Unverified Commit 1462ee22 authored by arai713's avatar arai713 Committed by GitHub
Browse files

Merge branch 'develop' into gridwise_2d

parents 2c4305b2 d1567094
......@@ -3,7 +3,7 @@
#include <iostream>
#include "profiler/include/profile_batched_gemm_impl.hpp"
#include "profiler/profile_batched_gemm_impl.hpp"
namespace {
using ADataType = ck::half_t;
......
......@@ -3,7 +3,7 @@
#include <iostream>
#include "profiler/include/profile_batched_gemm_impl.hpp"
#include "profiler/profile_batched_gemm_impl.hpp"
namespace {
using ADataType = float;
......
......@@ -3,7 +3,7 @@
#include <iostream>
#include "profiler/include/profile_batched_gemm_impl.hpp"
#include "profiler/profile_batched_gemm_impl.hpp"
namespace {
using ADataType = int8_t;
......
......@@ -6,7 +6,7 @@
#include <vector>
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_gemm_xdl_cshuffle.hpp"
#include "profiler/include/profile_batched_gemm_gemm_impl.hpp"
#include "profiler/profile_batched_gemm_gemm_impl.hpp"
using ck::tensor_operation::device::GemmSpecialization;
......
......@@ -3,7 +3,7 @@
#include <iostream>
#include "profiler/include/profile_batched_gemm_reduce_impl.hpp"
#include "profiler/profile_batched_gemm_reduce_impl.hpp"
int main()
{
......
......@@ -6,7 +6,7 @@
#include <vector>
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_xdl_cshuffle.hpp"
#include "profiler/include/profile_batched_gemm_softmax_gemm_impl.hpp"
#include "profiler/profile_batched_gemm_softmax_gemm_impl.hpp"
using ck::tensor_operation::device::GemmSpecialization;
template <ck::index_t N>
......
......@@ -7,7 +7,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "profiler/include/profile_batched_gemm_softmax_gemm_permute_impl.hpp"
#include "profiler/profile_batched_gemm_softmax_gemm_permute_impl.hpp"
using ck::tensor_operation::device::GemmSpecialization;
using ck::tensor_operation::device::MaskingSpecialization;
......
add_gtest_executable(test_batchnorm_fwd_rank_4 batchnorm_fwd_rank_4.cpp)
add_gtest_executable(test_batchnorm_bwd_rank_4 batchnorm_bwd_rank_4.cpp)
target_link_libraries(test_batchnorm_fwd_rank_4 PRIVATE utility device_batchnorm_instance)
target_link_libraries(test_batchnorm_bwd_rank_4 PRIVATE utility device_batchnorm_instance)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <vector>
#include <tuple>
#include <gtest/gtest.h>
#include "profiler/profile_batchnorm_backward_impl.hpp"
using F16 = ck::half_t;
using F32 = float;
using BF16 = ck::bhalf_t;
using F64 = double;
template <typename Tuple>
class TestBatchNormBwdRank4 : public ::testing::Test
{
private:
const double epsilon = std::numeric_limits<float>::epsilon();
protected:
using XDataType = std::tuple_element_t<0, Tuple>;
using DxDataType = std::tuple_element_t<1, Tuple>;
using DyDataType = std::tuple_element_t<2, Tuple>;
using AccDataType = std::tuple_element_t<3, Tuple>;
using ScaleDataType = std::tuple_element_t<4, Tuple>;
using BiasDataType = std::tuple_element_t<5, Tuple>;
using MeanVarDataType = std::tuple_element_t<6, Tuple>;
std::vector<std::vector<size_t>> list_of_lengths = {
{128, 16, 3, 1024}, {128, 16, 6, 512}, {1, 1, 1, 1}, {4, 4, 4, 4}, {32, 32, 32, 32}};
std::vector<int> reduceDims;
template <int NumReduceDim>
void Run()
{
for(auto& inOutLengths : list_of_lengths)
{
bool pass = true;
EXPECT_FALSE(reduceDims.size() != NumReduceDim);
pass = pass && ck::profiler::profile_batchnorm_backward_impl<XDataType,
DxDataType,
DyDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
4,
NumReduceDim>(
true, 3, false, false, inOutLengths, reduceDims, true, epsilon);
pass = pass && ck::profiler::profile_batchnorm_backward_impl<XDataType,
DxDataType,
DyDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
4,
NumReduceDim>(
true, 3, false, false, inOutLengths, reduceDims, false, epsilon);
EXPECT_TRUE(pass);
}
}
};
using KernelTypes = ::testing::Types<std::tuple<F16, F32, F32, F32, F16, F32, F32>,
std::tuple<F32, F32, F32, F32, F32, F32, F32>,
std::tuple<BF16, F32, F32, F32, BF16, F32, F32>,
std::tuple<F64, F64, F64, F64, F64, F64, F64>>;
TYPED_TEST_SUITE(TestBatchNormBwdRank4, KernelTypes);
// nhwc
TYPED_TEST(TestBatchNormBwdRank4, nhwc)
{
this->reduceDims = {0, 1, 2};
this->template Run<3>();
}
// nchw
TYPED_TEST(TestBatchNormBwdRank4, nchw)
{
this->reduceDims = {0, 2, 3};
this->template Run<3>();
}
......@@ -8,7 +8,7 @@
#include <tuple>
#include <gtest/gtest.h>
#include "profiler/include/profile_batchnorm_forward_impl.hpp"
#include "profiler/profile_batchnorm_forward_impl.hpp"
using F16 = ck::half_t;
using F32 = float;
......
......@@ -8,7 +8,7 @@
#include <tuple>
#include <gtest/gtest.h>
#include "profiler/include/profile_conv_bwd_data_impl.hpp"
#include "profiler/profile_conv_bwd_data_impl.hpp"
template <typename Tuple>
class TestConvndBwdData : public ::testing::Test
......
......@@ -8,7 +8,7 @@
#include <tuple>
#include <gtest/gtest.h>
#include "profiler/include/profile_conv_fwd_impl.hpp"
#include "profiler/profile_conv_fwd_impl.hpp"
template <typename Tuple>
class TestConvndFwd : public ::testing::Test
......
......@@ -2,7 +2,7 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/include/profile_elementwise_layernorm_impl.hpp"
#include "profiler/profile_elementwise_layernorm_impl.hpp"
using F16 = ck::half_t;
using F32 = float;
......
......@@ -3,7 +3,7 @@
#include <iostream>
#include "profiler/include/profile_gemm_reduce_impl.hpp"
#include "profiler/profile_gemm_reduce_impl.hpp"
int main()
{
......
......@@ -226,9 +226,8 @@ int main(int argc, char* argv[])
std::vector<gemmArgs> test_cases;
if(argc == 1)
{
test_cases = {{GemmMatrixLayout::MK_KN_MN, 3, 3, 3, 3, 3, 3, 1}};
// JD: Populate with more and meaningful
return 0;
test_cases = {{GemmMatrixLayout::MK_KN_MN, 1024, 1024, 1024, 1024, 1024, 1024, 2},
{GemmMatrixLayout::MK_KN_MN, 1024, 1024, 1024, 1024, 1024, 1024, 8}};
}
else if(argc == 9)
{
......@@ -253,11 +252,10 @@ int main(int argc, char* argv[])
printf("arg2 to 7: M, N, K, StrideA, StrideB, StrideC KBatch\n");
return -1;
}
bool error = false;
for(const auto& kinder : test_cases)
{
const auto res = test_gemm(kinder);
if(!res)
return -1;
error |= test_gemm(kinder);
}
return 0;
return error ? 1 : 0;
}
......@@ -9,7 +9,7 @@
#include <gtest/gtest.h>
#include "profiler/include/profile_grouped_conv_bwd_weight_impl.hpp"
#include "profiler/profile_grouped_conv_bwd_weight_impl.hpp"
template <typename Tuple>
class TestGroupedConvndBwdWeight : public ::testing::Test
......
......@@ -7,7 +7,7 @@
#include <vector>
#include <gtest/gtest.h>
#include "profiler/include/profile_grouped_conv_fwd_impl.hpp"
#include "profiler/profile_grouped_conv_fwd_impl.hpp"
class TestGroupedConvNdFwd : public ::testing::Test
{
......
......@@ -3,7 +3,7 @@
#include <iostream>
#include "profiler/include/profile_grouped_gemm_impl.hpp"
#include "profiler/profile_grouped_gemm_impl.hpp"
namespace {
......
......@@ -2,7 +2,7 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/include/profile_groupnorm_impl.hpp"
#include "profiler/profile_groupnorm_impl.hpp"
using F16 = ck::half_t;
using F32 = float;
......
......@@ -2,7 +2,7 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/include/profile_groupnorm_impl.hpp"
#include "profiler/profile_groupnorm_impl.hpp"
using F16 = ck::half_t;
using F32 = float;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment