Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
19f1c759
Unverified
Commit
19f1c759
authored
Feb 15, 2023
by
zjing14
Committed by
GitHub
Feb 15, 2023
Browse files
Merge branch 'develop' into add_contraction_example_fp64
parents
473617e9
e9fd1228
Changes
23
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1183 additions
and
64 deletions
+1183
-64
client_example/11_grouped_conv_bwd_weight/CMakeLists.txt
client_example/11_grouped_conv_bwd_weight/CMakeLists.txt
+7
-2
client_example/11_grouped_conv_bwd_weight/common.hpp
client_example/11_grouped_conv_bwd_weight/common.hpp
+92
-36
client_example/11_grouped_conv_bwd_weight/grouped_conv2d_bwd_weight_fp16.cpp
...rouped_conv_bwd_weight/grouped_conv2d_bwd_weight_fp16.cpp
+41
-0
client_example/11_grouped_conv_bwd_weight/grouped_conv3d_bwd_weight_fp16.cpp
...rouped_conv_bwd_weight/grouped_conv3d_bwd_weight_fp16.cpp
+53
-0
client_example/11_grouped_conv_bwd_weight/grouped_conv3d_bwd_weight_fp32.cpp
...rouped_conv_bwd_weight/grouped_conv3d_bwd_weight_fp32.cpp
+53
-0
client_example/15_convnd_bwd_data/CMakeLists.txt
client_example/15_convnd_bwd_data/CMakeLists.txt
+5
-0
client_example/15_convnd_bwd_data/common.hpp
client_example/15_convnd_bwd_data/common.hpp
+233
-0
client_example/15_convnd_bwd_data/conv3d_bwd_data_fp16.cpp
client_example/15_convnd_bwd_data/conv3d_bwd_data_fp16.cpp
+42
-0
client_example/15_convnd_bwd_data/conv3d_bwd_data_fp32.cpp
client_example/15_convnd_bwd_data/conv3d_bwd_data_fp32.cpp
+42
-0
client_example/16_convnd_fwd/CMakeLists.txt
client_example/16_convnd_fwd/CMakeLists.txt
+5
-0
client_example/16_convnd_fwd/common.hpp
client_example/16_convnd_fwd/common.hpp
+304
-0
client_example/16_convnd_fwd/conv3d_fwd_fp16.cpp
client_example/16_convnd_fwd/conv3d_fwd_fp16.cpp
+44
-0
client_example/16_convnd_fwd/conv3d_fwd_fp32.cpp
client_example/16_convnd_fwd/conv3d_fwd_fp32.cpp
+44
-0
example/46_gemm_add_multiply/run_gemm_add_multiply_example.inc
...le/46_gemm_add_multiply/run_gemm_add_multiply_example.inc
+2
-3
include/ck/ck.hpp
include/ck/ck.hpp
+0
-7
include/ck/tensor_operation/gpu/grid/gridwise_batched_gemm_multiple_d_softmax_gemm_xdl_cshuffle_v1.hpp
..._batched_gemm_multiple_d_softmax_gemm_xdl_cshuffle_v1.hpp
+0
-8
include/ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_xdl_cshuffle_v1.hpp
...id/gridwise_batched_gemm_softmax_gemm_xdl_cshuffle_v1.hpp
+0
-8
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp
...or_operation_instance/gpu/grouped_convolution_forward.hpp
+82
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd/CMakeLists.txt
..._operation_instance/gpu/grouped_conv3d_fwd/CMakeLists.txt
+5
-0
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd/device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_bf16_instance.cpp
...ped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_bf16_instance.cpp
+129
-0
No files found.
client_example/11_grouped_conv_bwd_weight/CMakeLists.txt
View file @
19f1c759
add_executable
(
client_grouped_conv2d_bwd_weight grouped_conv2d_bwd_weight.cpp
)
target_link_libraries
(
client_grouped_conv2d_bwd_weight PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_conv2d_bwd_weight_fp16 grouped_conv2d_bwd_weight_fp16.cpp
)
add_executable
(
client_grouped_conv3d_bwd_weight_fp16 grouped_conv3d_bwd_weight_fp16.cpp
)
add_executable
(
client_grouped_conv3d_bwd_weight_fp32 grouped_conv3d_bwd_weight_fp32.cpp
)
target_link_libraries
(
client_grouped_conv2d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_grouped_conv3d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_grouped_conv3d_bwd_weight_fp32 PRIVATE composable_kernel::device_operations
)
client_example/11_grouped_conv_bwd_weight/
grouped_conv2d_bwd_weight.c
pp
→
client_example/11_grouped_conv_bwd_weight/
common.h
pp
View file @
19f1c759
...
...
@@ -13,27 +13,8 @@
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
256
;
static
constexpr
ck
::
index_t
K
=
192
;
static
constexpr
ck
::
index_t
C
=
192
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
28
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
...
...
@@ -50,22 +31,93 @@ struct SimpleDeviceMem
void
*
p_mem_
;
};
int
main
()
template
<
ck
::
index_t
NumDimSpatial
>
std
::
size_t
GetFlops
(
ck
::
index_t
G
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
output_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
filter_spatial_lengths
)
{
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_spatial_lengths
{
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_spatial_lengths
{
Y
,
X
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
output_spatial_lengths
{
Ho
,
Wo
};
// 2 * G * N * K * C * <output spatial lengths product> * <filter spatial lengths product>
return
static_cast
<
std
::
size_t
>
(
2
)
*
G
*
N
*
K
*
C
*
std
::
accumulate
(
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
*
std
::
accumulate
(
std
::
begin
(
filter_spatial_lengths
),
std
::
end
(
filter_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_strides
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_dilations
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
};
template
<
typename
InDataType
,
ck
::
index_t
NumDimSpatial
>
std
::
size_t
GetInputByte
(
ck
::
index_t
G
,
ck
::
index_t
N
,
ck
::
index_t
C
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
input_spatial_lengths
)
{
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return
sizeof
(
InDataType
)
*
(
G
*
N
*
C
*
std
::
accumulate
(
std
::
begin
(
input_spatial_lengths
),
std
::
end
(
input_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
()));
}
ck
::
index_t
split_k
=
2
;
template
<
typename
WeiDataType
,
ck
::
index_t
NumDimSpatial
>
std
::
size_t
GetWeightByte
(
ck
::
index_t
G
,
ck
::
index_t
K
,
ck
::
index_t
C
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
filter_spatial_lengths
)
{
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return
sizeof
(
WeiDataType
)
*
(
G
*
K
*
C
*
std
::
accumulate
(
std
::
begin
(
filter_spatial_lengths
),
std
::
end
(
filter_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
()));
}
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
G
*
N
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
G
*
N
*
Ho
*
Wo
*
K
);
template
<
typename
OutDataType
,
ck
::
index_t
NumDimSpatial
>
std
::
size_t
GetOutputByte
(
ck
::
index_t
G
,
ck
::
index_t
N
,
ck
::
index_t
K
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
output_spatial_lengths
)
{
// sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
return
sizeof
(
OutDataType
)
*
(
G
*
N
*
K
*
std
::
accumulate
(
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
()));
}
template
<
ck
::
index_t
NumDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
bool
run_grouped_conv_bwd_weight
(
ck
::
index_t
G
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
input_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
filter_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
output_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
input_left_pads
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
input_right_pads
)
{
ck
::
index_t
split_k
=
2
;
SimpleDeviceMem
in
(
GetInputByte
<
InDataType
,
NumDimSpatial
>
(
G
,
N
,
C
,
input_spatial_lengths
));
SimpleDeviceMem
wei
(
GetWeightByte
<
WeiDataType
,
NumDimSpatial
>
(
G
,
K
,
C
,
filter_spatial_lengths
));
SimpleDeviceMem
out
(
GetOutputByte
<
OutDataType
,
NumDimSpatial
>
(
G
,
N
,
K
,
output_spatial_lengths
));
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdWeight
<
NumDimSpatial
,
InLayout
,
...
...
@@ -120,10 +172,12 @@ int main()
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
sizeof
(
InDataType
)
*
G
*
N
*
Hi
*
Wi
*
C
+
sizeof
(
WeiDataType
)
*
G
*
K
*
Y
*
X
*
C
+
sizeof
(
OutDataType
)
*
G
*
N
*
Ho
*
Wo
*
K
;
std
::
size_t
flop
=
GetFlops
<
NumDimSpatial
>
(
G
,
N
,
K
,
C
,
output_spatial_lengths
,
filter_spatial_lengths
);
std
::
size_t
num_bytes
=
GetInputByte
<
InDataType
,
NumDimSpatial
>
(
G
,
N
,
C
,
input_spatial_lengths
)
+
GetWeightByte
<
WeiDataType
,
NumDimSpatial
>
(
G
,
K
,
C
,
filter_spatial_lengths
)
+
GetOutputByte
<
OutDataType
,
NumDimSpatial
>
(
G
,
N
,
K
,
output_spatial_lengths
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
...
...
@@ -149,7 +203,7 @@ int main()
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
return
false
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
...
...
@@ -187,4 +241,6 @@ int main()
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
true
;
}
client_example/11_grouped_conv_bwd_weight/grouped_conv2d_bwd_weight_fp16.cpp
0 → 100644
View file @
19f1c759
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
256
;
static
constexpr
ck
::
index_t
K
=
192
;
static
constexpr
ck
::
index_t
C
=
192
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
28
;
int
main
()
{
return
run_grouped_conv_bwd_weight
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
>
(
G
,
N
,
K
,
C
,
{
Hi
,
Wi
},
{
Y
,
X
},
{
Ho
,
Wo
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/11_grouped_conv_bwd_weight/grouped_conv3d_bwd_weight_fp16.cpp
0 → 100644
View file @
19f1c759
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNDHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNDHWK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
8
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
128
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_bwd_weight
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
>
(
G
,
N
,
K
,
C
,
{
Di
,
Hi
,
Wi
},
{
Z
,
Y
,
X
},
{
Do
,
Ho
,
Wo
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/11_grouped_conv_bwd_weight/grouped_conv3d_bwd_weight_fp32.cpp
0 → 100644
View file @
19f1c759
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
float
;
using
WeiDataType
=
float
;
using
OutDataType
=
float
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNDHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNDHWK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
8
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
128
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_bwd_weight
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
>
(
G
,
N
,
K
,
C
,
{
Di
,
Hi
,
Wi
},
{
Z
,
Y
,
X
},
{
Do
,
Ho
,
Wo
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/15_convnd_bwd_data/CMakeLists.txt
0 → 100644
View file @
19f1c759
add_executable
(
client_conv3d_bwd_data_fp16 conv3d_bwd_data_fp16.cpp
)
add_executable
(
client_conv3d_bwd_data_fp32 conv3d_bwd_data_fp32.cpp
)
target_link_libraries
(
client_conv3d_bwd_data_fp16 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_conv3d_bwd_data_fp32 PRIVATE composable_kernel::device_operations
)
client_example/15_convnd_bwd_data/common.hpp
0 → 100644
View file @
19f1c759
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <string>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/convolution_backward_data.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_data.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
std
::
size_t
GetFlops
(
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
weights_spatial_lengths
)
{
// 2 * N * K * C * <output spatial lengths product> * <filter spatial lengths product>
return
static_cast
<
std
::
size_t
>
(
2
)
*
N
*
K
*
C
*
std
::
accumulate
(
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
*
std
::
accumulate
(
std
::
begin
(
weights_spatial_lengths
),
std
::
end
(
weights_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
InDataType
>
std
::
size_t
GetInputByte
(
ck
::
index_t
N
,
ck
::
index_t
C
,
const
std
::
vector
<
ck
::
index_t
>&
input_spatial_lengths
)
{
// sizeof(InDataType) * (N * C * <input spatial lengths product>) +
return
sizeof
(
InDataType
)
*
N
*
C
*
std
::
accumulate
(
std
::
begin
(
input_spatial_lengths
),
std
::
end
(
input_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
WeiDataType
>
std
::
size_t
GetWeightByte
(
ck
::
index_t
K
,
ck
::
index_t
C
,
const
std
::
vector
<
ck
::
index_t
>&
weights_spatial_lengths
)
{
// sizeof(WeiDataType) * (K * C * <filter spatial lengths product>) +
return
sizeof
(
WeiDataType
)
*
K
*
C
*
std
::
accumulate
(
std
::
begin
(
weights_spatial_lengths
),
std
::
end
(
weights_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
OutDataType
>
std
::
size_t
GetOutputByte
(
ck
::
index_t
N
,
ck
::
index_t
K
,
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
)
{
// sizeof(OutDataType) * (N * K * <output spatial lengths product>);
return
sizeof
(
OutDataType
)
*
N
*
K
*
std
::
accumulate
(
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
());
}
template
<
ck
::
index_t
NumDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
bool
run_conv_bwd_data
(
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
const
std
::
vector
<
ck
::
index_t
>&
in_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
wei_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
out_spatial_lengths
)
{
std
::
size_t
in_mem_size
=
GetInputByte
<
InDataType
>
(
N
,
C
,
in_spatial_lengths
);
std
::
size_t
wei_mem_size
=
GetWeightByte
<
WeiDataType
>
(
K
,
C
,
wei_spatial_lengths
);
std
::
size_t
out_mem_size
=
GetOutputByte
<
OutDataType
>
(
N
,
K
,
out_spatial_lengths
);
SimpleDeviceMem
in
(
in_mem_size
);
SimpleDeviceMem
wei
(
wei_mem_size
);
SimpleDeviceMem
out
(
out_mem_size
);
std
::
vector
<
ck
::
index_t
>
filter_strides
(
NumDimSpatial
,
1
);
std
::
vector
<
ck
::
index_t
>
filter_dilations
(
NumDimSpatial
,
1
);
std
::
vector
<
ck
::
index_t
>
input_left_pads
(
NumDimSpatial
,
1
);
std
::
vector
<
ck
::
index_t
>
input_right_pads
(
NumDimSpatial
,
1
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceConvBwdData
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
std
::
size_t
flop
=
GetFlops
(
N
,
K
,
C
,
out_spatial_lengths
,
wei_spatial_lengths
);
std
::
size_t
num_bytes
=
in_mem_size
+
wei_mem_size
+
out_mem_size
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
out
.
GetDeviceBuffer
(),
N
,
K
,
C
,
in_spatial_lengths
,
wei_spatial_lengths
,
out_spatial_lengths
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
false
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
out
.
GetDeviceBuffer
(),
N
,
K
,
C
,
in_spatial_lengths
,
wei_spatial_lengths
,
out_spatial_lengths
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
true
;
}
client_example/15_convnd_bwd_data/conv3d_bwd_data_fp16.cpp
0 → 100644
View file @
19f1c759
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
KZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
28
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
28
;
int
main
()
{
return
run_conv_bwd_data
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
>
(
N
,
K
,
C
,
{
Di
,
Hi
,
Wi
},
{
Z
,
Y
,
X
},
{
Do
,
Ho
,
Wo
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/15_convnd_bwd_data/conv3d_bwd_data_fp32.cpp
0 → 100644
View file @
19f1c759
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
float
;
using
WeiDataType
=
float
;
using
OutDataType
=
float
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
KZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
28
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
28
;
int
main
()
{
return
run_conv_bwd_data
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
>
(
N
,
K
,
C
,
{
Di
,
Hi
,
Wi
},
{
Z
,
Y
,
X
},
{
Do
,
Ho
,
Wo
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/16_convnd_fwd/CMakeLists.txt
0 → 100644
View file @
19f1c759
add_executable
(
client_conv3d_fwd_fp16 conv3d_fwd_fp16.cpp
)
add_executable
(
client_conv3d_fwd_fp32 conv3d_fwd_fp32.cpp
)
target_link_libraries
(
client_conv3d_fwd_fp16 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_conv3d_fwd_fp32 PRIVATE composable_kernel::device_operations
)
client_example/16_convnd_fwd/common.hpp
0 → 100644
View file @
19f1c759
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <string>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
template
<
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetFlops
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
)
{
// 2 * G * N * K * C * <output spatial lengths product> * <filter spatial lengths product>
ck
::
index_t
G
=
weights_lengths
[
0
];
ck
::
index_t
N
=
output_lengths
[
1
];
ck
::
index_t
K
=
weights_lengths
[
1
];
ck
::
index_t
C
=
weights_lengths
[
2
];
return
static_cast
<
std
::
size_t
>
(
2
)
*
G
*
N
*
K
*
C
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
output_lengths
),
NumNonSpatialDim
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
weights_lengths
),
NumNonSpatialDim
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
InDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetInputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
input_lengths
)
{
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return
sizeof
(
InDataType
)
*
std
::
accumulate
(
std
::
begin
(
input_lengths
),
std
::
end
(
input_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
WeiDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetWeightByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
)
{
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return
sizeof
(
WeiDataType
)
*
std
::
accumulate
(
std
::
begin
(
weights_lengths
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
OutDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetOutputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
)
{
// sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
return
sizeof
(
OutDataType
)
*
std
::
accumulate
(
std
::
begin
(
output_lengths
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
());
}
template
<
ck
::
index_t
NumDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
ck
::
index_t
NumNonSpatialDim
=
3
>
bool
run_grouped_conv_fwd
(
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_lengths
)
{
std
::
size_t
in_mem_size
=
GetInputByte
<
InDataType
,
NumDimSpatial
>
(
in_lengths
);
std
::
size_t
wei_mem_size
=
GetWeightByte
<
WeiDataType
,
NumDimSpatial
>
(
wei_lengths
);
std
::
size_t
out_mem_size
=
GetOutputByte
<
OutDataType
,
NumDimSpatial
>
(
out_lengths
);
SimpleDeviceMem
in
(
in_mem_size
);
SimpleDeviceMem
wei
(
wei_mem_size
);
SimpleDeviceMem
out
(
out_mem_size
);
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_strides
;
in_strides
.
fill
(
0
);
wei_strides
.
fill
(
0
);
out_strides
.
fill
(
0
);
in_strides
.
back
()
=
1
;
wei_strides
.
back
()
=
1
;
out_strides
.
back
()
=
1
;
std
::
partial_sum
(
rbegin
(
in_lengths
),
std
::
prev
(
rend
(
in_lengths
)),
std
::
next
(
rbegin
(
in_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
wei_lengths
),
std
::
prev
(
rend
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
out_lengths
),
std
::
prev
(
rend
(
out_lengths
)),
std
::
next
(
rbegin
(
out_strides
)),
std
::
multiplies
<>
{});
// transpose NDHWGC/KZYXGC/NDHWGK to GNDHWC/GKZYXC/GNDHWK to GNCDHW/GKCZYX/GNKDHW
std
::
rotate
(
std
::
next
(
rbegin
(
in_lengths
)),
std
::
next
(
rbegin
(
in_lengths
),
2
),
rend
(
in_lengths
));
std
::
rotate
(
rbegin
(
in_lengths
),
std
::
next
(
rbegin
(
in_lengths
)),
std
::
next
(
rbegin
(
in_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
in_strides
)),
std
::
next
(
rbegin
(
in_strides
),
2
),
rend
(
in_strides
));
std
::
rotate
(
rbegin
(
in_strides
),
std
::
next
(
rbegin
(
in_strides
)),
std
::
next
(
rbegin
(
in_strides
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_lengths
),
2
),
rend
(
wei_lengths
));
std
::
rotate
(
rbegin
(
wei_lengths
),
std
::
next
(
rbegin
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
wei_strides
)),
std
::
next
(
rbegin
(
wei_strides
),
2
),
rend
(
wei_strides
));
std
::
rotate
(
rbegin
(
wei_strides
),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
next
(
rbegin
(
wei_strides
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
out_lengths
)),
std
::
next
(
rbegin
(
out_lengths
),
2
),
rend
(
out_lengths
));
std
::
rotate
(
rbegin
(
out_lengths
),
std
::
next
(
rbegin
(
out_lengths
)),
std
::
next
(
rbegin
(
out_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
out_strides
)),
std
::
next
(
rbegin
(
out_strides
),
2
),
rend
(
out_strides
));
std
::
rotate
(
rbegin
(
out_strides
),
std
::
next
(
rbegin
(
out_strides
)),
std
::
next
(
rbegin
(
out_strides
),
NumDimSpatial
+
1
));
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_dilations
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
;
conv_filter_strides
.
fill
(
1
);
conv_filter_dilations
.
fill
(
1
);
input_left_pads
.
fill
(
1
);
input_right_pads
.
fill
(
1
);
std
::
size_t
flop
=
GetFlops
<
NumDimSpatial
>
(
out_lengths
,
wei_lengths
);
std
::
size_t
num_bytes
=
in_mem_size
+
wei_mem_size
+
out_mem_size
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{{}},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{{}},
out_lengths
,
out_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
false
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{{}},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{{}},
out_lengths
,
out_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
true
;
}
client_example/16_convnd_fwd/conv3d_fwd_fp16.cpp
0 → 100644
View file @
19f1c759
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
KZYXGC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
K
,
Z
,
Y
,
X
,
G
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/16_convnd_fwd/conv3d_fwd_fp32.cpp
0 → 100644
View file @
19f1c759
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
float
;
using
WeiDataType
=
float
;
using
OutDataType
=
float
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
KZYXGC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
K
,
Z
,
Y
,
X
,
G
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
example/46_gemm_add_multiply/run_gemm_add_multiply_example.inc
View file @
19f1c759
...
...
@@ -53,7 +53,6 @@ bool run_gemm_add_multiply(const ProblemSize& problem_size, const ExecutionConfi
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_m_n
.
mData
.
data
());
...
...
@@ -84,8 +83,8 @@ bool run_gemm_add_multiply(const ProblemSize& problem_size, const ExecutionConfi
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
"wrong! this device_op instance does not support this problem"
<<
std
::
endl
;
return
true
;
std
::
cout
<<
"wrong! this device_op instance does not support this problem"
<<
std
::
endl
;
return
true
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
...
...
include/ck/ck.hpp
View file @
19f1c759
...
...
@@ -168,13 +168,6 @@
// tuning parameter
#define CK_WORKAROUND_SWDEV_325164 0
// workaround: a BF16 attention kernel for gfx908 is likely affected by a compiler issue
#ifdef __gfx908__
#define CK_WORKAROUND_SWDEV_XXXXXX_BF16_ATTEN_FWD_GFX908_ISSUE 1
#else // __gfx90a__, ...
#define CK_WORKAROUND_SWDEV_XXXXXX_BF16_ATTEN_FWD_GFX908_ISSUE 0
#endif // __gfx908__
// flag to enable (1) or disable (0) the debugging output in some kernels
#define DEBUG_LOG 0
...
...
include/ck/tensor_operation/gpu/grid/gridwise_batched_gemm_multiple_d_softmax_gemm_xdl_cshuffle_v1.hpp
View file @
19f1c759
...
...
@@ -1077,14 +1077,6 @@ struct GridwiseBatchedGemmMultipleDSoftmaxGemm_Xdl_CShuffle
}
}
// end gemm1
// workaround compiler issue; see ck/ck.hpp
if
constexpr
(
CK_WORKAROUND_SWDEV_XXXXXX_BF16_ATTEN_FWD_GFX908_ISSUE
==
1
&&
is_same_v
<
FloatAB
,
bhalf_t
>
&&
MPerBlock
==
256
&&
NPerBlock
==
128
&&
Gemm1NPerBlock
==
128
)
{
__builtin_amdgcn_sched_barrier
(
0
);
}
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
=
gemm1_blockwise_gemm
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
();
constexpr
auto
cm0
=
c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I0
);
...
...
include/ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_xdl_cshuffle_v1.hpp
View file @
19f1c759
...
...
@@ -879,14 +879,6 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
}
}
// end gemm1
// workaround compiler issue; see ck/ck.hpp
if
constexpr
(
CK_WORKAROUND_SWDEV_XXXXXX_BF16_ATTEN_FWD_GFX908_ISSUE
==
1
&&
is_same_v
<
FloatAB
,
bhalf_t
>
&&
MPerBlock
==
256
&&
NPerBlock
==
128
&&
Gemm1NPerBlock
==
128
)
{
__builtin_amdgcn_sched_barrier
(
0
);
}
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
=
gemm1_blockwise_gemm
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
();
constexpr
auto
cm0
=
c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4
.
GetLength
(
I0
);
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp
View file @
19f1c759
...
...
@@ -244,6 +244,63 @@ void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instances(
PassThrough
,
PassThrough
>>>&
instances
);
// grouped conv3d forward, NDHWGC/KZYXGC/NDHWGK
void
add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
template
<
ck
::
index_t
NumDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
...
...
@@ -385,6 +442,31 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
NumDimSpatial
==
3
&&
is_same_v
<
InLayout
,
NDHWGC
>
&&
is_same_v
<
WeiLayout
,
KZYXGC
>
&&
is_same_v
<
OutLayout
,
NDHWGK
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_bf16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_int8_instances
(
op_ptrs
);
}
}
return
op_ptrs
;
}
...
...
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd/CMakeLists.txt
View file @
19f1c759
...
...
@@ -3,4 +3,9 @@ add_instance_library(device_grouped_conv3d_fwd_instance
device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f16_instance.cpp
device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f32_instance.cpp
device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instance.cpp
device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_bf16_instance.cpp
device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_f16_instance.cpp
device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_f32_instance.cpp
device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_int8_instance.cpp
)
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd/device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_bf16_instance.cpp
0 → 100644
View file @
19f1c759
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
Empty_Tuple
=
ck
::
Tuple
<>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
NDHWGC
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
KZYXGC
=
ck
::
tensor_layout
::
convolution
::
KZYXGC
;
using
NDHWGK
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
ConvFwd1x1P0
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Pad0
;
static
constexpr
auto
ConvFwd1x1S1P0
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// in[g, n, di, hi, wi, c] * wei[g, k, z, y, x, c] = out[g, n, do, ho, wo, k]
using
device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_bf16_instances
=
std
::
tuple
<
// clang-format off
// Default
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwdDefault
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwdDefault
,
GemmMNKPadding
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwdDefault
,
GemmMNKPadding
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwdDefault
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwdDefault
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwdDefault
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwdDefault
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwdDefault
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwdDefault
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwdDefault
,
GemmMNKPadding
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwdDefault
,
GemmMNKPadding
,
1
,
128
,
32
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwdDefault
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwdDefault
,
GemmMNKPadding
,
1
,
64
,
32
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
// Filter1x1Pad0
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1P0
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1P0
,
GemmMNKPadding
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1P0
,
GemmMNKPadding
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1P0
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1P0
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1P0
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1P0
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1P0
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1P0
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1P0
,
GemmMNKPadding
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1P0
,
GemmMNKPadding
,
1
,
128
,
32
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1P0
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1P0
,
GemmMNKPadding
,
1
,
64
,
32
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
// Filter1x1Stride1Pad0
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1S1P0
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1S1P0
,
GemmMNKPadding
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1S1P0
,
GemmMNKPadding
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1S1P0
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1S1P0
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1S1P0
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1S1P0
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1S1P0
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1S1P0
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1S1P0
,
GemmMNKPadding
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1S1P0
,
GemmMNKPadding
,
1
,
128
,
32
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1S1P0
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
F32
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
ConvFwd1x1S1P0
,
GemmMNKPadding
,
1
,
64
,
32
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
// clang-format on
>
;
void
add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
NDHWGC
,
KZYXGC
,
Empty_Tuple
,
NDHWGK
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_bf16_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment