Unverified Commit 1724f7c8 authored by zjing14's avatar zjing14 Committed by GitHub
Browse files

Merge branch 'develop' into lwpck-586

parents ddbeddb4 fa998675
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using InDataType = int8_t;
using WeiDataType = int8_t;
using BiasDataType = int32_t;
using RequantScaleDataType = float;
using AccDataType = int32_t;
using CShuffleDataType = int32_t;
using OutDataType = int8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using ActivationOp = ck::tensor_operation::element_wise::Relu;
using OutElementOp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<ActivationOp>;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename BiasLayout,
typename RequantScaleLayout,
typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<BiasLayout, RequantScaleLayout>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<BiasDataType, RequantScaleDataType>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
64, // KPerBlock
16, // AK1
16, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
16, // ABlockTransferSrcScalarPerVector
16, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
16, // BBlockTransferSrcScalarPerVector
16, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 64, 1, 4>,
8>;
#pragma once
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
......@@ -219,12 +129,12 @@ bool run_grouped_conv_fwd(bool do_verification,
if(do_verification)
{
Tensor<CShuffleDataType> c_host(out_g_n_k_wos_desc);
Tensor<AccDataType> c_host(out_g_n_k_wos_desc);
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
WeiDataType,
CShuffleDataType,
AccDataType,
InElementOp,
WeiElementOp,
PassThrough>();
......@@ -257,7 +167,7 @@ bool run_grouped_conv_fwd(bool do_verification,
return (pass ? 0 : 1);
}
int main()
int run_conv2d_fwd_bias_relu_perchannel_quantization_example()
{
bool do_verification = true;
bool time_kernel = true;
......@@ -268,7 +178,7 @@ int main()
1, // group
4, // batch
64, // output channels
32, // input chanels
192, // input chanels
{3, 3}, // weight HW
{71, 71}, // x HW
{2, 2}, // strides
......@@ -312,8 +222,6 @@ int main()
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(conv_param);
std::cout << out_g_n_k_wos_desc << std::endl;
using deviceOp = DeviceGroupedConvNDFwdInstance<ndim_spatial,
InLayout,
WeiLayout,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using InDataType = int8_t;
using WeiDataType = int8_t;
using BiasDataType = int32_t;
using AccDataType = int32_t;
using CShuffleDataType = int32_t;
using OutDataType = int8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using ActivationOp = ck::tensor_operation::element_wise::Relu;
using OutElementOp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<ActivationOp>;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename BiasLayout,
typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<BiasLayout>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<BiasDataType>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
64, // KPerBlock
16, // AK1
16, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
16, // ABlockTransferSrcScalarPerVector
16, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
16, // BBlockTransferSrcScalarPerVector
16, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 64, 1, 4>,
8>;
#pragma once
template <ck::index_t NDimSpatial,
typename InDataType,
......@@ -205,12 +118,12 @@ bool run_grouped_conv_fwd(bool do_verification,
if(do_verification)
{
Tensor<CShuffleDataType> c_host(out_g_n_k_wos_desc);
Tensor<AccDataType> c_host(out_g_n_k_wos_desc);
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
WeiDataType,
CShuffleDataType,
AccDataType,
InElementOp,
WeiElementOp,
PassThrough>();
......@@ -242,7 +155,7 @@ bool run_grouped_conv_fwd(bool do_verification,
return (pass ? 0 : 1);
}
int main()
int run_conv2d_fwd_bias_relu_perlayer_quantization_example()
{
bool do_verification = true;
bool time_kernel = true;
......@@ -253,7 +166,7 @@ int main()
1, // group
4, // batch
64, // output channels
32, // input chanels
192, // input chanels
{3, 3}, // weight HW
{71, 71}, // x HW
{2, 2}, // strides
......@@ -294,8 +207,6 @@ int main()
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(conv_param);
std::cout << out_g_n_k_wos_desc << std::endl;
return run_grouped_conv_fwd<
ndim_spatial,
InDataType,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvNDFwdInstance>
bool run_grouped_conv_fwd(bool do_verification,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& requant_scale_g_k_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
{
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<RequantScaleDataType> requant_scale(requant_scale_g_k_desc);
Tensor<OutDataType> out_host(out_g_n_k_wos_desc);
Tensor<OutDataType> out_device(out_g_n_k_wos_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "requant_scale: " << requant_scale.mDesc << std::endl;
std::cout << "out: " << out_host.mDesc << std::endl;
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-128, 127});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-128, 127});
requant_scale.GenerateTensorValue(GeneratorTensor_2<RequantScaleDataType>{0, 1});
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem requant_scale_device_buf(sizeof(RequantScaleDataType) *
requant_scale.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
requant_scale_device_buf.ToDevice(requant_scale.mData.data());
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> d0_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> d0_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(requant_scale_g_k_desc.GetLengths(), d0_g_n_k_wos_lengths);
copy(requant_scale_g_k_desc.GetStrides(), d0_g_n_k_wos_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
// do Conv
auto conv = DeviceConvNDFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
{requant_scale_device_buf.GetDeviceBuffer()},
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
{d0_g_n_k_wos_lengths},
{d0_g_n_k_wos_strides},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = conv_param.GetFlops();
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
bool pass = true;
if(do_verification)
{
Tensor<AccDataType> c_host(out_g_n_k_wos_desc);
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
WeiDataType,
AccDataType,
InElementOp,
WeiElementOp,
PassThrough>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei,
c_host,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
PassThrough{});
ref_invoker.Run(ref_argument);
// TODO: implement elementwise operation for host
out_host.ForEach([&](auto&, auto idx) {
out_element_op(out_host(idx), c_host(idx), requant_scale(idx));
});
out_device_buf.FromDevice(out_device.mData.data());
pass &=
ck::utils::check_err(out_device, out_host, "Error: incorrect results!", 1e-5f, 1e-4f);
}
return (pass ? 0 : 1);
}
int run_conv2d_fwd_perchannel_quantization_example()
{
bool do_verification = true;
bool time_kernel = true;
const ck::index_t ndim_spatial = 2;
ck::utils::conv::ConvParam conv_param{
ndim_spatial, // n_dim
1, // group
4, // batch
64, // output channels
192, // input chanels
{3, 3}, // weight HW
{71, 71}, // x HW
{2, 2}, // strides
{1, 1}, // dilations
{1, 1}, // left_pads
{1, 1} // right_pads
};
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{ActivationOp{}};
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using RequantScaleLayout = ck::tensor_layout::convolution::G_K;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(conv_param);
const auto requant_scale_g_k_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
0, // n
1, // k
0, // ho
0 // wo
});
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(conv_param);
using deviceOp = DeviceGroupedConvNDFwdInstance<ndim_spatial,
InLayout,
WeiLayout,
RequantScaleLayout,
OutLayout>;
return run_grouped_conv_fwd<ndim_spatial,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
deviceOp>(do_verification,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
requant_scale_g_k_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using InDataType = int8_t;
using WeiDataType = int8_t;
using AccDataType = int32_t;
using CShuffleDataType = int32_t;
using OutDataType = int8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using ActivationOp = PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<ActivationOp>;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
64, // KPerBlock
16, // AK1
16, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
16, // ABlockTransferSrcScalarPerVector
16, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
16, // BBlockTransferSrcScalarPerVector
16, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 64, 1, 4>,
16>;
#pragma once
template <ck::index_t NDimSpatial,
typename InDataType,
......@@ -221,10 +139,10 @@ bool run_grouped_conv_fwd(bool do_verification,
return (pass ? 0 : 1);
}
int main()
int run_conv2d_fwd_perlayer_quantization_example()
{
bool do_verification = true;
bool time_kernel = true;
bool time_kernel = false;
const ck::index_t ndim_spatial = 2;
ck::utils::conv::ConvParam conv_param{
......@@ -232,7 +150,7 @@ int main()
1, // group
4, // batch
64, // output channels
32, // input chanels
192, // input chanels
{3, 3}, // weight HW
{71, 71}, // x HW
{2, 2}, // strides
......
add_example_executable(example_conv2d_fwd_xdl_perchannel_quantization_int8 conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp)
add_example_executable(example_conv2d_fwd_xdl_perlayer_quantization_int8 conv2d_fwd_xdl_perlayer_quantization_int8.cpp)
add_example_executable(example_conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8 conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp)
......@@ -134,7 +134,8 @@ __global__ void
const Block2CTileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx1030__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx1030__) || \
defined(__gfx90a__) || defined(__gfx908__))
// offset base pointer for each work-group
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
......@@ -314,9 +315,8 @@ struct DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
const auto in_gemmm_gemmk_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_desc);
const auto M = in_gemmm_gemmk_desc.GetLength(I0);
const auto K = in_gemmm_gemmk_desc.GetLength(I1);
const auto M = in_gemmm_gemmk_desc.GetLength(I0);
const auto K = in_gemmm_gemmk_desc.GetLength(I1);
const auto AK0 = K / K1;
return transform_tensor_descriptor(
......@@ -709,7 +709,8 @@ struct DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
namespace ctc = tensor_layout::convolution;
// check device
if(!(ck::get_device_name() == "gfx906" || ck::get_device_name() == "gfx1030"))
if(!(ck::get_device_name() == "gfx906" || ck::get_device_name() == "gfx1030" ||
ck::get_device_name() == "gfx90a" || ck::get_device_name() == "gfx908"))
{
return false;
}
......@@ -834,6 +835,7 @@ struct DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
{
return false;
}
// check Gridwise GEMM
return GridwiseGemm::CheckValidity(
arg.a_grid_desc_ak0_m_ak1_, arg.b_grid_desc_bk0_n_bk1_, arg.e_grid_desc_m_n_);
......
......@@ -51,7 +51,7 @@ __global__ void
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx1030__))
defined(__gfx90a__) || defined(__gfx1030__))
constexpr index_t shared_block_size =
GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(ABDataType);
......@@ -552,7 +552,7 @@ struct DeviceGemmMultipleD_Dl : public DeviceGemmMultipleD<ALayout,
static bool IsSupportedArgument(const Argument& arg)
{
if(ck::get_device_name() == "gfx906" || ck::get_device_name() == "gfx908" ||
ck::get_device_name() == "gfx1030")
ck::get_device_name() == "gfx90a" || ck::get_device_name() == "gfx1030")
{
return GridwiseGemm::CheckValidity(
arg.a_grid_desc_k0_m_k1_, arg.b_grid_desc_k0_n_k1_, arg.e_grid_desc_m_n_);
......
#pragma once
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_dl_multiple_d.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename GridwiseGemm,
typename GemmDesc,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
bool HasMainKBlockLoop,
bool HasDoubleTailKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_grouped_gemm_multiple_d_dl(const void CK_CONSTANT_ADDRESS_SPACE* gemm_descs_const,
const index_t group_count,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx90a__) || defined(__gfx1030__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
const index_t block_id = get_block_1d_id();
const auto gemm_desc_ptr =
reinterpret_cast<const GemmDesc*>(cast_pointer_to_generic_address_space(gemm_descs_const));
index_t left = 0;
index_t right = group_count;
index_t group_id = index_t((left + right) / 2);
while((!(block_id >= gemm_desc_ptr[group_id].BlockStart_ &&
block_id < gemm_desc_ptr[group_id].BlockEnd_)) &&
left <= right)
{
if(block_id < gemm_desc_ptr[group_id].BlockStart_)
{
right = group_id;
}
else
{
left = group_id;
}
group_id = index_t((left + right) / 2);
}
GridwiseGemm::Run(gemm_desc_ptr[group_id].a_ptr_,
gemm_desc_ptr[group_id].b_ptr_,
gemm_desc_ptr[group_id].ds_ptr_,
gemm_desc_ptr[group_id].e_ptr_,
p_shared,
a_element_op,
b_element_op,
cde_element_op,
gemm_desc_ptr[group_id].a_grid_desc_k0_m0_m1_k1_,
gemm_desc_ptr[group_id].b_grid_desc_k0_n0_n1_k1_,
gemm_desc_ptr[group_id].ds_grid_desc_m0_m10_m11_n0_n10_n11_,
gemm_desc_ptr[group_id].e_grid_desc_m0_m10_m11_n0_n10_n11_,
gemm_desc_ptr[group_id].block_2_etile_map_,
integral_constant<bool, HasMainKBlockLoop>{},
integral_constant<bool, HasDoubleTailKBlockLoop>{});
#else
ignore = gemm_descs_const;
ignore = group_count;
ignore = a_element_op;
ignore = b_element_op;
ignore = cde_element_op;
#endif
}
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename AccDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
GemmSpecialization GemmSpec,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t K1,
index_t M1PerThread,
index_t N1PerThread,
index_t KPerThread,
typename M1N1ThreadClusterM1Xs,
typename M1N1ThreadClusterN1Xs,
typename ABlockTransferThreadSliceLengths_K0_M0_M1_K1,
typename ABlockTransferThreadClusterLengths_K0_M0_M1_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
typename ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1,
typename ABlockTransferSrcVectorTensorContiguousDimOrder,
typename ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1,
typename BBlockTransferThreadSliceLengths_K0_N0_N1_K1,
typename BBlockTransferThreadClusterLengths_K0_N0_N1_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
typename BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1,
typename BBlockTransferSrcVectorTensorContiguousDimOrder,
typename BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector,
enable_if_t<
is_same_v<AElementwiseOperation, ck::tensor_operation::element_wise::PassThrough> &&
is_same_v<BElementwiseOperation, ck::tensor_operation::element_wise::PassThrough>,
bool> = false>
struct DeviceGroupedGemmMultipleD_Dl : public DeviceGroupedGemm<ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>
{
using DeviceOp = DeviceGroupedGemmMultipleD_Dl;
static constexpr index_t NumDTensor = DsDataType::Size();
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto K1Number = Number<K1>{};
static auto MakeAGridDescriptor_K0_M_K1(index_t M, index_t K, index_t StrideA)
{
assert(K % K1 == 0);
const index_t K0 = K / K1;
const auto a_grid_desc_m_k = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
}
}();
if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_right_pad_transform(M, PadM)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else
{
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
}
static auto MakeBGridDescriptor_K0_N_K1(index_t K, index_t N, index_t StrideB)
{
assert(K % K1 == 0);
const index_t K0 = K / K1;
const auto b_grid_desc_k_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
}
}();
if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_right_pad_transform(N, PadN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else
{
return transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
}
template <typename ELay>
static auto MakeEGridDescriptor_M_N(index_t M, index_t N, index_t StrideE)
{
const auto c_grid_desc_m_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ELay>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideE, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ELay>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideE));
}
}();
if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_right_pad_transform(M, PadM), make_right_pad_transform(N, PadN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
return transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_pass_through_transform(M), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
}
static auto MakeDsGridDescriptor_M_N(const std::array<index_t, NumDTensor>& MRaws,
const std::array<index_t, NumDTensor>& NRaws,
const std::array<index_t, NumDTensor>& DsStride)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return DeviceOp::MakeEGridDescriptor_M_N<DLayout>(MRaws[i], NRaws[i], DsStride[i]);
},
Number<NumDTensor>{});
}
using AGridDesc_K0_M_K1 = decltype(MakeAGridDescriptor_K0_M_K1(1, 1, 1));
using BGridDesc_K0_N_K1 = decltype(MakeBGridDescriptor_K0_N_K1(1, 1, 1));
using DsGridDesc_M_N = decltype(MakeDsGridDescriptor_M_N({}, {}, {}));
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N<ELayout>(1, 1, 1));
// GridwiseGemm
using GridwiseGemm =
GridwiseGemmDlMultipleD_km_kn_mn<BlockSize,
ADataType,
AccDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
InMemoryDataOperationEnum::Set,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
EGridDesc_M_N,
MPerBlock,
NPerBlock,
K0PerBlock,
K1,
M1PerThread,
N1PerThread,
KPerThread,
M1N1ThreadClusterM1Xs,
M1N1ThreadClusterN1Xs,
ABlockTransferThreadSliceLengths_K0_M0_M1_K1,
ABlockTransferThreadClusterLengths_K0_M0_M1_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1,
ABlockTransferSrcVectorTensorContiguousDimOrder,
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1,
BBlockTransferThreadSliceLengths_K0_N0_N1_K1,
BBlockTransferThreadClusterLengths_K0_N0_N1_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1,
BBlockTransferSrcVectorTensorContiguousDimOrder,
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector>;
using AGridDesc_K0_M0_M1_K1 =
decltype(GridwiseGemm::MakeAGridDescriptor_K0_M0_M1_K1(AGridDesc_K0_M_K1{}));
using BGridDesc_K0_N0_N1_K1 =
decltype(GridwiseGemm::MakeBGridDescriptor_K0_N0_N1_K1(BGridDesc_K0_N_K1{}));
using DsGridDesc_M0_M10_M11_N0_N10_N11 =
decltype(GridwiseGemm::MakeDsGridDescriptor_M0_M10_M11_N0_N10_N11(DsGridDesc_M_N{}));
using EGridDesc_M0_M10_M11_N0_N10_N11 =
decltype(GridwiseGemm::MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(EGridDesc_M_N{}));
struct GroupedGemmBlock2ETileMap
{
using Block2ETileMap =
remove_cvref_t<decltype(GridwiseGemm::MakeDefaultBlock2CTileMap(EGridDesc_M_N{}))>;
GroupedGemmBlock2ETileMap()
{
block_2_etile_map_ = GridwiseGemm::MakeDefaultBlock2CTileMap(EGridDesc_M_N{});
BlockStart_ = -1;
}
GroupedGemmBlock2ETileMap(const EGridDesc_M_N& e_grid_desc_m_n, ck::index_t BlockStart)
{
block_2_etile_map_ = GridwiseGemm::MakeDefaultBlock2CTileMap(e_grid_desc_m_n);
BlockStart_ = BlockStart;
}
template <typename TopIdx>
__host__ __device__ constexpr auto CalculateBottomIndex(const TopIdx& idx_top) const
{
return block_2_etile_map_.CalculateBottomIndex(
make_multi_index(idx_top[I0] - BlockStart_));
}
// it's actually E-Tile
template <typename CTileIdx, typename CTileDim>
__host__ __device__ bool ValidCTileIndex(const CTileIdx& c_tile_idx,
const CTileDim& c_tile_dim) const
{
return block_2_etile_map_.ValidCTileIndex(c_tile_idx, c_tile_dim);
}
__host__ bool CheckValidity(const EGridDesc_M_N& e_grid_desc_m_n) const
{
return block_2_etile_map_.CheckValidity(e_grid_desc_m_n);
}
Block2ETileMap block_2_etile_map_;
ck::index_t BlockStart_;
};
struct GemmKernelArg
{
// pointers
const ADataType* a_ptr_;
const BDataType* b_ptr_;
typename GridwiseGemm::DsGridPointer ds_ptr_;
EDataType* e_ptr_;
// tensor descriptors for problem definiton
AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
DsGridDesc_M_N ds_grid_desc_m_n_;
EGridDesc_M_N e_grid_desc_m_n_;
// tensor descriptors for block/thread-wise copy
AGridDesc_K0_M0_M1_K1 a_grid_desc_k0_m0_m1_k1_;
BGridDesc_K0_N0_N1_K1 b_grid_desc_k0_n0_n1_k1_;
DsGridDesc_M0_M10_M11_N0_N10_N11 ds_grid_desc_m0_m10_m11_n0_n10_n11_;
EGridDesc_M0_M10_M11_N0_N10_N11 e_grid_desc_m0_m10_m11_n0_n10_n11_;
// block-to-e-tile map
GroupedGemmBlock2ETileMap block_2_etile_map_;
ck::index_t BlockStart_, BlockEnd_;
};
// Argument
struct Argument : public BaseArgument
{
Argument(std::vector<const void*>& p_As,
std::vector<const void*>& p_Bs,
std::vector<std::array<const void*, NumDTensor>>& p_Ds,
std::vector<void*>& p_Es,
std::vector<GemmDesc>& gemm_descs,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
grid_size_ = 0;
group_count_ = ck::type_convert<ck::index_t>(gemm_descs.size());
if(!(group_count_ == ck::type_convert<ck::index_t>(p_As.size()) &&
group_count_ == ck::type_convert<ck::index_t>(p_Bs.size()) &&
group_count_ == ck::type_convert<ck::index_t>(p_Es.size())))
{
throw std::runtime_error("wrong! group_count_ != p_As/b/c.size");
}
gemm_desc_kernel_arg_.reserve(group_count_);
skipped_group_count_ = 0;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
const index_t M = gemm_descs[i].M_;
const index_t N = gemm_descs[i].N_;
const index_t K = gemm_descs[i].K_;
a_mtx_mraw_kraw_.emplace_back(M, K);
b_mtx_nraw_kraw_.emplace_back(N, K);
if(M == 0)
{
skipped_group_count_++;
continue;
}
const index_t StrideA = gemm_descs[i].stride_A_;
const index_t StrideB = gemm_descs[i].stride_B_;
const index_t StrideE = gemm_descs[i].stride_C_;
typename GridwiseGemm::DsGridPointer p_ds_grid{};
DsGridDesc_M_N ds_grid_desc_m_n;
static_for<0, NumDTensor, 1>{}([&](auto j) {
using DLayout = remove_cvref_t<tuple_element_t<j.value, DsLayout>>;
using DDataType = remove_cvref_t<tuple_element_t<j.value, DsDataType>>;
p_ds_grid(j) = static_cast<const DDataType*>(p_Ds[i][j]);
ds_grid_desc_m_n(j) = DeviceOp::MakeEGridDescriptor_M_N<DLayout>(
M, N, gemm_descs[i].stride_Ds_[j]);
});
// tensor descriptors for problem definiton
const auto a_grid_desc_k0_m_k1 =
DeviceOp::MakeAGridDescriptor_K0_M_K1(M, K, StrideA);
const auto b_grid_desc_k0_n_k1 =
DeviceOp::MakeBGridDescriptor_K0_N_K1(K, N, StrideB);
const auto e_grid_desc_m_n =
DeviceOp::MakeEGridDescriptor_M_N<ELayout>(M, N, StrideE);
if(GridwiseGemm::CheckValidity(
a_grid_desc_k0_m_k1, b_grid_desc_k0_n_k1, e_grid_desc_m_n))
{
const index_t grid_size_grp =
GroupedGemmBlock2ETileMap(e_grid_desc_m_n, 0)
.block_2_etile_map_.CalculateGridSize(e_grid_desc_m_n);
const index_t BlockStart = grid_size_;
const index_t BlockEnd = grid_size_ + grid_size_grp;
grid_size_ += grid_size_grp;
// block-to-e-tile map
const auto block_2_etile_map =
GroupedGemmBlock2ETileMap(e_grid_desc_m_n, BlockStart);
// tensor descriptors for block/thread-wise copy
const auto a_grid_desc_k0_m0_m1_k1 =
GridwiseGemm::MakeAGridDescriptor_K0_M0_M1_K1(a_grid_desc_k0_m_k1);
const auto b_grid_desc_k0_n0_n1_k1 =
GridwiseGemm::MakeBGridDescriptor_K0_N0_N1_K1(b_grid_desc_k0_n_k1);
const auto ds_grid_desc_m0_m10_m11_n0_n10_n11 =
GridwiseGemm::MakeDsGridDescriptor_M0_M10_M11_N0_N10_N11(ds_grid_desc_m_n);
const auto e_grid_desc_m0_m10_m11_n0_n10_n11 =
GridwiseGemm::MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(e_grid_desc_m_n);
gemm_desc_kernel_arg_.push_back(
GemmKernelArg{static_cast<const ADataType*>(p_As[i]),
static_cast<const BDataType*>(p_Bs[i]),
p_ds_grid,
static_cast<EDataType*>(p_Es[i]),
a_grid_desc_k0_m_k1,
b_grid_desc_k0_n_k1,
ds_grid_desc_m_n,
e_grid_desc_m_n,
a_grid_desc_k0_m0_m1_k1,
b_grid_desc_k0_n0_n1_k1,
ds_grid_desc_m0_m10_m11_n0_n10_n11,
e_grid_desc_m0_m10_m11_n0_n10_n11,
block_2_etile_map,
BlockStart,
BlockEnd});
}
}
}
// private:
index_t group_count_;
index_t skipped_group_count_;
// TODO: A,B element op is unused since gridwise_gemm_dl_v1r3 does NOT support prologue
// for the time being.
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
std::vector<GemmKernelArg> gemm_desc_kernel_arg_;
std::vector<Tuple<index_t, index_t>> a_mtx_mraw_kraw_;
std::vector<Tuple<index_t, index_t>> b_mtx_nraw_kraw_;
index_t grid_size_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
auto K0 = arg.gemm_desc_kernel_arg_[0].a_grid_desc_k0_m_k1_.GetLength(I0);
bool all_has_main_k_block_loop = GridwiseGemm::CalculateHasMainKBlockLoop(K0);
bool all_has_double_tail_k_block_loop =
GridwiseGemm::CalculateHasDoubleTailKBlockLoop(K0);
for(std::size_t i = 0; i < arg.gemm_desc_kernel_arg_.size(); i++)
{
#if DEBUG_LOG
std::cout << "group: " << i << " arg.a_grid_desc_k0_m_k1_{"
<< arg.gemm_desc_kernel_arg_[i].a_grid_desc_k0_m_k1_.GetLength(I0) << ", "
<< arg.gemm_desc_kernel_arg_[i].a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
<< arg.gemm_desc_kernel_arg_[i].a_grid_desc_k0_m_k1_.GetLength(I2) << "}"
<< std::endl;
std::cout << ", arg.b_grid_desc_k0_n_k1_{"
<< arg.gemm_desc_kernel_arg_[i].b_grid_desc_k0_n_k1_.GetLength(I0) << ", "
<< arg.gemm_desc_kernel_arg_[i].b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
<< arg.gemm_desc_kernel_arg_[i].b_grid_desc_k0_n_k1_.GetLength(I2) << "}"
<< std::endl;
std::cout << ", arg.e_grid_desc_m_n_{ "
<< arg.gemm_desc_kernel_arg_[i].e_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.gemm_desc_kernel_arg_[i].e_grid_desc_m_n_.GetLength(I1) << "}"
<< std::endl;
#endif
if(!GridwiseGemm::CheckValidity(arg.gemm_desc_kernel_arg_[i].a_grid_desc_k0_m_k1_,
arg.gemm_desc_kernel_arg_[i].b_grid_desc_k0_n_k1_,
arg.gemm_desc_kernel_arg_[i].e_grid_desc_m_n_))
{
throw std::runtime_error(
"wrong! GridwiseGemmDlMultipleD_km_kn_mn has invalid setting");
}
K0 = arg.gemm_desc_kernel_arg_[i].a_grid_desc_k0_m0_m1_k1_.GetLength(I0);
bool not_all_has_main_k_block_loop_same =
all_has_main_k_block_loop xor GridwiseGemm::CalculateHasMainKBlockLoop(K0);
bool not_all_has_double_tail_k_block_loop_same =
all_has_double_tail_k_block_loop xor
GridwiseGemm::CalculateHasDoubleTailKBlockLoop(K0);
if(not_all_has_main_k_block_loop_same or not_all_has_double_tail_k_block_loop_same)
{
std::ostringstream err;
err << "Not all gemms have same value for [main|double_tail]_k_block_loop! in "
<< __FILE__ << ":" << __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
}
hipGetErrorString(hipMemcpy(arg.p_workspace_,
arg.gemm_desc_kernel_arg_.data(),
arg.gemm_desc_kernel_arg_.size() * sizeof(GemmKernelArg),
hipMemcpyHostToDevice));
auto launch_kernel = [&](auto has_main_k_block_loop,
auto has_double_tail_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
constexpr bool has_double_loop = has_double_tail_k_block_loop.value;
const auto kernel = kernel_grouped_gemm_multiple_d_dl<GridwiseGemm,
GemmKernelArg,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
has_main_loop,
has_double_loop>;
return launch_and_time_kernel(
stream_config,
kernel,
dim3(arg.grid_size_),
dim3(BlockSize),
0,
cast_pointer_to_constant_address_space(arg.p_workspace_),
arg.gemm_desc_kernel_arg_.size(),
arg.a_element_op_,
arg.b_element_op_,
arg.cde_element_op_);
};
if(all_has_main_k_block_loop && all_has_double_tail_k_block_loop)
{
return launch_kernel(integral_constant<bool, true>{},
integral_constant<bool, true>{});
}
else if(all_has_main_k_block_loop && !all_has_double_tail_k_block_loop)
{
return launch_kernel(integral_constant<bool, true>{},
integral_constant<bool, false>{});
}
else if(!all_has_main_k_block_loop && all_has_double_tail_k_block_loop)
{
return launch_kernel(integral_constant<bool, false>{},
integral_constant<bool, true>{});
}
else
{
return launch_kernel(integral_constant<bool, false>{},
integral_constant<bool, false>{});
}
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static bool IsSupportedArgument(const Argument& arg)
{
if((ck::type_convert<ck::index_t>(arg.gemm_desc_kernel_arg_.size()) +
arg.skipped_group_count_) != arg.group_count_)
{
return false;
}
const std::string device_name = ck::get_device_name();
// TODO add newer Navi arch
if(device_name != "gfx906" and device_name != "gfx908" and device_name != "gfx90a" and
device_name != "gfx1030")
{
return false;
}
for(std::size_t i = 0; i < arg.gemm_desc_kernel_arg_.size(); i++)
{
if(!GridwiseGemm::CheckValidity(arg.gemm_desc_kernel_arg_[i].a_grid_desc_k0_m_k1_,
arg.gemm_desc_kernel_arg_[i].b_grid_desc_k0_n_k1_,
arg.gemm_desc_kernel_arg_[i].e_grid_desc_m_n_))
{
return false;
}
}
return true;
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(std::vector<const void*>& p_As,
std::vector<const void*>& p_Bs,
std::vector<std::array<const void*, NumDTensor>>& p_Ds,
std::vector<void*>& p_Es,
std::vector<GemmDesc> gemm_descs,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{
p_As, p_Bs, p_Ds, p_Es, gemm_descs, a_element_op, b_element_op, cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument>
MakeArgumentPointer(std::vector<const void*>& p_As,
std::vector<const void*>& p_Bs,
std::vector<std::array<const void*, NumDTensor>>& p_Ds,
std::vector<void*>& p_Es,
std::vector<GemmDesc>& gemm_descs,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op) override
{
return std::make_unique<Argument>(
p_As, p_Bs, p_Ds, p_Es, gemm_descs, a_element_op, b_element_op, cde_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGroupedGemmMultipleD_Dl"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock << ", "
<< K1 << ", "
<< M1PerThread << ", "
<< N1PerThread << ", "
<< KPerThread
<< getGemmSpecializationString(GemmSpec)
<< ">";
// clang-format on
return str.str();
}
size_t GetWorkSpaceSize(const BaseArgument* p_arg) const override
{
return dynamic_cast<const Argument*>(p_arg)->group_count_ * sizeof(GemmKernelArg);
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
#pragma once
#include "ck/utility/data_type.hpp"
// #include "ck/utility/get_id.hpp"
namespace ck {
namespace tensor_operation {
......@@ -17,18 +18,27 @@ struct Activation_Mul_Clamp
__host__ __device__ constexpr void operator()(int8_t& y, const int32_t& x) const
{
float x_fp32 = ck::type_convert<float>(x);
activationOp_(x_fp32, x_fp32);
float y_fp32 = math::clamp(requantScale_ * x_fp32, -128.f, 127.f);
y = ck::type_convert<int8_t>(y_fp32);
float y_fp32 = ck::type_convert<float>(x);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale_ * y_fp32, -128.f, 127.f);
y = ck::type_convert<int8_t>(y_fp32);
}
__host__ __device__ constexpr void operator()(float& y, const int32_t& x) const
__device__ constexpr void operator()(int32_t& y, const int32_t& x) const
{
// We might type_convert to int8 after lambda in someplace
float x_fp32 = ck::type_convert<float>(x);
activationOp_(x_fp32, x_fp32);
y = math::clamp(requantScale_ * x_fp32, -128.f, 127.f);
// CAUSION - We might type_convert to int8 in threadwise copy
// eg. GridwiseGemmDlMultipleD_km_kn_mn
float y_fp32 = ck::type_convert<float>(x);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale_ * y_fp32, -128.f, 127.f);
y = ck::type_convert<int32_t>(y_fp32);
}
__host__ constexpr void operator()(float& y, const float& x) const
{
// CAUSION - We might float in & float out in reference code
activationOp_(y, x);
y = math::clamp(requantScale_ * y, -128.f, 127.f);
}
float requantScale_;
......@@ -51,6 +61,17 @@ struct Activation_Mul2_Clamp
y = ck::type_convert<int8_t>(y_fp32);
}
__device__ constexpr void
operator()(int32_t& y, const int32_t& x, const float& requantScale) const
{
// CAUSION - We might type_convert to int8 in threadwise copy
// eg. GridwiseGemmDlMultipleD_km_kn_mn
float y_fp32 = ck::type_convert<float>(x);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale * y_fp32, -128.f, 127.f);
y = ck::type_convert<int32_t>(y_fp32);
}
Activation activationOp_;
};
......@@ -72,6 +93,17 @@ struct Add_Activation_Mul_Clamp
y = ck::type_convert<int8_t>(y_fp32);
}
__host__ __device__ constexpr void
operator()(int32_t& y, const int32_t& x, const int32_t& bias) const
{
// CAUSION - We might type_convert to int8 in threadwise copy
// eg. GridwiseGemmDlMultipleD_km_kn_mn
float y_fp32 = ck::type_convert<float>(x + bias);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale_ * y_fp32, -128.f, 127.f);
y = ck::type_convert<int32_t>(y_fp32);
}
float requantScale_;
Activation activationOp_;
};
......@@ -92,6 +124,17 @@ struct Add_Activation_Mul2_Clamp
y = ck::type_convert<int8_t>(y_fp32);
}
__host__ __device__ constexpr void
operator()(int32_t& y, const int32_t& x, const int32_t& bias, const float& requantScale) const
{
// CAUSION - We might type_convert to int8 in threadwise copy
// eg. GridwiseGemmDlMultipleD_km_kn_mn
float y_fp32 = ck::type_convert<float>(x + bias);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale * y_fp32, -128.f, 127.f);
y = ck::type_convert<int32_t>(y_fp32);
}
Activation activationOp_;
};
......
......@@ -185,8 +185,10 @@ struct GridwiseGemmDlMultipleD_km_kn_mn
return b_grid_desc_k0_n0_n1_k1;
}
// E desc for destination in blockwise copy
template <typename CGridDesc_M_N_>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(const CGridDesc_M_N& c_grid_desc_m_n)
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(const CGridDesc_M_N_& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
......@@ -238,19 +240,19 @@ struct GridwiseGemmDlMultipleD_km_kn_mn
using BGridDesc_K0_N0_N1_K1 = decltype(MakeBGridDescriptor_K0_N0_N1_K1(BGridDesc_K0_N_K1{}));
using CGridDesc_M0_M10_M11_N0_N10_N11 =
decltype(MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(CGridDesc_M_N{}));
using Block2CTileMap = decltype(MakeDefaultBlock2CTileMap(CGridDesc_M_N{}));
using DsGridPointer = decltype(MakeDsGridPointer());
template <typename DsGridDesc_M0_M10_M11_N0_N10_N11,
bool HasMainKBlockLoop,
bool HasDoubleTailKBlockLoop>
bool HasDoubleTailKBlockLoop,
typename Block2CTileMap>
__device__ static void
Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
DsGridPointer p_ds_grid,
FloatC* __restrict__ p_c_grid,
FloatAB* __restrict__ p_shared_block,
void* __restrict__ p_shared_block,
const AElementwiseOperation&,
const BElementwiseOperation&,
const CDEElementwiseOperation& cde_element_op,
......@@ -399,8 +401,9 @@ struct GridwiseGemmDlMultipleD_km_kn_mn
constexpr auto b_block_aligned_space_size = math::integer_least_multiple(
b_block_desc_k0_n0_n1_k1.GetElementSpaceSize(), max_lds_align);
FloatAB* p_a_block_double = p_shared_block;
FloatAB* p_b_block_double = p_shared_block + 2 * a_block_aligned_space_size;
FloatAB* p_a_block_double = static_cast<FloatAB*>(p_shared_block);
FloatAB* p_b_block_double =
static_cast<FloatAB*>(p_shared_block) + 2 * a_block_aligned_space_size;
// register allocation for output
auto c_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAcc>(
......
......@@ -135,6 +135,28 @@ __device__ void inner_product<half8_t, half8_t, float>(const half8_t& a, const h
c);
}
template <>
__device__ void inner_product<int8_t, int8_t, int32_t>(const int8_t& a, const int8_t& b, int32_t& c)
{
c += type_convert<int32_t>(a) * type_convert<int32_t>(b);
}
template <>
__device__ void
inner_product<int8x2_t, int8x2_t, int32_t>(const int8x2_t& a, const int8x2_t& b, int32_t& c)
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
inner_product(vector_type<int8_t, 2>{a}.AsType<int8_t>()[I0],
vector_type<int8_t, 2>{b}.AsType<int8_t>()[I0],
c);
inner_product(vector_type<int8_t, 2>{a}.AsType<int8_t>()[I1],
vector_type<int8_t, 2>{b}.AsType<int8_t>()[I1],
c);
}
template <>
__device__ void
inner_product<int8x4_t, int8x4_t, int32_t>(const int8x4_t& a, const int8x4_t& b, int32_t& c)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Layout(A, B, C) = [Col, Row, Row]
void add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Row,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Col, Col, Row]
void add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Col,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Row, Row, Row]
void add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Row, Col, Row]
void add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Col, Row, Row]
void add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Row,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Col, Col, Row]
void add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Col,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Row, Row, Row]
void add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
// Layout(A, B, C) = [Row, Col, Row]
void add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Empty_Tuple,
Row,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
template <typename ALayout,
typename BLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename EDataType,
typename Activation>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMultipleD<
ALayout,
BLayout,
Empty_Tuple,
ELayout,
ADataType,
BDataType,
Empty_Tuple,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
Activation_Mul_Clamp<Activation>>>
{
using DeviceOp = DeviceGemmMultipleD<ALayout,
BLayout,
Empty_Tuple,
ELayout,
ADataType,
BDataType,
Empty_Tuple,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
Activation_Mul_Clamp<Activation>>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, int8_t> && is_same_v<BDataType, int8_t> &&
is_same_v<EDataType, int8_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
if constexpr(is_same_v<Activation, PassThrough>)
{
add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_kn_mn_instances(op_ptrs);
add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<ELayout, Row>)
{
if constexpr(is_same_v<Activation, PassThrough>)
{
add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_nk_mn_instances(op_ptrs);
add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
if constexpr(is_same_v<Activation, PassThrough>)
{
add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_kn_mn_instances(op_ptrs);
add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<ELayout, Row>)
{
if constexpr(is_same_v<Activation, PassThrough>)
{
add_device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_nk_mn_instances(op_ptrs);
add_device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instances(op_ptrs);
}
}
return op_ptrs;
}
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -18,7 +18,7 @@ namespace device {
namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
void add_device_conv2d_bias_perchannel_quantization_int8_instances(
void add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
......@@ -34,7 +34,38 @@ void add_device_conv2d_bias_perchannel_quantization_int8_instances(
Add_Activation_Mul2_Clamp<PassThrough>>>>&
instances);
void add_device_conv2d_bias_relu_perchannel_quantization_int8_instances(
void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
GK_GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Activation_Mul2_Clamp<Relu>>>>&
instances);
void add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
GK_GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Activation_Mul2_Clamp<PassThrough>>>>&
instances);
void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
......@@ -98,9 +129,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<DsDataType, I32_F32_Tuple> && is_same_v<OutDataType, int8_t>)
{
if constexpr(is_same_v<Activation, PassThrough>)
add_device_conv2d_bias_perchannel_quantization_int8_instances(op_ptrs);
{
add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(op_ptrs);
add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances(op_ptrs);
}
else if constexpr(is_same_v<Activation, Relu>)
add_device_conv2d_bias_relu_perchannel_quantization_int8_instances(op_ptrs);
{
add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(op_ptrs);
add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(op_ptrs);
}
}
}
......
......@@ -18,7 +18,7 @@ namespace device {
namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
void add_device_conv2d_bias_perlayer_quantization_int8_instances(
void add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
......@@ -34,7 +34,38 @@ void add_device_conv2d_bias_perlayer_quantization_int8_instances(
Add_Activation_Mul_Clamp<PassThrough>>>>&
instances);
void add_device_conv2d_bias_relu_perlayer_quantization_int8_instances(
void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Activation_Mul_Clamp<Relu>>>>&
instances);
void add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Activation_Mul_Clamp<PassThrough>>>>&
instances);
void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
......@@ -98,9 +129,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<DsDataType, I32_Tuple> && is_same_v<OutDataType, int8_t>)
{
if constexpr(is_same_v<Activation, PassThrough>)
add_device_conv2d_bias_perlayer_quantization_int8_instances(op_ptrs);
{
add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(op_ptrs);
add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances(op_ptrs);
}
else if constexpr(is_same_v<Activation, Relu>)
add_device_conv2d_bias_relu_perlayer_quantization_int8_instances(op_ptrs);
{
add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(op_ptrs);
add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(op_ptrs);
}
}
}
......
......@@ -18,7 +18,7 @@ namespace device {
namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
void add_device_conv2d_perchannel_quantization_int8_instances(
void add_device_conv2d_dl_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
......@@ -33,7 +33,37 @@ void add_device_conv2d_perchannel_quantization_int8_instances(
Activation_Mul2_Clamp<PassThrough>>>>&
instances);
void add_device_conv2d_relu_perchannel_quantization_int8_instances(
void add_device_conv2d_dl_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul2_Clamp<Relu>>>>&
instances);
void add_device_conv2d_xdl_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul2_Clamp<PassThrough>>>>&
instances);
void add_device_conv2d_xdl_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
......@@ -97,9 +127,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<OutDataType, int8_t>)
{
if constexpr(is_same_v<Activation, PassThrough>)
add_device_conv2d_perchannel_quantization_int8_instances(op_ptrs);
{
add_device_conv2d_dl_perchannel_quantization_int8_instances(op_ptrs);
add_device_conv2d_xdl_perchannel_quantization_int8_instances(op_ptrs);
}
else if constexpr(is_same_v<Activation, Relu>)
add_device_conv2d_relu_perchannel_quantization_int8_instances(op_ptrs);
{
add_device_conv2d_dl_relu_perchannel_quantization_int8_instances(op_ptrs);
add_device_conv2d_xdl_relu_perchannel_quantization_int8_instances(op_ptrs);
}
}
}
......
......@@ -18,7 +18,7 @@ namespace device {
namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
void add_device_conv2d_perlayer_quantization_int8_instances(
void add_device_conv2d_dl_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
......@@ -33,7 +33,37 @@ void add_device_conv2d_perlayer_quantization_int8_instances(
Activation_Mul_Clamp<PassThrough>>>>&
instances);
void add_device_conv2d_relu_perlayer_quantization_int8_instances(
void add_device_conv2d_dl_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<Relu>>>>&
instances);
void add_device_conv2d_xdl_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Activation_Mul_Clamp<PassThrough>>>>&
instances);
void add_device_conv2d_xdl_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
......@@ -94,9 +124,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<OutDataType, int8_t>)
{
if constexpr(is_same_v<Activation, PassThrough>)
add_device_conv2d_perlayer_quantization_int8_instances(op_ptrs);
{
add_device_conv2d_dl_perlayer_quantization_int8_instances(op_ptrs);
add_device_conv2d_xdl_perlayer_quantization_int8_instances(op_ptrs);
}
else if constexpr(is_same_v<Activation, Relu>)
add_device_conv2d_relu_perlayer_quantization_int8_instances(op_ptrs);
{
add_device_conv2d_dl_relu_perlayer_quantization_int8_instances(op_ptrs);
add_device_conv2d_xdl_relu_perlayer_quantization_int8_instances(op_ptrs);
}
}
}
......
set(CONV2D_PERLAYER_QUANT_SRC
conv2d_fwd/device_conv2d_dl_perlayer_quantization_int8_instance.cpp
conv2d_fwd/device_conv2d_xdl_perlayer_quantization_int8_instance.cpp
)
set(CONV2D_PERCHANNEL_QUANT_SRC
conv2d_fwd/device_conv2d_dl_perchannel_quantization_int8_instance.cpp
conv2d_fwd/device_conv2d_xdl_perchannel_quantization_int8_instance.cpp
)
set(CONV2D_BIAS_PERLAYER_QUANT_SRC
conv2d_fwd/device_conv2d_dl_bias_perlayer_quantization_int8_instance.cpp
conv2d_fwd/device_conv2d_xdl_bias_perlayer_quantization_int8_instance.cpp
)
set(CONV2D_BIAS_PERCHANNEL_QUANT_SRC
conv2d_fwd/device_conv2d_dl_bias_perchannel_quantization_int8_instance.cpp
conv2d_fwd/device_conv2d_xdl_bias_perchannel_quantization_int8_instance.cpp
)
set(GEMM_QUANT_SRC
gemm/device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_kn_mn_instance.cpp
gemm/device_gemm_quantization_dl_c_shuffle_i8_i8_i8_km_nk_mn_instance.cpp
gemm/device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_kn_mn_instance.cpp
gemm/device_gemm_quantization_dl_c_shuffle_i8_i8_i8_mk_nk_mn_instance.cpp
gemm/device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instance.cpp
gemm/device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instance.cpp
gemm/device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instance.cpp
gemm/device_gemm_quantization_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instance.cpp
)
add_instance_library(device_quantization_instance
device_conv2d_xdl_bias_perchannel_quantization_int8_instance.cpp
device_conv2d_xdl_bias_perlayer_quantization_int8_instance.cpp
device_conv2d_xdl_perchannel_quantization_int8_instance.cpp
device_conv2d_xdl_perlayer_quantization_int8_instance.cpp
${CONV2D_PERLAYER_QUANT_SRC}
${CONV2D_PERCHANNEL_QUANT_SRC}
${CONV2D_BIAS_PERLAYER_QUANT_SRC}
${CONV2D_BIAS_PERCHANNEL_QUANT_SRC}
${GEMM_QUANT_SRC}
)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Empty_Tuple = ck::Tuple<>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using GNHWC = ck::tensor_layout::convolution::GNHWC;
using GKYXC = ck::tensor_layout::convolution::GKYXC;
using GNHWK = ck::tensor_layout::convolution::GNHWK;
using GK = ck::tensor_layout::convolution::G_K;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Relu = ck::tensor_operation::element_wise::Relu;
using GK_Tuple = ck::Tuple<GK>;
using GK_GK_Tuple = ck::Tuple<GK, GK>;
using I32_Tuple = ck::Tuple<int32_t>;
using F32_Tuple = ck::Tuple<float>;
using I32_F32_Tuple = ck::Tuple<int32_t, float>;
using Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<PassThrough>;
using Relu_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Relu>;
using Add_Mul_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<PassThrough>;
using Add_Relu_Mul_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<Relu>;
using Mul2_Clamp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<PassThrough>;
using Relu_Mul2_Clamp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<Relu>;
using Add_Mul2_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<PassThrough>;
using Add_Relu_Mul2_Clamp = ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<Relu>;
static constexpr ck::index_t NDimSpatial = 2;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
static constexpr auto ConvFwdDefault =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto ConvFwd1x1P0 =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0;
static constexpr auto ConvFwd1x1S1P0 =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_conv2d_dl_int8_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul2_Clamp>>>& instances)
{
// dl
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Mul2_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Mul2_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Mul2_Clamp,
ConvFwd1x1S1P0,
4>{});
}
void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_F32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Relu_Mul2_Clamp>>>& instances)
{
// dl
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Relu_Mul2_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Relu_Mul2_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_GK_Tuple,
I32_F32_Tuple,
Add_Relu_Mul2_Clamp,
ConvFwd1x1S1P0,
4>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_conv2d_dl_int8_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Mul_Clamp,
ConvFwd1x1S1P0,
4>{});
}
void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
GK_Tuple,
GNHWK,
int8_t,
int8_t,
I32_Tuple,
int8_t,
PassThrough,
PassThrough,
Add_Relu_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Relu_Mul_Clamp,
ConvFwdDefault,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Relu_Mul_Clamp,
ConvFwd1x1P0,
4>{});
add_device_operation_instances(instances,
device_grouped_conv2d_dl_int8_instances<GK_Tuple,
I32_Tuple,
Add_Relu_Mul_Clamp,
ConvFwd1x1S1P0,
4>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment