>(p_x),
static_cast<const GammaDataType*>(p_gamma),
static_cast<const BetaDataType*>(p_beta),
static_cast<YDataType*>(p_y));
static_cast<YDataType*>(p_y),
static_cast<SaveMeanInvStdDataType*>(p_saveMean),
static_cast<SaveMeanInvStdDataType*>(p_saveInvStd));
};
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
......
......@@ -19,7 +19,7 @@
namespace ck {
template <typename GridwiseWelford,
typename XDataType,
typename MeanVarDataType,
typename WorkspaceMeanVarDataType,
typename ComputeDataType,
typename XGridDesc_M_K,
typename MeanVarGridDesc_M_KBlock>
......@@ -28,8 +28,8 @@ kernel_normalizationSplitK1st(const XGridDesc_M_K x_grid_desc_m_k,
const MeanVarGridDesc_M_KBlock mean_var_grid_desc_m_kblock,
index_t num_k_block_tile_iteration,
const XDataType* const __restrict__ p_x_global,
MeanVarDataType* const __restrict__ p_welford_mean,
MeanVarDataType* const __restrict__ p_welford_variance,
WorkspaceMeanVarDataType* const __restrict__ p_welford_mean,
WorkspaceMeanVarDataType* const __restrict__ p_welford_variance,
int32_t* const __restrict__ p_welford_count)
{
GridwiseWelford::Run(x_grid_desc_m_k,
......@@ -42,16 +42,18 @@ kernel_normalizationSplitK1st(const XGridDesc_M_K x_grid_desc_m_k,
};
template <typename GridwiseWelfordNormalization,
typename MeanVarDataType,
typename WorkspaceMeanVarDataType,
typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename SaveMeanInvStdDataType,
typename ComputeDataType,
typename YElementwiseOperation,
typename MeanVarGridDesc_M_KBlock,
typename CountGridDesc_M_KBlock,
typename XYGammaBetaGridDesc_M_K>
typename XYGammaBetaGridDesc_M_K,
typename SaveMeanInvStdGridDesc_M>
__global__ void
kernel_normalizationSplitK2nd(const MeanVarGridDesc_M_KBlock mean_var_grid_desc_m_kblock,
const CountGridDesc_M_KBlock count_grid_desc_m_kblock,
......@@ -59,17 +61,21 @@ kernel_normalizationSplitK2nd(const MeanVarGridDesc_M_KBlock mean_var_grid_desc_
const XYGammaBetaGridDesc_M_K gamma_grid_desc_m_k,
const XYGammaBetaGridDesc_M_K beta_grid_desc_m_k,
const XYGammaBetaGridDesc_M_K y_grid_desc_m_k,
const SaveMeanInvStdGridDesc_M save_mean_grid_desc_m,
const SaveMeanInvStdGridDesc_M save_inv_std_grid_desc_m,
index_t num_k_mean_var_count_iteration,
index_t num_k_block_tile_iteration,
index_t k_grid_size,
ComputeDataType epsilon,
const MeanVarDataType* const p_mean_global,
const MeanVarDataType* const p_variance_global,
const WorkspaceMeanVarDataType* const p_mean_global,
const WorkspaceMeanVarDataType* const p_variance_global,
const int32_t* const p_welford_count_global,
const XDataType* const __restrict__ p_x_global,
const GammaDataType* const __restrict__ p_gamma_global,
const BetaDataType* const __restrict__ p_beta_global,
YDataType* const __restrict__ p_y_global,
SaveMeanInvStdDataType* const __restrict__ p_save_mean_global,
SaveMeanInvStdDataType* const __restrict__ p_save_inv_std_global,
const YElementwiseOperation y_elementwise_op)
{
GridwiseWelfordNormalization::Run(mean_var_grid_desc_m_kblock,
......@@ -78,6 +84,8 @@ kernel_normalizationSplitK2nd(const MeanVarGridDesc_M_KBlock mean_var_grid_desc_
gamma_grid_desc_m_k,
beta_grid_desc_m_k,
y_grid_desc_m_k,
save_mean_grid_desc_m,
save_inv_std_grid_desc_m,
num_k_mean_var_count_iteration,
num_k_block_tile_iteration,
k_grid_size,
......@@ -89,6 +97,8 @@ kernel_normalizationSplitK2nd(const MeanVarGridDesc_M_KBlock mean_var_grid_desc_
p_gamma_global,
p_beta_global,
p_y_global,
p_save_mean_global,
p_save_inv_std_global,
y_elementwise_op);
};
} // namespace ck
......@@ -107,6 +117,7 @@ template <typename XDataType,
typename BetaDataType,
typename ComputeDataType,
typename YDataType,
typename SaveMeanInvStdDataType,
typename YElementwiseOperation,
index_t Rank,
index_t NumReduceDim,
......@@ -121,17 +132,18 @@ template <typename XDataType,
index_t GammaSrcVectorSize,
index_t BetaSrcVectorDim,
index_t BetaSrcVectorSize,
index_t YDstVectorSize>
index_t YDstVectorSize,
index_t SaveMeanInvStdDstVectorSize>
struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
ComputeDataType,
YDataType,
SaveMeanInvStdDataType,
YElementwiseOperation,
Rank,
NumReduceDim>
{
using MeanVarDataType = ComputeDataType;
using WorkspaceMeanVarDataType = SaveMeanInvStdDataType;
static_assert(BlockSize == MThreadClusterSize * KThreadClusterSize);
static_assert(
......@@ -144,22 +156,28 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
(BetaSrcVectorDim == 1 && KThreadSliceSize % BetaSrcVectorSize == 0)),
"Invalid thread slice sizes and/or beta vector sizes configuration, please check!");
static_assert(MThreadSliceSize % SaveMeanInvStdDstVectorSize == 0,
"Invalid thread slice sizes and/or save mean and inverse std vector sizes "
"configuration, please check!");
using PassThrough = tensor_operation::element_wise::PassThrough;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr index_t NumInvariantDim = Rank - NumReduceDim;
static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
static constexpr bool reduceAllDim = (NumInvariantDim == 0);
static_assert(!reduceAllDim); // TODO
static auto MakeSrc2dDescriptor(const std::vector<index_t>& inLengths,
const std::vector<index_t>& inStrides,
int kBlockSize,
int numBlockTileIteration)
{
constexpr index_t NumInvariantDim = Rank - NumReduceDim;
static constexpr index_t numSrcDim = Rank;
static constexpr bool reduceAllDim = (NumInvariantDim == 0);
const auto tupleSrcLengths = make_tuple_from_array(inLengths, Number<numSrcDim>{});
const auto tupleSrcStrides = make_tuple_from_array(inStrides, Number<numSrcDim>{});
......@@ -219,7 +237,7 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
};
template <typename DoPads, index_t MPerTile, index_t KPerTile>
static auto MakeMeanVarDescriptor_M_K(index_t M, index_t K)
static auto MakeWorkspaceMeanVarDescriptor_M_K(index_t M, index_t K)
{
const auto grid_desc_m_k =
make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(K, I1));
......@@ -227,26 +245,57 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
}
template <typename DoPads, index_t MPerTile, index_t KPerTile>
static auto MakeCountDescriptor_M_K(index_t M, index_t K)
static auto MakeWorkspaceCountDescriptor_M_K(index_t M, index_t K)
{
const auto grid_desc_m_k =
make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I0, I1));
return PadTensorDescriptor(grid_desc_m_k, make_tuple(MPerTile, KPerTile), DoPads{});
}
static auto MakeSaveMeanInvStdDescriptor_M(const std::vector<index_t>& lengths,
const std::vector<index_t>& strides)
{
using InvariantDims = typename arithmetic_sequence_gen<0, NumInvariantDim, 1>::type;
const auto tupleSrcLengths = make_tuple_from_array_and_index_seq(lengths, InvariantDims{});
const auto tupleSrcStrides = make_tuple_from_array_and_index_seq(strides, InvariantDims{});
const auto desc = make_naive_tensor_descriptor(tupleSrcLengths, tupleSrcStrides);
const auto grid_desc_m =
transform_tensor_descriptor(desc,
make_tuple(make_merge_transform(tupleSrcLengths)),
make_tuple(InvariantDims{}),
make_tuple(Sequence<0>{}));
const auto invariantLength = grid_desc_m.GetLength(Number<0>{});
const auto pad_M =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
auto grid_desc_m_padded = transform_tensor_descriptor(
grid_desc_m,
make_tuple(make_right_pad_transform(invariantLength, pad_M)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return grid_desc_m_padded;
}
using SrcGridDesc_M_K = decltype(MakeSrc2dDescriptor({1}, {1}, 1, 1));
using Kernel1MeanVarGridDesc_M_KBlock =
decltype(MakeMeanVarDescriptor_M_K<Sequence<true, false>, 1, 1>(1, 1));
decltype(MakeWorkspaceMeanVarDescriptor_M_K<Sequence<true, false>, 1, 1>(1, 1));
using Kernel2MeanVarGridDesc_M_KBlock =
decltype(MakeMeanVarDescriptor_M_K<Sequence<true, true>, 1, 1>(1, 1));
decltype(MakeWorkspaceMeanVarDescriptor_M_K<Sequence<true, true>, 1, 1>(1, 1));
using Kernel2CountGridDesc_M_KBlock =
decltype(MakeCountDescriptor_M_K<Sequence<true, true>, 1, 1>(1, 1));
decltype(MakeWorkspaceCountDescriptor_M_K<Sequence<true, true>, 1, 1>(1, 1));
using SaveMeanInvStdGridDesc_M = decltype(MakeSaveMeanInvStdDescriptor_M({1}, {1}));
using GridwiseWelford = GridwiseNormalizationSplitK1st<XDataType,
ComputeDataType,
MeanVarDataType,
WorkspaceMeanVarDataType,
SrcGridDesc_M_K,
Kernel1MeanVarGridDesc_M_KBlock,
BlockSize,
......@@ -258,16 +307,18 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
XSrcVectorSize>;
using GridwiseWelfordNormalization =
GridwiseNormalizationSplitK2nd<MeanVarDataType,
GridwiseNormalizationSplitK2nd<WorkspaceMeanVarDataType,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
YElementwiseOperation,
Kernel2MeanVarGridDesc_M_KBlock,
Kernel2CountGridDesc_M_KBlock,
SrcGridDesc_M_K,
SaveMeanInvStdGridDesc_M,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
......@@ -280,7 +331,8 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
BetaSrcVectorDim,
BetaSrcVectorSize,
XYVectorDim,
YDstVectorSize>;
YDstVectorSize,
SaveMeanInvStdDstVectorSize>;
struct Argument : public BaseArgument
{
......@@ -289,17 +341,23 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
const std::vector<index_t> gammaStrides,
const std::vector<index_t> betaStrides,
const std::vector<index_t> yStrides,
const std::vector<index_t> saveMeanStrides,
const std::vector<index_t> saveInvStdStrides,
const std::vector<index_t> reduceDims,
YElementwiseOperation y_elementwise_op,
double epsilon,
const XDataType* p_x,
const GammaDataType* p_gamma,
const BetaDataType* p_beta,
YDataType* p_y)
YDataType* p_y,
SaveMeanInvStdDataType* p_saveMean,
SaveMeanInvStdDataType* p_saveInvStd)
: p_x_(p_x),
p_gamma_(p_gamma),
p_beta_(p_beta),
p_y_(p_y),
p_saveMean_(p_saveMean),
p_saveInvStd_(p_saveInvStd),
p_workspace_mean_{nullptr},
p_workspace_var_{nullptr},
p_workspace_count_{nullptr},
......@@ -312,6 +370,8 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
yStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(yStrides, reduceDims);
gammaStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(gammaStrides, reduceDims);
betaStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(betaStrides, reduceDims);
saveMeanStrides_ = saveMeanStrides;
saveInvStdStrides_ = saveInvStdStrides;
std::tie(MRaw_, KRaw_) = get_2d_lengths<Rank, NumReduceDim>(Lengths_);
......@@ -346,20 +406,28 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
y_grid_desc_m_k_ =
MakeSrc2dDescriptor(Lengths_, yStrides_, kGridSize_, numBlockTileIteration_);
save_mean_grid_desc_m_ = MakeSaveMeanInvStdDescriptor_M(Lengths_, saveMeanStrides);
save_inv_std_grid_desc_m_ = MakeSaveMeanInvStdDescriptor_M(Lengths_, saveInvStdStrides);
// We don't need to pad in K dimension for Welford1. Set KPerTile 1.
kernel1_mean_var_grid_desc_m_kblock_ =
MakeMeanVarDescriptor_M_K<Sequence<true, false>, M_BlockTileSize, 1>(MRaw_,
kGridSize_);
MakeWorkspaceMeanVarDescriptor_M_K<Sequence<true, false>, M_BlockTileSize, 1>(
MRaw_, kGridSize_);
kernel2_mean_var_grid_desc_m_kblock_ =
MakeMeanVarDescriptor_M_K<Sequence<true, true>,
M_BlockTileSize,
K_MeanVarCountBlockTileSize>(MRaw_, kGridSize_);
MakeWorkspaceMeanVarDescriptor_M_K<Sequence<true, true>,
M_BlockTileSize,
K_MeanVarCountBlockTileSize>(MRaw_, kGridSize_);
kernel2_count_grid_desc_m_kblock_ =
MakeCountDescriptor_M_K<Sequence<true, true>,
M_BlockTileSize,
K_MeanVarCountBlockTileSize>(MRaw_, kGridSize_);
MakeWorkspaceCountDescriptor_M_K<Sequence<true, true>,
M_BlockTileSize,
K_MeanVarCountBlockTileSize>(MRaw_, kGridSize_);
if constexpr(NumInvariantDim == 0)
invariant_lowest_length_ = 1;
else
invariant_lowest_length_ = Lengths_[NumInvariantDim - 1];
}
ComputeDataType epsilon_;
......@@ -368,6 +436,8 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
const GammaDataType* p_gamma_;
const BetaDataType* p_beta_;
YDataType* p_y_;
SaveMeanInvStdDataType* p_saveMean_;
SaveMeanInvStdDataType* p_saveInvStd_;
void* p_workspace_mean_;
void* p_workspace_var_;
void* p_workspace_count_;
......@@ -377,6 +447,8 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
std::vector<index_t> gammaStrides_;
std::vector<index_t> betaStrides_;
std::vector<index_t> yStrides_;
std::vector<index_t> saveMeanStrides_;
std::vector<index_t> saveInvStdStrides_;
YElementwiseOperation y_elementwise_op_;
......@@ -389,6 +461,8 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
SrcGridDesc_M_K gamma_grid_desc_m_k_;
SrcGridDesc_M_K beta_grid_desc_m_k_;
SrcGridDesc_M_K y_grid_desc_m_k_;
SaveMeanInvStdGridDesc_M save_mean_grid_desc_m_;
SaveMeanInvStdGridDesc_M save_inv_std_grid_desc_m_;
Kernel1MeanVarGridDesc_M_KBlock kernel1_mean_var_grid_desc_m_kblock_;
Kernel2MeanVarGridDesc_M_KBlock kernel2_mean_var_grid_desc_m_kblock_;
......@@ -396,6 +470,8 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
index_t MRaw_; // invarient length
index_t KRaw_; // reduce length
index_t invariant_lowest_length_;
};
struct Invoker : public BaseInvoker
......@@ -408,60 +484,68 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
auto kernel1 = kernel_normalizationSplitK1st<GridwiseWelford,
XDataType,
MeanVarDataType,
WorkspaceMeanVarDataType,
ComputeDataType,
SrcGridDesc_M_K,
Kernel1MeanVarGridDesc_M_KBlock>;
auto kernel2 = kernel_normalizationSplitK2nd<GridwiseWelfordNormalization,
MeanVarDataType,
WorkspaceMeanVarDataType,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
YElementwiseOperation,
Kernel2MeanVarGridDesc_M_KBlock,
Kernel2CountGridDesc_M_KBlock,
SrcGridDesc_M_K>;
SrcGridDesc_M_K,
SaveMeanInvStdGridDesc_M>;
float avg_time = 0;
avg_time += launch_and_time_kernel(stream_config,
kernel1,
dim3(arg.gridSize_),
dim3(BlockSize),
0,
arg.x_grid_desc_m_k_,
arg.kernel1_mean_var_grid_desc_m_kblock_,
arg.numBlockTileIteration_,
arg.p_x_,
static_cast<MeanVarDataType*>(arg.p_workspace_mean_),
static_cast<MeanVarDataType*>(arg.p_workspace_var_),
static_cast<int32_t*>(arg.p_workspace_count_));
avg_time += launch_and_time_kernel(stream_config,
kernel2,
dim3(arg.gridSize_),
dim3(BlockSize),
0,
arg.kernel2_mean_var_grid_desc_m_kblock_,
arg.kernel2_count_grid_desc_m_kblock_,
arg.x_grid_desc_m_k_,
arg.gamma_grid_desc_m_k_,
arg.beta_grid_desc_m_k_,
arg.y_grid_desc_m_k_,
arg.numMeanVarCountIteration_,
arg.numBlockTileIteration_,
arg.kGridSize_,
arg.epsilon_,
static_cast<MeanVarDataType*>(arg.p_workspace_mean_),
static_cast<MeanVarDataType*>(arg.p_workspace_var_),
static_cast<int32_t*>(arg.p_workspace_count_),
arg.p_x_,
arg.p_gamma_,
arg.p_beta_,
arg.p_y_,
arg.y_elementwise_op_);
avg_time += launch_and_time_kernel(
stream_config,
kernel1,
dim3(arg.gridSize_),
dim3(BlockSize),
0,
arg.x_grid_desc_m_k_,
arg.kernel1_mean_var_grid_desc_m_kblock_,
arg.numBlockTileIteration_,
arg.p_x_,
static_cast<WorkspaceMeanVarDataType*>(arg.p_workspace_mean_),
static_cast<WorkspaceMeanVarDataType*>(arg.p_workspace_var_),
static_cast<int32_t*>(arg.p_workspace_count_));
avg_time += launch_and_time_kernel(
stream_config,
kernel2,
dim3(arg.gridSize_),
dim3(BlockSize),
0,
arg.kernel2_mean_var_grid_desc_m_kblock_,
arg.kernel2_count_grid_desc_m_kblock_,
arg.x_grid_desc_m_k_,
arg.gamma_grid_desc_m_k_,
arg.beta_grid_desc_m_k_,
arg.y_grid_desc_m_k_,
arg.save_mean_grid_desc_m_,
arg.save_inv_std_grid_desc_m_,
arg.numMeanVarCountIteration_,
arg.numBlockTileIteration_,
arg.kGridSize_,
arg.epsilon_,
static_cast<const WorkspaceMeanVarDataType*>(arg.p_workspace_mean_),
static_cast<const WorkspaceMeanVarDataType*>(arg.p_workspace_var_),
static_cast<const int32_t*>(arg.p_workspace_count_),
arg.p_x_,
arg.p_gamma_,
arg.p_beta_,
arg.p_y_,
arg.p_saveMean_,
arg.p_saveInvStd_,
arg.y_elementwise_op_);
return avg_time;
};
......@@ -482,10 +566,10 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
int welford_size = pArg_->MRaw_ * pArg_->kGridSize_;
// workspace for welford intermediate mean
workspace_size += welford_size * sizeof(MeanVarDataType) + 64;
workspace_size += welford_size * sizeof(WorkspaceMeanVarDataType) + 64;
// workspace for welford intermediate variance
workspace_size += welford_size * sizeof(MeanVarDataType) + 64;
workspace_size += welford_size * sizeof(WorkspaceMeanVarDataType) + 64;
// workspace for welford intermediate count
workspace_size += pArg_->kGridSize_ * sizeof(int32_t) + 64;
......@@ -504,13 +588,13 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
// setup buffer used for intermediate welford mean
pArg_->p_workspace_mean_ = static_cast<char*>(pArg_->p_workspace_);
index_t mean_space_sz = welford_size * sizeof(MeanVarDataType);
index_t mean_space_sz = welford_size * sizeof(WorkspaceMeanVarDataType);
mean_space_sz = math::integer_least_multiple(mean_space_sz, 64);
// setup buffer used for intermediate welford varirance
pArg_->p_workspace_var_ = reinterpret_cast<char*>(pArg_->p_workspace_mean_) + mean_space_sz;
index_t variance_space_sz = welford_size * sizeof(MeanVarDataType);
index_t variance_space_sz = welford_size * sizeof(WorkspaceMeanVarDataType);
variance_space_sz = math::integer_least_multiple(variance_space_sz, 64);
// setup buffer used for intermediate welford count
......@@ -522,8 +606,6 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
{
const Argument* p_arg_ = dynamic_cast<const Argument*>(p_arg);
constexpr index_t NumInvariantDim = Rank - NumReduceDim;
if constexpr(XYVectorDim == 0)
{
if constexpr(NumInvariantDim == 0)
......@@ -535,10 +617,10 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
if(p_arg_->xStrides_[NumInvariantDim - 1] != 1)
return false;
if(p_arg_->invariant_lowest_length % XSrcVectorSize != 0)
if(p_arg_->invariant_lowest_length_ % XSrcVectorSize != 0)
return false;
if(p_arg_->invariant_lowest_length % YDstVectorSize != 0)
if(p_arg_->invariant_lowest_length_ % YDstVectorSize != 0)
return false;
};
}
......@@ -578,7 +660,7 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
if(p_arg_->betaStrides_[NumInvariantDim - 1] != 1)
return false;
if(p_arg_->invariant_lowest_length % BetaSrcVectorSize != 0)
if(p_arg_->invariant_lowest_length_ % BetaSrcVectorSize != 0)
return false;
}
else // if fastest dim is reduced
......@@ -593,6 +675,9 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
if(p_arg_->kGridSize_ <= 1)
return false;
if(p_arg_->invariant_lowest_length_ % SaveMeanInvStdDstVectorSize != 0)
return false;
return true;
};
......@@ -602,6 +687,8 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
const std::vector<index_t> gammaStrides,
const std::vector<index_t> betaStrides,
const std::vector<index_t> yStrides,
const std::vector<index_t> saveMeanStrides,
const std::vector<index_t> saveInvStdStrides,
const std::vector<index_t> reduceDims,
double epsilon,
const void* p_x,
......@@ -609,27 +696,30 @@ struct DeviceNormalizationSplitKImpl : public DeviceNormalization<XDataType,
const void* p_beta,
void* p_y,
void* p_saveMean,
void* p_saveInvVar,
void* p_saveInvStd,
YElementwiseOperation y_elementwise_op) override
{
// TODO
// Optional cache of the intermediate results (mean and InvVariance) during the
// forward pass could speedup in the backward
ignore = p_saveMean;
ignore = p_saveInvVar;
if(lengths.size() != Rank || xStrides.size() != Rank || gammaStrides.size() != Rank ||
betaStrides.size() != Rank || yStrides.size() != Rank ||
saveMeanStrides.size() != NumInvariantDim || saveInvStdStrides.size() != NumInvariantDim)
throw std::runtime_error("dimension is incorrect");
return std::make_unique<Argument>(lengths,
xStrides,
gammaStrides,
betaStrides,
yStrides,
saveMeanStrides,
saveInvStdStrides,
reduceDims,
y_elementwise_op,
epsilon,
static_cast<const XDataType*>(p_x),
static_cast<const GammaDataType*>(p_gamma),
static_cast<const BetaDataType*>(p_beta),
static_cast<YDataType*>(p_y));
static_cast<YDataType*>(p_y),
static_cast<SaveMeanInvStdDataType*>(p_saveMean),
static_cast<SaveMeanInvStdDataType*>(p_saveInvStd));
};
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
......
......@@ -113,7 +113,6 @@ struct PassThrough
}
#endif
#if defined CK_ENABLE_FP8
template <>
__host__ __device__ void operator()<f8_t, f8_t>(f8_t& y, const f8_t& x) const
{
......@@ -143,9 +142,7 @@ struct PassThrough
{
y = type_convert<f8_t>(x);
}
#endif
#if defined CK_ENABLE_BF8
template <>
__host__ __device__ void operator()<bf8_t, bf8_t>(bf8_t& y, const bf8_t& x) const
{
......@@ -175,7 +172,6 @@ struct PassThrough
{
y = ck::type_convert<bf8_t>(x);
}
#endif
};
struct UnaryConvert
......@@ -204,7 +200,6 @@ struct ConvertBF16RTN
}
};
#if defined CK_ENABLE_FP8
struct ConvertF8SR
{
// convert to fp8 using stochastic rounding (SR)
......@@ -212,7 +207,8 @@ struct ConvertF8SR
__host__ __device__ void operator()(Y& y, const X& x) const
{
// check Y datatype
static_assert(is_same<Y, f8_t>::value, "Data type is not supported by this operation!");
static_assert(is_same<Y, f8_t>::value || is_same<Y, bf8_t>::value,
"Data type is not supported by this operation!");
// check X datatype
static_assert(is_same<X, float>::value || is_same<X, half_t>::value,
......@@ -221,7 +217,6 @@ struct ConvertF8SR
y = f8_convert_sr<Y>(x);
}
};
#endif
struct Scale
{
......@@ -448,10 +443,11 @@ struct Sigmoid
__host__ __device__ void operator()(T& y, const T& x) const
{
static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value,
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value,
"Data type is not supported by this operation!");
y = 1 / (ck::type_convert<T>(1) + exp(-x));
constexpr T one = type_convert<T>(1);
y = one / (one + ck::math::exp(-x));
};
};
......@@ -461,7 +457,8 @@ struct TanH
__host__ __device__ void operator()(T& y, const T& x) const
{
static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value,
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value,
"Data type is not supported by this operation!");
y = ck::math::tanh(x);
......@@ -487,7 +484,101 @@ struct Swish
y = type_convert<Y>(x / (1.f + ck::math::exp(bx)));
};
float beta_ = 1.0f;
const float beta_;
};
struct SoftRelu
{
SoftRelu(float alpha = 1.f) : alpha_(alpha){};
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
{
static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, half_t>::value || is_same<T, int32_t>::value ||
is_same<T, int8_t>::value,
"Data type is not supported by this operation!");
T casted_alpha = type_convert<T>(alpha_);
constexpr T one = type_convert<T>(1);
y = ck::math::log(one + ck::math::exp(x * casted_alpha)) / casted_alpha;
}
const float alpha_;
};
struct Power
{
Power(float alpha = 0.f, float beta = 1.f, float gamma = 2.f)
: alpha_(alpha), beta_(beta), gamma_(gamma){};
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
{
static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, half_t>::value || is_same<T, int32_t>::value ||
is_same<T, int8_t>::value,
"Data type is not supported by this operation!");
T casted_alpha = type_convert<T>(alpha_);
T casted_beta = type_convert<T>(beta_);
T casted_gamma = type_convert<T>(gamma_);
T shifted_scaled_x = casted_alpha + casted_beta * x;
y = ck::math::pow(shifted_scaled_x, casted_gamma);
}
const float alpha_;
const float beta_;
const float gamma_;
};
struct ClippedRelu
{
ClippedRelu(float alpha = 0.f, float beta = 1.f) : alpha_(alpha), beta_(beta){};
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
{
static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, half_t>::value || is_same<T, int32_t>::value ||
is_same<T, int8_t>::value,
"Data type is not supported by this operation!");
T casted_alpha = type_convert<T>(alpha_);
T casted_beta = type_convert<T>(beta_);
y = ck::math::min(casted_beta, ck::math::max(casted_alpha, x));
}
const float alpha_;
const float beta_;
};
struct LeakyRelu
{
LeakyRelu(float alpha = 0.01f) : alpha_(alpha){};
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
{
static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, half_t>::value || is_same<T, int32_t>::value ||
is_same<T, int8_t>::value,
"Data type is not supported by this operation!");
T casted_alpha = type_convert<T>(alpha_);
y = x >= 0 ? x : x * casted_alpha;
}
const float alpha_;
};
struct Elu
{
Elu(float alpha = 1.f) : alpha_(alpha){};
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
{
static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, half_t>::value || is_same<T, int32_t>::value ||
is_same<T, int8_t>::value,
"Data type is not supported by this operation!");
T casted_alpha = type_convert<T>(alpha_);
y = x > 0 ? x : casted_alpha * ck::math::expm1(x);
}
const float alpha_;
};
} // namespace element_wise
......
......@@ -36,7 +36,7 @@ __global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_grouped_conv_fwd_multiple_d_wmma_cshuffle(
kernel_grouped_conv_multiple_d_wmma_cshuffle(
const ADataType* __restrict__ p_a_grid,
const BDataType* __restrict__ p_b_grid,
DsPointer p_ds_grid,
......@@ -452,11 +452,11 @@ struct GridwiseGemmMultipleD_k0mk1_k0nk1_mn_wmma_cshuffle
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
// CheckValidity for kernels without multi D
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_K0_M_K1& a_grid_desc_k0_m_k1,
const BGridDesc_K0_N_K1& b_grid_desc_k0_n_k1,
const DsGridDesc_M_N& ds_grid_desc_m_n,
const EGridDesc_M_N& e_grid_desc_m_n,
const Block2CTileMap& block_2_ctile_map)
{
......@@ -471,18 +471,6 @@ struct GridwiseGemmMultipleD_k0mk1_k0nk1_mn_wmma_cshuffle
const auto N = b_grid_desc_k0_n_k1.GetLength(I1);
const auto K0 = a_grid_desc_k0_m_k1.GetLength(I0);
bool valid = true;
static_for<0, NumDTensor, 1>{}([&](auto i) {
valid = valid && (M == ds_grid_desc_m_n[i].GetLength(I0) &&
N == ds_grid_desc_m_n[i].GetLength(I1));
});
if(!valid)
{
return false;
}
if(!(M == e_grid_desc_m_n.GetLength(I0) && N == e_grid_desc_m_n.GetLength(I1) &&
K0 == b_grid_desc_k0_n_k1.GetLength(I0) && K1 == a_grid_desc_k0_m_k1.GetLength(I2) &&
K1 == b_grid_desc_k0_n_k1.GetLength(I2)))
......@@ -517,6 +505,31 @@ struct GridwiseGemmMultipleD_k0mk1_k0nk1_mn_wmma_cshuffle
return true;
}
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_K0_M_K1& a_grid_desc_k0_m_k1,
const BGridDesc_K0_N_K1& b_grid_desc_k0_n_k1,
const DsGridDesc_M_N& ds_grid_desc_m_n,
const EGridDesc_M_N& e_grid_desc_m_n,
const Block2CTileMap& block_2_ctile_map)
{
const auto M = a_grid_desc_k0_m_k1.GetLength(I1);
const auto N = b_grid_desc_k0_n_k1.GetLength(I1);
bool valid = true;
static_for<0, NumDTensor, 1>{}([&](auto i) {
valid = valid && (M == ds_grid_desc_m_n[i].GetLength(I0) &&
N == ds_grid_desc_m_n[i].GetLength(I1));
});
if(!valid)
{
return false;
}
return CheckValidity(
a_grid_desc_k0_m_k1, b_grid_desc_k0_n_k1, e_grid_desc_m_n, block_2_ctile_map);
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / (K0PerBlock * K1);
......
......@@ -22,13 +22,19 @@ namespace ck {
template <typename GridwiseGemm,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
typename Block2CTileMap>
typename Block2CTileMap,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_xdlops_v2r4r2_simplified(typename GridwiseGemm::Argument karg,
const Block2CTileMap& b2c_map)
const Block2CTileMap& b2c_map,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CElementwiseOperation c_element_op)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
......@@ -37,10 +43,13 @@ __global__ void
__shared__ uint8_t p_shared[shared_size];
GridwiseGemm::template Run<HasMainKBlockLoop, CGlobalMemoryDataOperation>(
karg, static_cast<void*>(p_shared), b2c_map);
karg, static_cast<void*>(p_shared), b2c_map, a_element_op, b_element_op, c_element_op);
#else
ignore = karg;
ignore = b2c_map;
ignore = a_element_op;
ignore = b_element_op;
ignore = c_element_op;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
......@@ -577,7 +586,10 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
typename Block2CTileMap>
__device__ static void Run(const Argument& karg,
void* __restrict__ p_shared_block,
const Block2CTileMap& block_2_ctile_map)
const Block2CTileMap& block_2_ctile_map,
const AElementwiseOperation a_element_op = AElementwiseOperation{},
const BElementwiseOperation b_element_op = BElementwiseOperation{},
const CElementwiseOperation c_element_op = CElementwiseOperation{})
{
const FloatA* p_a_grid = karg.p_a_grid;
const FloatB* p_b_grid = karg.p_b_grid;
......@@ -590,9 +602,6 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
const auto c_grid_desc_mblock_mperblock_nblock_nperblock =
MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(c_grid_desc_m_n);
const AElementwiseOperation a_element_op = AElementwiseOperation{};
const BElementwiseOperation b_element_op = BElementwiseOperation{};
const CElementwiseOperation c_element_op = CElementwiseOperation{};
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_b_k0_m_k1_grid_desc.GetElementSpaceSize());
......@@ -761,8 +770,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
BlockSize,
ComputeType,
ComputeType,
ComputeType, // ComputeType A
ComputeType, // ComputeType B
FloatAcc,
decltype(a_k0_m_k1_block_desc),
decltype(b_k0_n_k1_block_desc),
......
......@@ -18,9 +18,11 @@ template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename SaveMeanInvStdDataType,
typename ComputeDataType,
typename YElementwiseOperation,
typename GridDesc_M_K,
typename GridDesc_M,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
......@@ -34,6 +36,7 @@ template <typename XDataType,
index_t BetaSrcVectorSize,
index_t YDstVectorDim,
index_t YDstVectorSize,
index_t SaveMeanInvStdDstVectorSize,
bool SweepOnce>
struct GridwiseNormalizationNaiveVariance_mk_to_mk
{
......@@ -45,6 +48,10 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
(YDstVectorDim == 1 && KThreadSliceSize % YDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static_assert(MThreadSliceSize % SaveMeanInvStdDstVectorSize == 0,
"Invalid thread slice sizes and/or save mean and inverse std vector sizes "
"configuration, please check!");
static_assert(XSrcVectorSize == YDstVectorSize);
static_assert(XSrcVectorSize == GammaSrcVectorSize);
static_assert(XSrcVectorSize == BetaSrcVectorSize);
......@@ -66,6 +73,10 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
static constexpr auto thread_buffer_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<XSrcVectorSize>{}));
using ThreadBufferLengths_M = Sequence<MThreadSliceSize>;
static constexpr auto thread_buffer_desc_m =
make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{}));
using ThreadReduceSrcDesc_M_K = decltype(make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<XSrcVectorSize>{})));
using ThreadReduceDstDesc_M =
......@@ -84,6 +95,8 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
reduce::Add,
true>;
using PassThroughOp = tensor_operation::element_wise::PassThrough;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
......@@ -98,12 +111,16 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
const GridDesc_M_K& gamma_grid_desc_m_k,
const GridDesc_M_K& beta_grid_desc_m_k,
const GridDesc_M_K& y_grid_desc_m_k,
const GridDesc_M& save_mean_grid_desc_m,
const GridDesc_M& save_inv_std_grid_desc_m,
index_t num_k_block_tile_iteration,
ComputeDataType epsilon,
const XDataType* const __restrict__ p_x_global,
const GammaDataType* const __restrict__ p_gamma_global,
const BetaDataType* const __restrict__ p_beta_global,
YDataType* const __restrict__ p_y_global,
SaveMeanInvStdDataType* const __restrict__ p_save_mean_global,
SaveMeanInvStdDataType* const __restrict__ p_save_inv_std_global,
const YElementwiseOperation y_elementwise_op)
{
// LDS
......@@ -115,6 +132,12 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
auto y_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_y_global, y_grid_desc_m_k.GetElementSpaceSize());
auto save_mean_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_save_mean_global, save_mean_grid_desc_m.GetElementSpaceSize());
auto save_inv_std_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_save_inv_std_global, save_inv_std_grid_desc_m.GetElementSpaceSize());
auto x_thread_buf = generate_tuple(
[&](auto) {
return StaticBuffer<AddressSpaceEnum::Vgpr,
......@@ -152,6 +175,8 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
mean_square_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MThreadSliceSize, true>&
var_thread_buf = mean_square_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MThreadSliceSize, true>&
inv_std_thread_buf = mean_square_thread_buf;
const index_t thread_local_id = get_thread_local_1d_id();
const index_t block_global_id = get_block_1d_id();
......@@ -228,6 +253,42 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
thread_k_cluster_id * YDstVectorSize),
y_elementwise_op);
auto threadwise_mean_store =
ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
SaveMeanInvStdDataType,
decltype(thread_buffer_desc_m),
GridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
SaveMeanInvStdDstVectorSize, // ScalarPerVector
InMemoryDataOperationEnum::Set,
1,
true>(
save_mean_grid_desc_m,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
auto threadwise_inv_std_store =
ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
SaveMeanInvStdDataType,
decltype(thread_buffer_desc_m),
GridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
SaveMeanInvStdDstVectorSize, // ScalarPerVector
InMemoryDataOperationEnum::Set,
1,
true>(
save_inv_std_grid_desc_m,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
constexpr auto thread_copy_fwd_step_m_k = make_multi_index(0, K_BlockTileStepSize);
constexpr auto thread_copy_bwd_step_m_k =
make_multi_index(0, SweepOnce ? 0 : -K_BlockTileSize);
......@@ -243,7 +304,8 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
// E(x), E[x^2], var(x)
// FIXME: Should not hack the transform from deviceOP
int reduce_length = x_grid_desc_m_k.GetTransforms()[I2].GetUpperLengths()[I0];
ComputeDataType reduce_length = type_convert<ComputeDataType>(
x_grid_desc_m_k.GetTransforms()[I2].GetUpperLengths()[I0]);
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
mean_thread_buf(I) = reduce::Add::template GetIdentityValue<ComputeDataType>();
......@@ -302,10 +364,34 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
// var(x) = E[x^2] - E[x]^2
var_thread_buf(I) =
mean_square_thread_buf(I) - (mean_thread_buf(I) * mean_thread_buf(I));
inv_std_thread_buf(I) = type_convert<ComputeDataType>(1.0f) /
ck::math::sqrt(var_thread_buf(I) + epsilon);
});
// save mean and inverse std for backward (optional)
if(thread_k_cluster_id == 0)
{
if(p_save_mean_global != nullptr)
{
threadwise_mean_store.Run(thread_buffer_desc_m,
make_tuple(I0),
mean_thread_buf,
save_mean_grid_desc_m,
save_mean_global_val_buf);
}
if(p_save_inv_std_global != nullptr)
{
threadwise_inv_std_store.Run(thread_buffer_desc_m,
make_tuple(I0),
inv_std_thread_buf,
save_inv_std_grid_desc_m,
save_inv_std_global_val_buf);
}
}
// normalization
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
auto divisor = 1 / ck::math::sqrt(var_thread_buf(iM) + epsilon);
static_for<0, ThreadBufferNumber, 1>{}([&](auto iK0) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) {
constexpr auto offset_m_k =
......@@ -314,7 +400,7 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
// normalize
y_thread_buf(iK0)(Number<offset_m_k>{}) =
(x_thread_buf(iK0)(Number<offset_m_k>{}) - mean_thread_buf(iM)) *
divisor;
inv_std_thread_buf(iM);
// gamma & beta
y_thread_buf(iK0)(Number<offset_m_k>{}) =
......@@ -404,8 +490,30 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
// var(x) = E[x^2] - E[x]^2
var_thread_buf(I) =
mean_square_thread_buf(I) - (mean_thread_buf(I) * mean_thread_buf(I));
inv_std_thread_buf(I) = 1 / ck::math::sqrt(var_thread_buf(I) + epsilon);
});
if(thread_k_cluster_id == 0)
{
if(p_save_mean_global != nullptr)
{
threadwise_mean_store.Run(thread_buffer_desc_m,
make_tuple(I0),
mean_thread_buf,
save_mean_grid_desc_m,
save_mean_global_val_buf);
}
if(p_save_inv_std_global != nullptr)
{
threadwise_inv_std_store.Run(thread_buffer_desc_m,
make_tuple(I0),
inv_std_thread_buf,
save_inv_std_grid_desc_m,
save_inv_std_global_val_buf);
}
}
auto thread_copy_tail_m_k =
(num_k_block_tile_iteration - 1) * ThreadBufferNumber * thread_copy_fwd_step_m_k;
......@@ -437,7 +545,6 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
});
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
auto divisor = 1 / ck::math::sqrt(var_thread_buf(iM) + epsilon);
static_for<0, ThreadBufferNumber, 1>{}([&](auto iK0) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) {
constexpr auto offset_m_k =
......@@ -446,7 +553,7 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
// normalize
y_thread_buf(iK0)(Number<offset_m_k>{}) =
(x_thread_buf(iK0)(Number<offset_m_k>{}) - mean_thread_buf(iM)) *
divisor;
inv_std_thread_buf(iM);
// gamma
y_thread_buf(iK0)(Number<offset_m_k>{}) =
......
......@@ -12,31 +12,42 @@ template <typename GridwiseReduction,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename SaveMeanInvStdDataType,
typename ComputeDataType,
typename YElementwiseOperation,
typename GridDesc_M_K>
__global__ void kernel_normalization(const GridDesc_M_K x_grid_desc_m_k,
const GridDesc_M_K gamma_grid_desc_m_k,
const GridDesc_M_K beta_grid_desc_m_k,
const GridDesc_M_K y_grid_desc_m_k,
index_t num_k_block_tile_iteration,
ComputeDataType epsilon,
const XDataType* const __restrict__ p_x_global,
const GammaDataType* const __restrict__ p_gamma_global,
const BetaDataType* const __restrict__ p_beta_global,
YDataType* const __restrict__ p_y_global,
const YElementwiseOperation y_elementwise_op)
typename GridDesc_M_K,
typename GridDesc_M>
__global__ void
kernel_normalization(const GridDesc_M_K x_grid_desc_m_k,
const GridDesc_M_K gamma_grid_desc_m_k,
const GridDesc_M_K beta_grid_desc_m_k,
const GridDesc_M_K y_grid_desc_m_k,
const GridDesc_M save_mean_grid_desc_m,
const GridDesc_M save_inv_std_grid_desc_m,
index_t num_k_block_tile_iteration,
ComputeDataType epsilon,
const XDataType* const __restrict__ p_x_global,
const GammaDataType* const __restrict__ p_gamma_global,
const BetaDataType* const __restrict__ p_beta_global,
YDataType* const __restrict__ p_y_global,
SaveMeanInvStdDataType* const __restrict__ p_save_mean_global,
SaveMeanInvStdDataType* const __restrict__ p_save_inv_std_global,
const YElementwiseOperation y_elementwise_op)
{
GridwiseReduction::Run(x_grid_desc_m_k,
gamma_grid_desc_m_k,
beta_grid_desc_m_k,
y_grid_desc_m_k,
save_mean_grid_desc_m,
save_inv_std_grid_desc_m,
num_k_block_tile_iteration,
epsilon,
p_x_global,
p_gamma_global,
p_beta_global,
p_y_global,
p_save_mean_global,
p_save_inv_std_global,
y_elementwise_op);
};
......@@ -44,9 +55,11 @@ template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename SaveMeanInvStdDataType,
typename ComputeDataType,
typename YElementwiseOperation,
typename GridDesc_M_K,
typename GridDesc_M,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
......@@ -60,6 +73,7 @@ template <typename XDataType,
index_t BetaSrcVectorSize,
index_t YDstVectorDim,
index_t YDstVectorSize,
index_t SaveMeanInvStdDstVectorSize,
bool UseWelford>
auto NormalizationKernelSelector(bool isSweepOnce)
{
......@@ -68,9 +82,11 @@ auto NormalizationKernelSelector(bool isSweepOnce)
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K,
GridDesc_M,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
......@@ -84,15 +100,18 @@ auto NormalizationKernelSelector(bool isSweepOnce)
BetaSrcVectorSize,
YDstVectorDim,
YDstVectorSize,
SaveMeanInvStdDstVectorSize,
false>;
using GridwiseNormalizationSweepOnceNaive =
GridwiseNormalizationNaiveVariance_mk_to_mk<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K,
GridDesc_M,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
......@@ -106,15 +125,18 @@ auto NormalizationKernelSelector(bool isSweepOnce)
BetaSrcVectorSize,
YDstVectorDim,
YDstVectorSize,
SaveMeanInvStdDstVectorSize,
true>;
using GridwiseNormalizationGenericWelford =
GridwiseNormalizationWelfordVariance_mk_to_mk<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K,
GridDesc_M,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
......@@ -128,15 +150,18 @@ auto NormalizationKernelSelector(bool isSweepOnce)
BetaSrcVectorSize,
YDstVectorDim,
YDstVectorSize,
SaveMeanInvStdDstVectorSize,
false>;
using GridwiseNormalizationSweepOnceWelford =
GridwiseNormalizationWelfordVariance_mk_to_mk<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K,
GridDesc_M,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
......@@ -150,6 +175,7 @@ auto NormalizationKernelSelector(bool isSweepOnce)
BetaSrcVectorSize,
YDstVectorDim,
YDstVectorSize,
SaveMeanInvStdDstVectorSize,
true>;
if constexpr(UseWelford)
......@@ -159,17 +185,21 @@ auto NormalizationKernelSelector(bool isSweepOnce)
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K>
GridDesc_M_K,
GridDesc_M>
: kernel_normalization<GridwiseNormalizationGenericWelford,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K>;
GridDesc_M_K,
GridDesc_M>;
}
else
{
......@@ -178,17 +208,21 @@ auto NormalizationKernelSelector(bool isSweepOnce)
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K>
GridDesc_M_K,
GridDesc_M>
: kernel_normalization<GridwiseNormalizationGenericNaive,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K>;
GridDesc_M_K,
GridDesc_M>;
}
}
......
......@@ -17,11 +17,13 @@ template <typename MeanVarDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename SaveMeanInvStdDataType,
typename ComputeDataType,
typename YElementwiseOperation,
typename MeanVarGridDesc_M_KBlock,
typename CountGridDesc_M_KBlock,
typename XYGammaBetaGridDesc_M_K,
typename SaveMeanInvStdGridDesc_M,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
......@@ -34,7 +36,8 @@ template <typename MeanVarDataType,
index_t BetaSrcVectorDim,
index_t BetaSrcVectorSize,
index_t YDstVectorDim,
index_t YDstVectorSize>
index_t YDstVectorSize,
index_t SaveMeanInvStdDstVectorSize>
struct GridwiseNormalizationSplitK2nd
{
static_assert((XSrcVectorDim == 0 && MThreadSliceSize % XSrcVectorSize == 0) ||
......@@ -45,6 +48,10 @@ struct GridwiseNormalizationSplitK2nd
(YDstVectorDim == 1 && KThreadSliceSize % YDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static_assert(MThreadSliceSize % SaveMeanInvStdDstVectorSize == 0,
"Invalid thread slice sizes and/or save mean and inverse std vector sizes "
"configuration, please check!");
static_assert(XSrcVectorSize == YDstVectorSize);
static_assert(XSrcVectorSize == GammaSrcVectorSize);
static_assert(XSrcVectorSize == BetaSrcVectorSize);
......@@ -69,6 +76,10 @@ struct GridwiseNormalizationSplitK2nd
static constexpr auto thread_buffer_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<XSrcVectorSize>{}));
using ThreadBufferLengths_M = Sequence<MThreadSliceSize>;
static constexpr auto thread_buffer_desc_m =
make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{}));
using ThreadBufferLengths_M_1 = Sequence<MThreadSliceSize, 1>;
static constexpr auto thread_buffer_desc_m_1 =
make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{}, I1));
......@@ -99,6 +110,8 @@ struct GridwiseNormalizationSplitK2nd
const XYGammaBetaGridDesc_M_K& gamma_grid_desc_m_k,
const XYGammaBetaGridDesc_M_K& beta_grid_desc_m_k,
const XYGammaBetaGridDesc_M_K& y_grid_desc_m_k,
const SaveMeanInvStdGridDesc_M& save_mean_grid_desc_m,
const SaveMeanInvStdGridDesc_M& save_inv_std_grid_desc_m,
index_t num_k_mean_var_count_iteration,
index_t num_k_block_tile_iteration,
index_t k_grid_size,
......@@ -110,6 +123,8 @@ struct GridwiseNormalizationSplitK2nd
const GammaDataType* const __restrict__ p_gamma_global,
const BetaDataType* const __restrict__ p_beta_global,
YDataType* const __restrict__ p_y_global,
SaveMeanInvStdDataType* const __restrict__ p_save_mean_global,
SaveMeanInvStdDataType* const __restrict__ p_save_inv_std_global,
const YElementwiseOperation y_elementwise_op)
{
// Thread/Block id
......@@ -145,6 +160,12 @@ struct GridwiseNormalizationSplitK2nd
auto y_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_y_global, y_grid_desc_m_k.GetElementSpaceSize());
auto save_mean_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_save_mean_global, save_mean_grid_desc_m.GetElementSpaceSize());
auto save_inv_std_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_save_inv_std_global, save_inv_std_grid_desc_m.GetElementSpaceSize());
// VGPR
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MThreadSliceSize, true>
in_mean_thread_buf;
......@@ -158,6 +179,7 @@ struct GridwiseNormalizationSplitK2nd
var_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, int32_t, MThreadSliceSize, true>
welford_count_thread_buf;
auto& inv_std_thread_buf = var_thread_buf;
auto x_thread_buf = generate_tuple(
[&](auto) {
......@@ -283,6 +305,42 @@ struct GridwiseNormalizationSplitK2nd
thread_k_cluster_id * YDstVectorSize),
y_elementwise_op);
auto threadwise_mean_store =
ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
SaveMeanInvStdDataType,
decltype(thread_buffer_desc_m),
SaveMeanInvStdGridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
SaveMeanInvStdDstVectorSize, // ScalarPerVector
InMemoryDataOperationEnum::Set,
1,
true>(
save_mean_grid_desc_m,
make_multi_index(block_m_cluster_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
auto threadwise_inv_std_store =
ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
SaveMeanInvStdDataType,
decltype(thread_buffer_desc_m),
SaveMeanInvStdGridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
SaveMeanInvStdDstVectorSize, // ScalarPerVector
InMemoryDataOperationEnum::Set,
1,
true>(
save_inv_std_grid_desc_m,
make_multi_index(block_m_cluster_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
// step1: Merge mean and variance
constexpr auto mean_var_count_thread_copy_step_I0_k =
make_multi_index(I0, KThreadClusterSize);
......@@ -332,9 +390,33 @@ struct GridwiseNormalizationSplitK2nd
BlockwiseWelford::Run(
mean_thread_buf(I), var_thread_buf(I), welford_count_thread_buf(I));
inv_std_thread_buf(I) =
type_convert<ComputeDataType>(1.0f) / ck::math::sqrt(var_thread_buf(I) + epsilon);
});
// step2: normalization
// step2: save mean and inverse std for backward (optional)
if(block_k_cluster_id == 0 && thread_k_cluster_id == 0)
{
if(p_save_mean_global != nullptr)
{
threadwise_mean_store.Run(thread_buffer_desc_m,
make_tuple(I0),
mean_thread_buf,
save_mean_grid_desc_m,
save_mean_global_val_buf);
}
if(p_save_inv_std_global != nullptr)
{
threadwise_inv_std_store.Run(thread_buffer_desc_m,
make_tuple(I0),
inv_std_thread_buf,
save_inv_std_grid_desc_m,
save_inv_std_global_val_buf);
}
}
// step3: normalization
constexpr auto thread_copy_fwd_step_m_k = make_multi_index(0, K_BlockTileStepSize);
for(index_t k = 0; k < num_k_block_tile_iteration; ++k)
......@@ -360,7 +442,6 @@ struct GridwiseNormalizationSplitK2nd
});
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
auto divisor = 1 / ck::math::sqrt(var_thread_buf(iM) + epsilon);
static_for<0, ThreadBufferNumber, 1>{}([&](auto iK0) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) {
constexpr auto offset_m_k =
......@@ -369,7 +450,7 @@ struct GridwiseNormalizationSplitK2nd
// normalize
y_thread_buf(iK0)(Number<offset_m_k>{}) =
(x_thread_buf(iK0)(Number<offset_m_k>{}) - mean_thread_buf(iM)) *
divisor;
inv_std_thread_buf(iM);
// gamma
y_thread_buf(iK0)(Number<offset_m_k>{}) =
......
......@@ -16,9 +16,11 @@ template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename SaveMeanInvStdDataType,
typename ComputeDataType,
typename YElementwiseOperation,
typename GridDesc_M_K,
typename GridDesc_M,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
......@@ -32,6 +34,7 @@ template <typename XDataType,
index_t BetaSrcVectorSize,
index_t YDstVectorDim,
index_t YDstVectorSize,
index_t SaveMeanInvStdDstVectorSize,
bool SweepOnce>
struct GridwiseNormalizationWelfordVariance_mk_to_mk
{
......@@ -43,6 +46,10 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
(YDstVectorDim == 1 && KThreadSliceSize % YDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static_assert(MThreadSliceSize % SaveMeanInvStdDstVectorSize == 0,
"Invalid thread slice sizes and/or save mean and inverse std vector sizes "
"configuration, please check!");
static_assert(XSrcVectorSize == YDstVectorSize);
static_assert(XSrcVectorSize == GammaSrcVectorSize);
static_assert(XSrcVectorSize == BetaSrcVectorSize);
......@@ -64,6 +71,10 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
static constexpr auto thread_buffer_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<XSrcVectorSize>{}));
using ThreadBufferLengths_M = Sequence<MThreadSliceSize>;
static constexpr auto thread_buffer_desc_m =
make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{}));
using ThreadReduceSrcDesc_M_K = decltype(make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<XSrcVectorSize>{})));
using ThreadReduceDstDesc_M =
......@@ -77,6 +88,8 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
ThreadClusterLengths_M_K,
ThreadClusterArrangeOrder>;
using PassThroughOp = tensor_operation::element_wise::PassThrough;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
......@@ -114,17 +127,18 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
const GridDesc_M_K& gamma_grid_desc_m_k,
const GridDesc_M_K& beta_grid_desc_m_k,
const GridDesc_M_K& y_grid_desc_m_k,
const GridDesc_M& save_mean_grid_desc_m,
const GridDesc_M& save_inv_std_grid_desc_m,
index_t num_k_block_tile_iteration,
ComputeDataType epsilon,
const XDataType* const __restrict__ p_x_global,
const GammaDataType* const __restrict__ p_gamma_global,
const BetaDataType* const __restrict__ p_beta_global,
YDataType* const __restrict__ p_y_global,
SaveMeanInvStdDataType* const __restrict__ p_save_mean_global,
SaveMeanInvStdDataType* const __restrict__ p_save_inv_std_global,
const YElementwiseOperation y_elementwise_op)
{
auto y_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_y_global, y_grid_desc_m_k.GetElementSpaceSize());
auto x_thread_buf = generate_tuple(
[&](auto) {
return StaticBuffer<AddressSpaceEnum::Vgpr,
......@@ -150,6 +164,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
mean_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, MThreadSliceSize, true>
var_thread_buf;
auto& inv_std_thread_buf = var_thread_buf;
const index_t thread_local_id = get_thread_local_1d_id();
const index_t block_global_id = get_block_1d_id();
......@@ -226,6 +241,42 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
thread_k_cluster_id * YDstVectorSize),
y_elementwise_op);
auto threadwise_mean_store =
ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
SaveMeanInvStdDataType,
decltype(thread_buffer_desc_m),
GridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
SaveMeanInvStdDstVectorSize, // ScalarPerVector
InMemoryDataOperationEnum::Set,
1,
true>(
save_mean_grid_desc_m,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
auto threadwise_inv_std_store =
ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
SaveMeanInvStdDataType,
decltype(thread_buffer_desc_m),
GridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
SaveMeanInvStdDstVectorSize, // ScalarPerVector
InMemoryDataOperationEnum::Set,
1,
true>(
save_inv_std_grid_desc_m,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
constexpr auto thread_copy_fwd_step_m_k = make_multi_index(0, K_BlockTileStepSize);
constexpr auto thread_copy_bwd_step_m_k =
make_multi_index(0, SweepOnce ? 0 : -K_BlockTileSize);
......@@ -239,6 +290,15 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
const auto beta_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_beta_global, beta_grid_desc_m_k.GetElementSpaceSize());
auto y_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_y_global, y_grid_desc_m_k.GetElementSpaceSize());
auto save_mean_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_save_mean_global, save_mean_grid_desc_m.GetElementSpaceSize());
auto save_inv_std_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_save_inv_std_global, save_inv_std_grid_desc_m.GetElementSpaceSize());
auto threadwise_welford = ThreadwiseWelford();
threadwise_welford.max_count_ = GetKPerThread(x_grid_desc_m_k, thread_k_cluster_id);
......@@ -279,10 +339,33 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
int count = threadwise_welford.cur_count_;
BlockwiseWelford::Run(mean_thread_buf(I), var_thread_buf(I), count);
inv_std_thread_buf(I) = type_convert<ComputeDataType>(1.0f) /
ck::math::sqrt(var_thread_buf(I) + epsilon);
});
// save mean and inverse std for backward (optional)
if(thread_k_cluster_id == 0)
{
if(p_save_mean_global != nullptr)
{
threadwise_mean_store.Run(thread_buffer_desc_m,
make_tuple(I0),
mean_thread_buf,
save_mean_grid_desc_m,
save_mean_global_val_buf);
}
if(p_save_inv_std_global != nullptr)
{
threadwise_inv_std_store.Run(thread_buffer_desc_m,
make_tuple(I0),
inv_std_thread_buf,
save_inv_std_grid_desc_m,
save_inv_std_global_val_buf);
}
}
// normalization
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
auto divisor = 1 / ck::math::sqrt(var_thread_buf(iM) + epsilon);
static_for<0, ThreadBufferNumber, 1>{}([&](auto iK0) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) {
constexpr auto offset_m_k =
......@@ -291,7 +374,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
// normalize
y_thread_buf(iK0)(Number<offset_m_k>{}) =
(x_thread_buf(iK0)(Number<offset_m_k>{}) - mean_thread_buf(iM)) *
divisor;
inv_std_thread_buf(iM);
// gamma & beta
y_thread_buf(iK0)(Number<offset_m_k>{}) =
......@@ -360,8 +443,29 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
int count = threadwise_welford.cur_count_;
BlockwiseWelford::Run(mean_thread_buf(I), var_thread_buf(I), count);
inv_std_thread_buf(I) = 1 / ck::math::sqrt(var_thread_buf(I) + epsilon);
});
if(thread_k_cluster_id == 0)
{
if(p_save_mean_global != nullptr)
{
threadwise_mean_store.Run(thread_buffer_desc_m,
make_tuple(I0),
mean_thread_buf,
save_mean_grid_desc_m,
save_mean_global_val_buf);
}
if(p_save_inv_std_global != nullptr)
{
threadwise_inv_std_store.Run(thread_buffer_desc_m,
make_tuple(I0),
inv_std_thread_buf,
save_inv_std_grid_desc_m,
save_inv_std_global_val_buf);
}
}
auto thread_copy_tail_m_k =
(num_k_block_tile_iteration - 1) * ThreadBufferNumber * thread_copy_fwd_step_m_k;
......@@ -393,7 +497,6 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
});
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
auto divisor = 1 / ck::math::sqrt(var_thread_buf(iM) + epsilon);
static_for<0, ThreadBufferNumber, 1>{}([&](auto iK0) {
static_for<0, XSrcVectorSize, 1>{}([&](auto iK1) {
constexpr auto offset_m_k =
......@@ -402,7 +505,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
// normalize
y_thread_buf(iK0)(Number<offset_m_k>{}) =
(x_thread_buf(iK0)(Number<offset_m_k>{}) - mean_thread_buf(iM)) *
divisor;
inv_std_thread_buf(iM);
// gamma
y_thread_buf(iK0)(Number<offset_m_k>{}) =
......
......@@ -462,7 +462,6 @@ struct mfma_type<MfmaInstr::mfma_f64_16x16x4f64>
}
};
#if defined CK_ENABLE_FP8
template <>
struct mfma_type<MfmaInstr::mfma_f32_32x32x16f8f8>
{
......@@ -506,9 +505,7 @@ struct mfma_type<MfmaInstr::mfma_f32_16x16x32f8f8>
intrin_mfma_f32_16x16x32f8f8<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
#endif
#if defined CK_ENABLE_BF8
template <>
struct mfma_type<MfmaInstr::mfma_f32_32x32x16bf8bf8>
{
......@@ -552,9 +549,7 @@ struct mfma_type<MfmaInstr::mfma_f32_16x16x32bf8bf8>
intrin_mfma_f32_16x16x32bf8bf8<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
template <>
struct mfma_type<MfmaInstr::mfma_f32_32x32x16f8bf8>
{
......@@ -598,9 +593,7 @@ struct mfma_type<MfmaInstr::mfma_f32_16x16x32f8bf8>
intrin_mfma_f32_16x16x32f8bf8<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
template <>
struct mfma_type<MfmaInstr::mfma_f32_32x32x16bf8f8>
{
......@@ -644,7 +637,6 @@ struct mfma_type<MfmaInstr::mfma_f32_16x16x32bf8f8>
intrin_mfma_f32_16x16x32bf8f8<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
#endif
template <typename base_type,
index_t MPerXdlops,
......@@ -792,7 +784,6 @@ struct MfmaSelector
}
#endif
#if defined CK_ENABLE_FP8
template <>
static constexpr auto GetMfma<f8_t, 32, 32>()
{
......@@ -804,9 +795,7 @@ struct MfmaSelector
{
return MfmaInstr::mfma_f32_16x16x32f8f8;
}
#endif
#if defined CK_ENABLE_BF8
template <>
static constexpr auto GetMfma<bf8_t, 32, 32>()
{
......@@ -818,9 +807,7 @@ struct MfmaSelector
{
return MfmaInstr::mfma_f32_16x16x32bf8bf8;
}
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
template <>
static constexpr auto GetMfma<f8_t, 32, 32, bf8_t>()
{
......@@ -832,9 +819,7 @@ struct MfmaSelector
{
return MfmaInstr::mfma_f32_16x16x32f8bf8;
}
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
template <>
static constexpr auto GetMfma<bf8_t, 32, 32, f8_t>()
{
......@@ -846,7 +831,6 @@ struct MfmaSelector
{
return MfmaInstr::mfma_f32_16x16x32bf8f8;
}
#endif
static constexpr auto selected_mfma =
mfma_type<GetMfma<base_type, MPerXdlops, NPerXdlops, additional_type>()>{};
......@@ -1051,18 +1035,10 @@ struct XdlopsGemm
static_assert(
is_same<base_type, double>::value || is_same<base_type, float>::value ||
is_same<base_type, half_t>::value || is_same<base_type, bhalf_t>::value ||
is_same<base_type, int8_t>::value
#if defined CK_ENABLE_FP8
|| is_same<base_type, f8_t>::value
#endif
#if defined CK_ENABLE_BF8
|| is_same<base_type, bf8_t>::value
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
|| (is_same<base_type, f8_t>::value && is_same<additional_type, bf8_t>::value) ||
(is_same<base_type, bf8_t>::value && is_same<additional_type, f8_t>::value)
#endif
,
is_same<base_type, int8_t>::value || is_same<base_type, f8_t>::value ||
is_same<base_type, bf8_t>::value ||
(is_same<base_type, f8_t>::value && is_same<additional_type, bf8_t>::value) ||
(is_same<base_type, bf8_t>::value && is_same<additional_type, f8_t>::value),
"base base_type must be double, float, half, bfloat16, int8_t, f8_t or bf8_t!");
static_for<0, KPack / mfma_instr.k_per_blk, 1>{}([&](auto k) {
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_AMD_XDLOPS_HPP
#define CK_AMD_XDLOPS_HPP
#include "data_type.hpp"
#pragma once
namespace ck {
......@@ -355,7 +352,6 @@ struct intrin_mfma_f64_16x16x4f64<16, 16>
}
};
#if defined CK_ENABLE_FP8
template <index_t MPerWave, index_t NPerWave>
struct intrin_mfma_f32_32x32x16f8f8;
......@@ -418,9 +414,7 @@ struct intrin_mfma_f32_16x16x32f8f8<16, 16>
#endif
}
};
#endif
#if defined CK_ENABLE_BF8
template <index_t MPerWave, index_t NPerWave>
struct intrin_mfma_f32_32x32x16bf8bf8;
......@@ -483,9 +477,7 @@ struct intrin_mfma_f32_16x16x32bf8bf8<16, 16>
#endif
}
};
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
template <index_t MPerWave, index_t NPerWave>
struct intrin_mfma_f32_32x32x16f8bf8;
......@@ -548,9 +540,7 @@ struct intrin_mfma_f32_16x16x32f8bf8<16, 16>
#endif
}
};
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
template <index_t MPerWave, index_t NPerWave>
struct intrin_mfma_f32_32x32x16bf8f8;
......@@ -613,6 +603,5 @@ struct intrin_mfma_f32_16x16x32bf8f8<16, 16>
#endif
}
};
#endif
} // namespace ck
#endif
......@@ -9,15 +9,9 @@ namespace ck {
using bhalf_t = ushort;
using half_t = _Float16;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
using int4_t = _BitInt(4);
#endif
#if defined CK_ENABLE_FP8
using f8_t = _BitInt(8);
#endif
#if defined CK_ENABLE_BF8
using bf8_t = unsigned _BitInt(8);
#endif
using int4_t = _BitInt(4);
using f8_t = _BitInt(8);
using bf8_t = unsigned _BitInt(8);
// vector_type
template <typename T, index_t N>
......@@ -148,23 +142,19 @@ struct scalar_type<int4_t>
};
#endif
#if defined CK_ENABLE_FP8
template <>
struct scalar_type<f8_t>
{
using type = f8_t;
static constexpr index_t vector_size = 1;
};
#endif
#if defined CK_ENABLE_BF8
template <>
struct scalar_type<bf8_t>
{
using type = bf8_t;
static constexpr index_t vector_size = 1;
};
#endif
template <typename T>
struct vector_type<T, 1>
......@@ -968,24 +958,20 @@ using int8x32_t = typename vector_type<int8_t, 32>::type;
using int8x64_t = typename vector_type<int8_t, 64>::type;
// f8
#if defined CK_ENABLE_FP8
using f8x2_t = typename vector_type<f8_t, 2>::type;
using f8x4_t = typename vector_type<f8_t, 4>::type;
using f8x8_t = typename vector_type<f8_t, 8>::type;
using f8x16_t = typename vector_type<f8_t, 16>::type;
using f8x32_t = typename vector_type<f8_t, 32>::type;
using f8x64_t = typename vector_type<f8_t, 64>::type;
#endif
// bf8
#if defined CK_ENABLE_BF8
using bf8x2_t = typename vector_type<bf8_t, 2>::type;
using bf8x4_t = typename vector_type<bf8_t, 4>::type;
using bf8x8_t = typename vector_type<bf8_t, 8>::type;
using bf8x16_t = typename vector_type<bf8_t, 16>::type;
using bf8x32_t = typename vector_type<bf8_t, 32>::type;
using bf8x64_t = typename vector_type<bf8_t, 64>::type;
#endif
template <typename T>
struct NumericLimits
......@@ -1033,7 +1019,6 @@ struct NumericLimits<int4_t>
};
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#if defined CK_ENABLE_FP8
template <>
struct NumericLimits<f8_t>
{
......@@ -1056,9 +1041,7 @@ struct NumericLimits<f8_t>
__host__ __device__ static constexpr f8_t QuietNaN() { return f8_t(binary_qnan); }
};
#endif
#if defined CK_ENABLE_BF8
template <>
struct NumericLimits<bf8_t>
{
......@@ -1081,7 +1064,6 @@ struct NumericLimits<bf8_t>
__host__ __device__ static constexpr bf8_t QuietNaN() { return bf8_t(binary_qnan); }
};
#endif
template <typename T>
struct NumericUtils
......@@ -1093,6 +1075,7 @@ struct NumericUtils<float>
{
static constexpr int exp = 8;
static constexpr int mant = 23;
static constexpr int bias = 127;
static constexpr uint32_t nan_mask = 0x7F800000;
static constexpr uint32_t head_mask = 0xFF800000;
static constexpr uint32_t mant_mask = 0x7FFFFF;
......@@ -1109,6 +1092,7 @@ struct NumericUtils<half_t>
{
static constexpr int exp = 5;
static constexpr int mant = 10;
static constexpr int bias = 15;
static constexpr uint16_t nan_mask = 0x7C00;
static constexpr uint16_t head_mask = 0xFC00;
static constexpr uint16_t mant_mask = 0x3FF;
......@@ -1120,22 +1104,21 @@ struct NumericUtils<half_t>
using bitwise_type = uint16_t;
};
#if defined CK_ENABLE_FP8
template <>
struct NumericUtils<f8_t>
{
static constexpr int exp = 4;
static constexpr int mant = 3;
static constexpr int bias = 8; // negative zero nan mode
// static constexpr int bias = 7; // ieee mode
};
#endif
#if defined CK_ENABLE_BF8
template <>
struct NumericUtils<bf8_t>
{
static constexpr int exp = 5;
static constexpr int mant = 2;
static constexpr int bias = 16; // negative zero nan mode
// static constexpr int bias = 15; // ieee mode
};
#endif
} // namespace ck
......@@ -5,9 +5,6 @@
#include "ck/utility/data_type.hpp"
// these conversions are disabled if native conversions available
#if !defined(__gfx940__) && !defined(__gfx941__) && !defined(__gfx942__)
#if defined CK_ENABLE_FP8 || defined CK_ENABLE_BF8
namespace ck {
// fp8 rounding modes
......@@ -19,6 +16,9 @@ enum class f8_rounding_mode
stochastic
};
__host__ inline int clz(uint32_t x) { return __builtin_clz(x); }
__device__ inline int clz(uint32_t x) { return __clz(x); }
} // namespace ck
namespace ck::utils {
......@@ -36,7 +36,7 @@ __host__ __device__ Y run_cast_to_f8(X x, uint32_t rng)
constexpr int in_exp = NumericUtils<X>::exp;
constexpr int in_mant = NumericUtils<X>::mant;
int exponent;
int exponent, bias;
uint32_t head, mantissa, sign;
// nan code is same for float and half
constexpr Y nan_code = 0x80;
......@@ -51,12 +51,11 @@ __host__ __device__ Y run_cast_to_f8(X x, uint32_t rng)
mantissa = x_bitwise & NumericUtils<X>::mant_mask;
exponent = (head >> in_mant) & NumericUtils<X>::exp_mask;
sign = head >> (in_exp + in_mant);
bias = NumericUtils<X>::bias;
uint32_t signed_inf = (sign << (in_exp + in_mant)) + (((1 << in_exp) - 1) << in_mant);
uint32_t drop_mask = (1 << (in_mant - out_mant)) - 1;
constexpr int max_exp = (1 << out_exp) - (negative_zero_nan ? 1 : 2);
constexpr int exp_low_cutoff =
(1 << (in_exp - 1)) - (1 << (out_exp - 1)) + 1 - (negative_zero_nan ? 1 : 0);
if constexpr(negative_zero_nan)
{
......@@ -69,56 +68,107 @@ __host__ __device__ Y run_cast_to_f8(X x, uint32_t rng)
return signed_inf + (mantissa != 0 ? 1 : 0);
}
// if input is half and output is bf8
if((NumericUtils<X>::mant == 10) && (NumericUtils<Y>::mant == 2) && negative_zero_nan &&
exponent == 0)
{
exponent += 1;
while(mantissa < (1 << in_mant))
{
mantissa <<= 1;
exponent -= 1;
}
mantissa &= ~(1 << in_mant);
}
// check if x is 0.0
if(x_bitwise == 0)
return 0;
exponent -= exp_low_cutoff - 1;
if(exponent <= 0)
drop_mask = (1 << (in_mant - out_mant + 1 - exponent)) - 1;
mantissa += 1 << in_mant;
// apply random number if needed
mantissa += (stoch ? rng : mantissa) & drop_mask;
if(mantissa >= (2 << in_mant))
{
mantissa >>= 1;
exponent++;
// First need to check if it is normal or denorm as there is a difference of implict 1
// Then need to adjust the exponent to align with the F8 exponent, in the meanwhile, shift
// The mantissa. Then for stochastic rounding, add rng to mantissa and truncate. And for
// RNE, no need to add rng. Then probably need to check whether there is carry and adjust
// exponent and mantissa again3
// For IEEE bias mode, the bias is 2^(k-1)-1 where k is the width of exponent bits
const int out_bias = (1 << (out_exp - 1)) - 1 + (negative_zero_nan ? 1 : 0);
const int out_denormal_act_exponent = 1 - out_bias; // actual exponent of f8 denormal
// act_exponent is the actual exponent of fp32/fp16 (after subtracting bias)
// out_exponent is the converted f8 exponent with bias encoding
// exponent_diff is the diff between fp32/fp16 exponent and f8 exponent,
// the difference needs to be adjusted and mantissa shifted
int act_exponent, out_exponent, exponent_diff;
if(exponent == 0)
{ // fp32/fp16 is in denormal.
/* fp32 denormal is below 2^-127 so it is usually not a concern here, we mostly concern fp16
here. In this case, f8 is usually in denormal. But there could be exceptions. fp16 denormal has
exponent bias 15 while bf8 with NANOO has exponent bias 16. It means that there are some numbers in
fp16 denormal but they are bf8 (NANOO) normals - smallest bf8 (NANOO) normal is 2^-15. fp16 numbers
where exponent==0 (actual exponent -14) and highest bit of mantissa is 1 are bf8 (NANOO) normal.
In this case, the fp16 mantissa should be shift left by 1 */
act_exponent = exponent - bias + 1;
exponent_diff = out_denormal_act_exponent -
act_exponent; // actual exponent is exponent-bias+1 as it is denormal
}
else
{ // fp32/fp16 is normal with implicit 1
act_exponent = exponent - bias;
if(act_exponent <= out_denormal_act_exponent)
{
/* This is the case where fp32/fp16 is normal but it is in f8 denormal range.
For example fp8 nanoo mode, denormal exponent is -7, but if the fp32/fp16
actual exponent is -7, it is actually larger due to the implict 1,
Therefore it needs to be adjust to -6 and mantissa shift right by 1.
So for fp32/fp16, exponent -8 is the cut point to convert to fp8 nanoo */
exponent_diff = out_denormal_act_exponent - act_exponent;
}
else
{ // both fp32/fp16 and f8 are in normal range
exponent_diff =
0; // exponent_diff=0 does not mean there is no difference for this case,
// act_exponent could be larger. Just that it does not need shift mantissa
}
mantissa += (1 << in_mant); // Add the implicit 1 into mantissa
}
mantissa >>= (in_mant - out_mant);
// check negative exponent
if(exponent <= 0)
bool midpoint = (mantissa & ((1 << (in_mant - out_mant + exponent_diff)) - 1)) ==
(1 << (in_mant - out_mant + exponent_diff - 1));
/* This part is a bit tricky. The judgment of whether it is a tie needs to be done before we
shift right as shift right could rip off some residual part and make something not midpoint look
like midpoint. For example, the fp16 number 0x1002 (0 00100 0000000010), it is larger than
midpoint, but after shift right by 4 bits, it would look like midpoint. */
if(exponent_diff > 0)
mantissa >>= exponent_diff;
else if(exponent_diff == -1)
mantissa <<= -exponent_diff;
bool implicit_one = mantissa & (1 << in_mant);
// if there is no implict 1, it means the f8 is denormal and need to adjust to denorm exponent
out_exponent =
(act_exponent + exponent_diff) /*actual f8 exponent*/ + out_bias - (implicit_one ? 0 : 1);
// Now we have the exponent and mantissa adjusted
bool odd =
mantissa &
(1 << (in_mant - out_mant)); // if the least significant bit that is not truncated is 1
mantissa += (stoch ? rng : (midpoint ? (odd ? mantissa : mantissa - 1) : mantissa)) & drop_mask;
// Now we deal with overflow
if(out_exponent == 0)
{
if(x_bitwise == 0)
return 0;
else
if((1 << in_mant) & mantissa)
{
// subnormal range; represented by a subnormal float8 (exponent 0)
// and involves loss of accuracy
mantissa >>= 1 - exponent;
exponent = 0;
out_exponent = 1; // denormal overflow to become normal, promote exponent
// No need to make 1 implicit now as it will be addressed later
}
}
// above range: quantize to maximum possible float of the same sign
else if(exponent > max_exp)
else
{
if((1 << (in_mant + 1)) & mantissa)
{
mantissa >>= 1;
out_exponent++;
// No need to make 1 implicit now as it will be addressed later
}
}
mantissa >>= (in_mant - out_mant);
if(out_exponent > max_exp)
{
if(clip)
{
mantissa = (1 << out_mant) - 1;
exponent = max_exp;
mantissa = (1 << out_mant) - 1;
out_exponent = max_exp;
}
else
{
......@@ -127,10 +177,10 @@ __host__ __device__ Y run_cast_to_f8(X x, uint32_t rng)
}
// check if x is 0.0 or -0.0
if(exponent == 0 && mantissa == 0)
if(out_exponent == 0 && mantissa == 0)
return negative_zero_nan ? 0 : (sign << (out_exp + out_mant));
mantissa &= (1 << out_mant) - 1;
return (sign << (out_exp + out_mant)) | (exponent << out_mant) | mantissa;
return (sign << (out_exp + out_mant)) | (out_exponent << out_mant) | mantissa;
}
template <typename X, typename Y, bool negative_zero_nan>
......@@ -196,12 +246,9 @@ __host__ __device__ Y run_cast_from_f8(X x)
if(exponent == 0)
{
// guaranteed mantissa!=0 since cases 0x0 and 0x80 are handled above
exponent++;
while(mantissa < (1 << in_mant))
{
mantissa <<= 1;
exponent--;
}
int sh = 1 + clz(mantissa) - (32 - in_mant);
mantissa <<= sh;
exponent += 1 - sh;
mantissa &= ((1 << in_mant) - 1);
}
exponent += exp_low_cutoff - 1;
......@@ -244,5 +291,3 @@ __host__ __device__ Y cast_from_f8(X x)
}
} // namespace ck::utils
#endif // #if defined CK_ENABLE_FP8 || defined CK_ENABLE_BF8
#endif // #if !defined(__gfx940__) && !defined(__gfx941__) && !defined(__gfx942__)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment