Unverified Commit 1462ee22 authored by arai713's avatar arai713 Committed by GitHub
Browse files

Merge branch 'develop' into gridwise_2d

parents 2c4305b2 d1567094
......@@ -11,6 +11,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
......@@ -163,26 +164,25 @@ bool run_grouped_conv_fwd(bool do_verification,
// do Conv
auto conv = DeviceConvNDFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(
in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{bias_device_buf.GetDeviceBuffer()},
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
std::array<std::array<ck::index_t, NDimSpatial + 3>, 1>{{d0_g_n_k_wos_lengths}},
std::array<std::array<ck::index_t, NDimSpatial + 3>, 1>{{d0_g_n_k_wos_strides}},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
auto argument = conv.MakeArgument(in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
{bias_device_buf.GetDeviceBuffer()},
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
{d0_g_n_k_wos_lengths},
{d0_g_n_k_wos_strides},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
if(!conv.IsSupportedArgument(argument))
{
......@@ -235,8 +235,8 @@ bool run_grouped_conv_fwd(bool do_verification,
out_device_buf.FromDevice(out_device.mData.data());
pass &= ck::utils::check_err(
out_device.mData, out_host.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
pass &=
ck::utils::check_err(out_device, out_host, "Error: incorrect results!", 1e-5f, 1e-4f);
}
return (pass ? 0 : 1);
......
......@@ -11,6 +11,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
......@@ -150,14 +151,14 @@ bool run_grouped_conv_fwd(bool do_verification,
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
std::array<const void*, 0>{},
{},
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
std::array<std::array<ck::index_t, NDimSpatial + 3>, 0>{{}},
std::array<std::array<ck::index_t, NDimSpatial + 3>, 0>{{}},
{},
{},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
......@@ -213,8 +214,8 @@ bool run_grouped_conv_fwd(bool do_verification,
out_device_buf.FromDevice(out_device.mData.data());
pass &= ck::utils::check_err(
out_device.mData, out_host.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
pass &=
ck::utils::check_err(out_device, out_host, "Error: incorrect results!", 1e-5f, 1e-4f);
}
return (pass ? 0 : 1);
......
......@@ -25,7 +25,7 @@
// check GPU target
#ifdef __HIP_DEVICE_COMPILE__
#if !(defined(__gfx803__) || defined(__gfx900__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx90a__) || defined(__gfx1030__))
defined(__gfx90a__) || defined(__gfx1030__) || defined(__gfx1100__))
#error Not supported target
#endif
#endif
......@@ -38,6 +38,8 @@
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x00020000
#elif defined(__gfx1030__) // for GPU code
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x31014000
#elif defined(__gfx1100__) // for GPU code
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x10020000
#endif
// FMA instruction
......@@ -62,6 +64,13 @@
#define CK_USE_AMD_MFMA_BF16_1K_OP
#endif
// WMMA instruction
#ifndef __HIP_DEVICE_COMPILE__ // for host code
#define CK_USE_AMD_WMMA
#elif defined(__gfx1100__) // for GPU code
#define CK_USE_AMD_WMMA
#endif
// buffer load
#define CK_USE_AMD_BUFFER_LOAD 1
......
......@@ -13,7 +13,16 @@ namespace ck {
namespace tensor_operation {
namespace device {
template <index_t Rank, index_t NumBatchNormReduceDim, typename DyElementwiseOp>
template <typename XDataType,
typename DxDataType,
typename DyDataType,
typename AccDataType,
typename ScaleDataType,
typename DscaleDbiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp,
index_t Rank,
index_t NumBatchNormReduceDim>
struct DeviceBatchNormBwd : public BaseOperator
{
static constexpr index_t NumInvariantDim = Rank - NumBatchNormReduceDim;
......@@ -26,7 +35,7 @@ struct DeviceBatchNormBwd : public BaseOperator
const std::array<int, NumBatchNormReduceDim> reduceDims,
const std::array<ck::index_t, NumInvariantDim> bnScaleBiasMeanVarLengths,
const std::array<ck::index_t, NumInvariantDim> bnScaleStrides,
const std::array<ck::index_t, NumInvariantDim> bnBiasStrides,
const std::array<ck::index_t, NumInvariantDim> bnDscaleDbiasStrides,
const std::array<ck::index_t, NumInvariantDim> bnMeanVarStrides,
const void* p_x,
const void* p_dy,
......@@ -42,9 +51,26 @@ struct DeviceBatchNormBwd : public BaseOperator
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <index_t Rank, index_t NumBatchNormReduceDim, typename DyElementwiseOp>
using DeviceBatchNormBwdPtr =
std::unique_ptr<DeviceBatchNormBwd<Rank, NumBatchNormReduceDim, DyElementwiseOp>>;
template <typename XDataType,
typename DxDataType,
typename DyDataType,
typename AccDataType,
typename ScaleDataType,
typename DscaleDbiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp,
index_t Rank,
index_t NumBatchNormReduceDim>
using DeviceBatchNormBwdPtr = std::unique_ptr<DeviceBatchNormBwd<XDataType,
DxDataType,
DyDataType,
AccDataType,
ScaleDataType,
DscaleDbiasDataType,
MeanVarDataType,
DyElementwiseOp,
Rank,
NumBatchNormReduceDim>>;
} // namespace device
} // namespace tensor_operation
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <functional>
#include <iostream>
#include <iterator>
#include <numeric>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_dl_multiple_d.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/io.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace {
template <index_t NumDTensor>
struct ComputePtrOffsetOfStridedBatch
{
ComputePtrOffsetOfStridedBatch() = default;
ComputePtrOffsetOfStridedBatch(index_t BatchStrideA,
index_t BatchStrideB,
Array<ck::index_t, NumDTensor> BatchStrideDs,
index_t BatchStrideE)
: BatchStrideA_(BatchStrideA),
BatchStrideB_(BatchStrideB),
BatchStrideDs_(BatchStrideDs),
BatchStrideE_(BatchStrideE)
{
}
__host__ __device__ constexpr long_index_t GetAPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideA_);
}
__host__ __device__ constexpr long_index_t GetBPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideB_);
}
__host__ __device__ constexpr auto GetDsPtrOffset(index_t g_idx) const
{
Array<long_index_t, NumDTensor> ds_offset;
static_for<0, NumDTensor, 1>{}(
[&](auto i) { ds_offset(i) = g_idx * static_cast<long_index_t>(BatchStrideDs_[i]); });
return ds_offset;
}
__host__ __device__ constexpr long_index_t GetEPtrOffset(index_t g_idx) const
{
return g_idx * static_cast<long_index_t>(BatchStrideE_);
}
index_t BatchStrideA_;
index_t BatchStrideB_;
Array<ck::index_t, NumDTensor> BatchStrideDs_;
index_t BatchStrideE_;
};
/*
* \brief Wrapper function of GridwiseGemm::Run to realize BatchedGEMM.
*
* \tparam ComputePtrOffsetOfBatch Class that computes the base pointer offsets of A, B, C matrix
* given the batch. For example, ComputePtrOffsetOfStridedBatch() computes the offsets of evenly
* strided batched, but we can easily extend to other layouts. The returned offset can be either \p
* index_t or \p long_index_t. If it returns \p long_index_t, we are not subject to the 2GB
* limitations.
*
* \tparam Block2ETileMap Block2ETileMap::CalculateBottomIndex() takes in id of a workgroup and
* returns the 2D index of the tile that it computes. \see
* GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3::Run().
*
* \note Using \p ComputePtrOffsetOfBatch gives us the flexibility that 2 workgroups can compute 2
* tiles from different matrices. Keep in mind that these 2 matrices can share the same grid
* descriptor (like in BatchedGEMM), or use their own grid descriptors (in GroupedGemm). \link
* device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk.hpp kernel_gemm_xdlops_v2r3_for_conv3d \endlink for \link
* DeviceConv3d \endlink uses the same concept, but currently does NOT encapsulate the computing of
* pointer offset into \p ComputePtrOffsetOfStridedBatch.
*
* \note \p Block2ETileMap allows customized mapping between a workgroup and the C-tile it computes.
* Together with \p ComputePtrOffsetOfBatch, we can reuse GridwiseGemm (and GridwiseGemm fusion ) to
* realize BatchedGemm and GroupedGemm (and the corresponding GEMM fusion).
*
*/
template <typename GridwiseGemm,
typename ABDataType,
typename DsPointer,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename AGridDesc_K0_M0_M1_K1,
typename BGridDesc_K0_N0_N1_K1,
typename DsGridDesc_M0_M10_M11_N0_N10_N11,
typename CGridDesc_M0_M10_M11_N0_N10_N11,
typename Block2CTileMap,
typename ComputePtrOffsetOfBatch,
bool HasMainKBlockLoop,
bool HasDoubleTailKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_grouped_conv_fwd_dl_multiple_d(
const ABDataType* __restrict__ p_a_grid,
const ABDataType* __restrict__ p_b_grid,
DsPointer p_ds_grid,
EDataType* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
const index_t batch_count,
const AGridDesc_K0_M0_M1_K1 a_grid_desc_k0_m0_m1_k1,
const BGridDesc_K0_N0_N1_K1 b_grid_desc_k0_n0_n1_k1,
const DsGridDesc_M0_M10_M11_N0_N10_N11 ds_grid_desc_m0_m10_m11_n0_n10_n11,
const CGridDesc_M0_M10_M11_N0_N10_N11 e_grid_desc_m0_m10_m11_n0_n10_n11,
const Block2CTileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx1030__))
// offset base pointer for each work-group
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
const long_index_t a_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetAPtrOffset(g_idx)));
const long_index_t b_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetBPtrOffset(g_idx)));
const long_index_t c_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_ptr_offset_of_batch.GetEPtrOffset(g_idx)));
const auto ds_batch_offset = compute_ptr_offset_of_batch.GetDsPtrOffset(g_idx);
constexpr index_t shared_block_size =
GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(ABDataType);
__shared__ ABDataType p_shared[shared_block_size];
DsPointer p_ds_grid_grp;
static constexpr index_t NumDTensor = DsGridDesc_M0_M10_M11_N0_N10_N11::Size();
static_for<0, NumDTensor, 1>{}(
[&](auto i) { p_ds_grid_grp(i) = p_ds_grid[i] + ds_batch_offset[i]; });
GridwiseGemm::Run(p_a_grid + a_batch_offset,
p_b_grid + b_batch_offset,
p_ds_grid_grp,
p_e_grid + c_batch_offset,
p_shared,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_k0_m0_m1_k1,
b_grid_desc_k0_n0_n1_k1,
ds_grid_desc_m0_m10_m11_n0_n10_n11,
e_grid_desc_m0_m10_m11_n0_n10_n11,
block_2_ctile_map,
integral_constant<bool, HasMainKBlockLoop>{},
integral_constant<bool, HasDoubleTailKBlockLoop>{});
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_ds_grid;
ignore = p_e_grid;
ignore = a_element_op;
ignore = b_element_op;
ignore = cde_element_op;
ignore = batch_count;
ignore = a_grid_desc_k0_m0_m1_k1;
ignore = b_grid_desc_k0_n0_n1_k1;
ignore = ds_grid_desc_m0_m10_m11_n0_n10_n11;
ignore = e_grid_desc_m0_m10_m11_n0_n10_n11;
ignore = compute_ptr_offset_of_batch;
ignore = block_2_ctile_map;
compute_ptr_offset_of_batch.GetAPtrOffset(0);
compute_ptr_offset_of_batch.GetBPtrOffset(0);
compute_ptr_offset_of_batch.GetEPtrOffset(0);
#endif
}
} // namespace
//
// @brief Device Convolution operation.
//
// Supports:
// @li Forward convolution with up to 3 spatial dimentions
// @li Input tensor in GNWC data format
// @li Weight tensor in GKXC data format
// @li Output tensor in GNWK data format
//
// 1D:
// out[N, Wo, K] = in[N, Wi, C] * wei[K, X, C]
// 2D:
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
// 3D:
// out[N, Do, Ho, Wo, K] = in[N, Di, Hi, Wi, C] * wei[K, Z, Y, X, C]
//
template <index_t NDimSpatial,
typename ADataType,
typename BDataType,
typename DsDataType,
typename EDataType,
typename AccDataType,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
ConvolutionForwardSpecialization ConvForwardSpecialization,
GemmSpecialization GemmSpec,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t K1,
index_t M1PerThread,
index_t N1PerThread,
index_t KPerThread,
typename M1N1ThreadClusterM1Xs,
typename M1N1ThreadClusterN1Xs,
typename ABlockTransferThreadSliceLengths_K0_M0_M1_K1,
typename ABlockTransferThreadClusterLengths_K0_M0_M1_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
typename ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1,
typename ABlockTransferSrcVectorTensorContiguousDimOrder,
typename ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1,
typename BBlockTransferThreadSliceLengths_K0_N0_N1_K1,
typename BBlockTransferThreadClusterLengths_K0_N0_N1_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
typename BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1,
typename BBlockTransferSrcVectorTensorContiguousDimOrder,
typename BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector>
struct DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
: public DeviceGroupedConvFwdMultipleD<NDimSpatial,
ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>
{
using DeviceOp = DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK;
static constexpr index_t NumDTensor = DsDataType::Size();
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto conv_to_gemm_transformer =
TransformConvFwdToGemm<NDimSpatial, ConvForwardSpecialization>{};
static constexpr auto matrix_padder =
MatrixPadder<GemmSpec, index_t, index_t, index_t>{MPerBlock, NPerBlock, K0PerBlock};
template <typename ALay>
static auto
MakeAGridDescriptor_AK0_M_AK1(const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
{
const auto in_gemmmraw_gemmkraw_desc =
conv_to_gemm_transformer.template MakeADescriptor_M_K<ALay>(a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
const auto in_gemmm_gemmk_desc =
matrix_padder.PadADescriptor_M_K(in_gemmmraw_gemmkraw_desc);
const auto M = in_gemmm_gemmk_desc.GetLength(I0);
const auto K = in_gemmm_gemmk_desc.GetLength(I1);
const auto AK0 = K / K1;
return transform_tensor_descriptor(
in_gemmm_gemmk_desc,
make_tuple(make_unmerge_transform(make_tuple(AK0, K1)), make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
template <typename BLay>
static auto
MakeBGridDescriptor_BK0_N_BK1(const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides)
{
const auto wei_gemmnraw_gemmkraw_desc =
conv_to_gemm_transformer.template MakeBDescriptor_N_K<BLay>(b_g_k_c_xs_lengths,
b_g_k_c_xs_strides);
const auto wei_gemmn_gemmk_desc =
matrix_padder.PadBDescriptor_N_K(wei_gemmnraw_gemmkraw_desc);
const auto N = wei_gemmn_gemmk_desc.GetLength(I0);
const auto K = wei_gemmn_gemmk_desc.GetLength(I1);
const auto BK0 = K / K1;
return transform_tensor_descriptor(
wei_gemmn_gemmk_desc,
make_tuple(make_unmerge_transform(make_tuple(BK0, K1)), make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
template <typename ELay>
static auto
MakeEGridDescriptor_M_N(const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides)
{
const auto out_gemmmraw_gemmnraw_desc =
conv_to_gemm_transformer.template MakeCDescriptor_M_N<ELay>(e_g_n_k_wos_lengths,
e_g_n_k_wos_strides);
const auto out_gemmm_gemmn_desc =
matrix_padder.PadCDescriptor_M_N(out_gemmmraw_gemmnraw_desc);
return out_gemmm_gemmn_desc;
}
static auto MakeDsGridDescriptor_M_N(
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_lengths,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return DeviceOp::MakeEGridDescriptor_M_N<DLayout>(ds_g_n_k_wos_lengths[i],
ds_g_n_k_wos_strides[i]);
},
Number<NumDTensor>{});
}
// desc for problem definition
using AGridDesc_AK0_M_AK1 = remove_cvref_t<decltype(
MakeAGridDescriptor_AK0_M_AK1<ALayout>({}, {}, {}, {}, {}, {}, {}, {}, {}, {}))>;
using BGridDesc_BK0_N_BK1 =
remove_cvref_t<decltype(MakeBGridDescriptor_BK0_N_BK1<BLayout>({}, {}))>;
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({}, {}))>;
using EGridDesc_M_N = remove_cvref_t<decltype(MakeEGridDescriptor_M_N<ELayout>({}, {}))>;
// GridwiseGemm
using GridwiseGemm =
GridwiseGemmDlMultipleD_km_kn_mn<BlockSize,
ADataType,
AccDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
InMemoryDataOperationEnum::Set,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
EGridDesc_M_N,
MPerBlock,
NPerBlock,
K0PerBlock,
K1,
M1PerThread,
N1PerThread,
KPerThread,
M1N1ThreadClusterM1Xs,
M1N1ThreadClusterN1Xs,
ABlockTransferThreadSliceLengths_K0_M0_M1_K1,
ABlockTransferThreadClusterLengths_K0_M0_M1_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1,
ABlockTransferSrcVectorTensorContiguousDimOrder,
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1,
BBlockTransferThreadSliceLengths_K0_N0_N1_K1,
BBlockTransferThreadClusterLengths_K0_N0_N1_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1,
BBlockTransferSrcVectorTensorContiguousDimOrder,
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector>;
using AGridDesc_K0_M0_M1_K1 =
decltype(GridwiseGemm::MakeAGridDescriptor_K0_M0_M1_K1(AGridDesc_AK0_M_AK1{}));
using BGridDesc_K0_N0_N1_K1 =
decltype(GridwiseGemm::MakeBGridDescriptor_K0_N0_N1_K1(BGridDesc_BK0_N_BK1{}));
using DsGridDesc_M0_M10_M11_N0_N10_N11 =
decltype(GridwiseGemm::MakeDsGridDescriptor_M0_M10_M11_N0_N10_N11(DsGridDesc_M_N{}));
using CGridDesc_M0_M10_M11_N0_N10_N11 =
decltype(GridwiseGemm::MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(EGridDesc_M_N{}));
using DefaultBlock2CTileMap =
decltype(GridwiseGemm::MakeDefaultBlock2CTileMap(EGridDesc_M_N{}));
// Argument
struct Argument : public BaseArgument
{
Argument(const void* p_a,
const void* p_b,
const std::array<const void*, NumDTensor>& p_ds,
void* p_e,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>&
ds_g_n_k_wos_lengths,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>&
ds_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op)
: p_a_grid_{static_cast<const ADataType*>(p_a)},
p_b_grid_{static_cast<const BDataType*>(p_b)},
p_ds_grid_{},
p_e_grid_{static_cast<EDataType*>(p_e)},
num_group_{a_g_n_c_wis_lengths[0]},
a_grid_desc_ak0_m_ak1_{
DeviceOp::MakeAGridDescriptor_AK0_M_AK1<ALayout>(a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads)},
b_grid_desc_bk0_n_bk1_{DeviceOp::MakeBGridDescriptor_BK0_N_BK1<BLayout>(
b_g_k_c_xs_lengths, b_g_k_c_xs_strides)},
e_grid_desc_m_n_{DeviceOp::MakeEGridDescriptor_M_N<ELayout>(e_g_n_k_wos_lengths,
e_g_n_k_wos_strides)},
a_grid_desc_k0_m0_m1_k1_{},
b_grid_desc_k0_n0_n1_k1_{},
ds_grid_desc_m0_m10_m11_n0_n10_n11_{},
e_grid_desc_m0_m10_m11_n0_n10_n11_{},
block_2_ctile_map_{},
compute_ptr_offset_of_batch_{},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op},
a_g_n_c_wis_lengths_{a_g_n_c_wis_lengths},
a_g_n_c_wis_strides_{a_g_n_c_wis_strides},
b_g_k_c_xs_lengths_{b_g_k_c_xs_lengths},
b_g_k_c_xs_strides_{b_g_k_c_xs_strides},
e_g_n_k_wos_lengths_{e_g_n_k_wos_lengths},
e_g_n_k_wos_strides_{e_g_n_k_wos_strides},
conv_filter_strides_{conv_filter_strides},
conv_filter_dilations_{conv_filter_dilations},
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads}
{
// A/B/E Batch Stride
compute_ptr_offset_of_batch_.BatchStrideA_ = a_g_n_c_wis_strides[0];
compute_ptr_offset_of_batch_.BatchStrideB_ = b_g_k_c_xs_strides[0];
compute_ptr_offset_of_batch_.BatchStrideE_ = e_g_n_k_wos_strides[0];
// populate pointer, batch stride, desc for Ds
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
// D pointer
p_ds_grid_(i) = static_cast<const DDataType*>(p_ds[i]);
// D batch stride
compute_ptr_offset_of_batch_.BatchStrideDs_(i) = ds_g_n_k_wos_strides[i][0];
// D desc
ds_grid_desc_m_n_(i) = DeviceOp::MakeEGridDescriptor_M_N<DLayout>(
ds_g_n_k_wos_lengths[i], ds_g_n_k_wos_strides[i]);
});
// populate desc for Ds/E
if(GridwiseGemm::CheckValidity(
a_grid_desc_ak0_m_ak1_, b_grid_desc_bk0_n_bk1_, e_grid_desc_m_n_))
{
a_grid_desc_k0_m0_m1_k1_ =
GridwiseGemm::MakeAGridDescriptor_K0_M0_M1_K1(a_grid_desc_ak0_m_ak1_);
b_grid_desc_k0_n0_n1_k1_ =
GridwiseGemm::MakeBGridDescriptor_K0_N0_N1_K1(b_grid_desc_bk0_n_bk1_);
e_grid_desc_m0_m10_m11_n0_n10_n11_ =
GridwiseGemm::MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(e_grid_desc_m_n_);
ds_grid_desc_m0_m10_m11_n0_n10_n11_ =
GridwiseGemm::MakeDsGridDescriptor_M0_M10_M11_N0_N10_N11(ds_grid_desc_m_n_);
block_2_ctile_map_ = GridwiseGemm::MakeDefaultBlock2CTileMap(e_grid_desc_m_n_);
}
}
void Print() const
{
std::cout << "A[K0, M, K1]: " << a_grid_desc_ak0_m_ak1_ << std::endl;
std::cout << "B[K0, N, K1]: " << b_grid_desc_bk0_n_bk1_ << std::endl;
std::cout << "E[M, N]: " << e_grid_desc_m_n_ << std::endl;
std::cout << "num_group: " << num_group_ << std::endl;
std::cout << "A[k0, m0, m1, k1]: " << a_grid_desc_k0_m0_m1_k1_ << std::endl;
std::cout << "B[k0, n0, n1, k1]: " << b_grid_desc_k0_n0_n1_k1_ << std::endl;
std::cout << "A[m0, m10, m11, n0, n10, n11]: " << e_grid_desc_m0_m10_m11_n0_n10_n11_
<< std::endl;
}
// private:
// pointers
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
typename GridwiseGemm::DsGridPointer p_ds_grid_;
EDataType* p_e_grid_;
// tensor descriptors for problem definiton
index_t num_group_;
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
DsGridDesc_M_N ds_grid_desc_m_n_;
EGridDesc_M_N e_grid_desc_m_n_;
// tensor descriptors for block/thread-wise copy
AGridDesc_K0_M0_M1_K1 a_grid_desc_k0_m0_m1_k1_;
BGridDesc_K0_N0_N1_K1 b_grid_desc_k0_n0_n1_k1_;
DsGridDesc_M0_M10_M11_N0_N10_N11 ds_grid_desc_m0_m10_m11_n0_n10_n11_;
CGridDesc_M0_M10_M11_N0_N10_N11 e_grid_desc_m0_m10_m11_n0_n10_n11_;
// block-to-e-tile map
DefaultBlock2CTileMap block_2_ctile_map_;
// for computing batch offset
ComputePtrOffsetOfStridedBatch<NumDTensor> compute_ptr_offset_of_batch_;
// element-wise op
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
// for checking IsSupportedArgument()
std::array<index_t, NDimSpatial + 3> a_g_n_c_wis_lengths_;
std::array<index_t, NDimSpatial + 3> a_g_n_c_wis_strides_;
std::array<index_t, NDimSpatial + 3> b_g_k_c_xs_lengths_;
std::array<index_t, NDimSpatial + 3> b_g_k_c_xs_strides_;
std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor> ds_g_n_k_wos_lengths_;
std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor> ds_g_n_k_wos_strides_;
std::array<index_t, NDimSpatial + 3> e_g_n_k_wos_lengths_;
std::array<index_t, NDimSpatial + 3> e_g_n_k_wos_strides_;
std::array<index_t, NDimSpatial> conv_filter_strides_;
std::array<index_t, NDimSpatial> conv_filter_dilations_;
std::array<index_t, NDimSpatial> input_left_pads_;
std::array<index_t, NDimSpatial> input_right_pads_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config)
{
if(stream_config.log_level_ > 0)
{
arg.Print();
}
if(!GridwiseGemm::CheckValidity(
arg.a_grid_desc_ak0_m_ak1_, arg.b_grid_desc_bk0_n_bk1_, arg.e_grid_desc_m_n_))
{
throw std::runtime_error(
"wrong! DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK has invalid setting");
}
const index_t grid_size =
GridwiseGemm::CalculateGridSize(arg.e_grid_desc_m_n_.GetLength(I0),
arg.e_grid_desc_m_n_.GetLength(I1)) *
arg.num_group_;
auto launch_kernel = [&](auto has_main_k_block_loop,
auto has_double_tail_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
constexpr bool has_double_loop = has_double_tail_k_block_loop;
const auto kernel = kernel_grouped_conv_fwd_dl_multiple_d<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
typename GridwiseGemm::DsGridPointer,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
DeviceOp::AGridDesc_K0_M0_M1_K1,
DeviceOp::BGridDesc_K0_N0_N1_K1,
DeviceOp::DsGridDesc_M0_M10_M11_N0_N10_N11,
DeviceOp::CGridDesc_M0_M10_M11_N0_N10_N11,
DefaultBlock2CTileMap,
ComputePtrOffsetOfStridedBatch<NumDTensor>,
has_main_loop,
has_double_loop>;
return launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_ds_grid_,
arg.p_e_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.cde_element_op_,
arg.a_g_n_c_wis_lengths_[0], // Group count
arg.a_grid_desc_k0_m0_m1_k1_,
arg.b_grid_desc_k0_n0_n1_k1_,
arg.ds_grid_desc_m0_m10_m11_n0_n10_n11_,
arg.e_grid_desc_m0_m10_m11_n0_n10_n11_,
arg.block_2_ctile_map_,
arg.compute_ptr_offset_of_batch_);
};
const auto K0 = arg.a_grid_desc_k0_m0_m1_k1_.GetLength(I0);
const bool has_main_k_block_loop = GridwiseGemm::CalculateHasMainKBlockLoop(K0);
const bool has_double_tail_k_block_loop =
GridwiseGemm::CalculateHasDoubleTailKBlockLoop(K0);
if(has_main_k_block_loop && has_double_tail_k_block_loop)
{
return launch_kernel(integral_constant<bool, true>{},
integral_constant<bool, true>{});
}
else if(has_main_k_block_loop && !has_double_tail_k_block_loop)
{
return launch_kernel(integral_constant<bool, true>{},
integral_constant<bool, false>{});
}
else if(!has_main_k_block_loop && has_double_tail_k_block_loop)
{
return launch_kernel(integral_constant<bool, false>{},
integral_constant<bool, true>{});
}
else
{
return launch_kernel(integral_constant<bool, false>{},
integral_constant<bool, false>{});
}
return 0;
}
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static bool IsSupportedArgument(const Argument& arg)
{
namespace ctc = tensor_layout::convolution;
// check device
if(!(ck::get_device_name() == "gfx906" || ck::get_device_name() == "gfx1030"))
{
return false;
}
// check ConvolutionForwardSpecialization
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
// check if it's 1x1, stride=1 conv
for(index_t i = 0; i < NDimSpatial; ++i)
{
const index_t X = arg.b_g_k_c_xs_lengths_[i + 3];
const index_t ConvStride = arg.conv_filter_strides_[i];
const index_t LeftPad = arg.input_left_pads_[i];
const index_t RightPad = arg.input_right_pads_[i];
if(!(X == 1 && ConvStride == 1 && LeftPad == 0 && RightPad == 0))
{
std::cout << "Filter1x1Stride1Pad0 check: XY_index = " << i << " X = " << X
<< " ConvStride = " << ConvStride << " LeftPad = " << LeftPad
<< " RightPad = " << RightPad << std::endl;
return false;
}
}
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
// check if it's 1x1 conv
for(index_t i = 0; i < NDimSpatial; ++i)
{
const index_t X = arg.b_g_k_c_xs_lengths_[i + 3];
const index_t LeftPad = arg.input_left_pads_[i];
const index_t RightPad = arg.input_right_pads_[i];
if(!(X == 1 && LeftPad == 0 && RightPad == 0))
{
std::cout << "Filter1x1Stride1Pad0 check: XY_index = " << i << " X = " << X
<< " LeftPad = " << LeftPad << " RightPad = " << RightPad
<< std::endl;
return false;
}
}
}
// check vector access of A
// FIXME: layout
if constexpr(is_same_v<ALayout, ctc::G_NW_C> || is_same_v<ALayout, ctc::G_NHW_C> ||
is_same_v<ALayout, ctc::G_NDHW_C> || is_same_v<ALayout, ctc::GNWC> ||
is_same_v<ALayout, ctc::GNHWC> || is_same_v<ALayout, ctc::GNDHWC> ||
is_same_v<ALayout, ctc::NWGC> || is_same_v<ALayout, ctc::NHWGC> ||
is_same_v<ALayout, ctc::NDHWGC>)
{
auto srcVectorLengths = ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1{};
if(srcVectorLengths[I1] != 1 || srcVectorLengths[I2] != 1)
{
return false;
}
if(K1 % srcVectorLengths[I3] != 0 || K0PerBlock % srcVectorLengths[I0] != 0)
{
return false;
}
const index_t C = arg.a_g_n_c_wis_lengths_[2];
if(C % (srcVectorLengths[I0] * srcVectorLengths[I3]) != 0)
{
return false;
}
}
else
{
return false;
}
// check vector access of B
// FIXME: layout
if constexpr(is_same_v<BLayout, ctc::G_K_X_C> || is_same_v<BLayout, ctc::G_K_YX_C> ||
is_same_v<BLayout, ctc::G_K_ZYX_C> || is_same_v<BLayout, ctc::GKXC> ||
is_same_v<BLayout, ctc::GKYXC> || is_same_v<BLayout, ctc::GKZYXC> ||
is_same_v<BLayout, ctc::KXGC> || is_same_v<BLayout, ctc::KYXGC> ||
is_same_v<BLayout, ctc::KZYXGC>)
{
auto srcVectorLengths = BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1{};
if(srcVectorLengths[I1] != 1 || srcVectorLengths[I2] != 1)
{
return false;
}
if(K1 % srcVectorLengths[I3] != 0 || K0PerBlock % srcVectorLengths[I0] != 0)
{
return false;
}
const index_t C = arg.b_g_k_c_xs_lengths_[2];
if(C % (srcVectorLengths[I0] * srcVectorLengths[I3]) != 0)
{
return false;
}
}
else
{
return false;
}
// check vector access of E
if constexpr(is_same_v<ELayout, ctc::G_NW_K> || is_same_v<ELayout, ctc::G_NHW_K> ||
is_same_v<ELayout, ctc::G_NDHW_K> || is_same_v<ELayout, ctc::GNWK> ||
is_same_v<ELayout, ctc::GNHWK> || is_same_v<ELayout, ctc::GNDHWK> ||
is_same_v<ELayout, ctc::NWGK> || is_same_v<ELayout, ctc::NHWGK> ||
is_same_v<ELayout, ctc::NDHWGK>)
{
const index_t K = arg.e_g_n_k_wos_lengths_[2];
if(!(K % CThreadTransferDstScalarPerVector == 0 && CThreadTransferSrcDstVectorDim == 5))
{
return false;
}
}
else
{
return false;
}
// check Gridwise GEMM
return GridwiseGemm::CheckValidity(
arg.a_grid_desc_ak0_m_ak1_, arg.b_grid_desc_bk0_n_bk1_, arg.e_grid_desc_m_n_);
}
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(
const void* p_a,
const void* p_b,
const std::array<const void*, NumDTensor>& p_ds,
void* p_e,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_lengths,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op)
{
return Argument{p_a,
p_b,
p_ds,
p_e,
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
ds_g_n_k_wos_lengths,
ds_g_n_k_wos_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
a_element_op,
b_element_op,
cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
std::unique_ptr<BaseArgument> MakeArgumentPointer(
const void* p_a,
const void* p_b,
const std::array<const void*, NumDTensor>& p_ds,
void* p_e,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_lengths,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op) override
{
return std::make_unique<Argument>(p_a,
p_b,
p_ds,
p_e,
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
ds_g_n_k_wos_lengths,
ds_g_n_k_wos_strides,
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
a_element_op,
b_element_op,
cde_element_op);
}
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock << ", "
<< getConvForwardSpecializationString(ConvForwardSpecialization)
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -27,7 +27,7 @@ template <typename XDataType,
typename DyDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename DscaleDbiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp,
index_t Rank,
......@@ -42,11 +42,19 @@ template <typename XDataType,
index_t XSrcVectorSize,
index_t DySrcVectorSize,
index_t DxDstVectorSize,
index_t ScaleSrcDstVectorSize,
index_t BiasDstVectorSize,
index_t ScaleSrcVectorSize,
index_t DscaleDbiasDstVectorSize,
index_t MeanVarSrcVectorSize>
struct DeviceBatchNormBwdImpl
: public DeviceBatchNormBwd<Rank, NumBatchNormReduceDim, DyElementwiseOp>
struct DeviceBatchNormBwdImpl : public DeviceBatchNormBwd<XDataType,
DxDataType,
DyDataType,
AccDataType,
ScaleDataType,
DscaleDbiasDataType,
MeanVarDataType,
DyElementwiseOp,
Rank,
NumBatchNormReduceDim>
{
static_assert(Rank <= 6, "Bigger Rank size is not supported!");
static_assert(BlockSize == MThreadClusterSize * KThreadClusterSize,
......@@ -194,7 +202,7 @@ struct DeviceBatchNormBwdImpl
const std::array<int, NumBatchNormReduceDim> reduceDims,
const std::array<ck::index_t, NumInvariantDim> bnScaleBiasMeanVarLengths,
const std::array<ck::index_t, NumInvariantDim> bnScaleStrides,
const std::array<ck::index_t, NumInvariantDim> bnBiasStrides,
const std::array<ck::index_t, NumInvariantDim> bnDscaleDbiasStrides,
const std::array<ck::index_t, NumInvariantDim> bnMeanVarStrides,
const XDataType* p_x,
const DyDataType* p_dy,
......@@ -204,11 +212,11 @@ struct DeviceBatchNormBwdImpl
const DyElementwiseOp dy_elementwise_op,
double epsilon,
DxDataType* p_dx,
ScaleDataType* p_dscale,
BiasDataType* p_dbias)
DscaleDbiasDataType* p_dscale,
DscaleDbiasDataType* p_dbias)
: bnScaleBiasMeanVarLengths_(bnScaleBiasMeanVarLengths),
bnScaleStrides_(bnScaleStrides),
bnBiasStrides_(bnBiasStrides),
bnDscaleDbiasStrides_(bnDscaleDbiasStrides),
bnMeanVarStrides_(bnMeanVarStrides),
p_x_(p_x),
p_dy_(p_dy),
......@@ -272,8 +280,8 @@ struct DeviceBatchNormBwdImpl
MakeXY2dDescriptor(xyLengths_, dxStrides_, blkGroupSize, numBlockTileIteration);
scale_grid_desc_m =
MakeScaleBiasMeanVar1dDescriptor(bnScaleBiasMeanVarLengths, bnScaleStrides);
bias_grid_desc_m =
MakeScaleBiasMeanVar1dDescriptor(bnScaleBiasMeanVarLengths, bnBiasStrides);
dscale_dbias_grid_desc_m =
MakeScaleBiasMeanVar1dDescriptor(bnScaleBiasMeanVarLengths, bnDscaleDbiasStrides);
mean_var_grid_desc_m =
MakeScaleBiasMeanVar1dDescriptor(bnScaleBiasMeanVarLengths, bnMeanVarStrides);
}
......@@ -289,7 +297,7 @@ struct DeviceBatchNormBwdImpl
std::array<index_t, Rank - NumBatchNormReduceDim> bnScaleBiasMeanVarLengths_;
std::array<index_t, Rank - NumBatchNormReduceDim> bnScaleStrides_;
std::array<index_t, Rank - NumBatchNormReduceDim> bnBiasStrides_;
std::array<index_t, Rank - NumBatchNormReduceDim> bnDscaleDbiasStrides_;
std::array<index_t, Rank - NumBatchNormReduceDim> bnMeanVarStrides_;
const XDataType* p_x_;
......@@ -299,8 +307,8 @@ struct DeviceBatchNormBwdImpl
const MeanVarDataType* p_savedInvVar_;
const DyElementwiseOp dy_elementwise_op_;
DxDataType* p_dx_;
ScaleDataType* p_dscale_;
BiasDataType* p_dbias_;
DscaleDbiasDataType* p_dscale_;
DscaleDbiasDataType* p_dbias_;
long_index_t invariant_length;
long_index_t reduce_length;
......@@ -313,7 +321,7 @@ struct DeviceBatchNormBwdImpl
XYGridDesc_M_K dy_grid_desc_m_k;
XYGridDesc_M_K dx_grid_desc_m_k;
ScaleBiasGridDesc_M scale_grid_desc_m;
ScaleBiasGridDesc_M bias_grid_desc_m;
ScaleBiasGridDesc_M dscale_dbias_grid_desc_m;
MeanVarGridDesc_M mean_var_grid_desc_m;
void* workspace_mean;
......@@ -337,11 +345,11 @@ struct DeviceBatchNormBwdImpl
{
// workspace for the partial reduced result for dscale
workspace_size +=
pArg_->invariant_length * pArg_->blkGroupSize * sizeof(ScaleDataType) + 64;
pArg_->invariant_length * pArg_->blkGroupSize * sizeof(DscaleDbiasDataType) + 64;
// workspace for the partial reduced result for dbias
workspace_size +=
pArg_->invariant_length * pArg_->blkGroupSize * sizeof(BiasDataType) + 64;
pArg_->invariant_length * pArg_->blkGroupSize * sizeof(DscaleDbiasDataType) + 64;
if(!pArg_->haveSavedMeanInvVar_)
{
......@@ -379,7 +387,7 @@ struct DeviceBatchNormBwdImpl
// setup buffer for the partial reduced result for dscale
pArg_->workspace_reduce_dscale = pArg_->p_workspace_;
space_sz = pArg_->invariant_length * pArg_->blkGroupSize * sizeof(ScaleDataType);
space_sz = pArg_->invariant_length * pArg_->blkGroupSize * sizeof(DscaleDbiasDataType);
space_sz = math::integer_least_multiple(space_sz, 64);
// setup buffer for the partial reduced result for dbias
......@@ -388,7 +396,7 @@ struct DeviceBatchNormBwdImpl
if(UseMultiblockInK && pArg_->blkGroupSize > 1)
{
space_sz = pArg_->invariant_length * pArg_->blkGroupSize * sizeof(BiasDataType);
space_sz = pArg_->invariant_length * pArg_->blkGroupSize * sizeof(DscaleDbiasDataType);
space_sz = math::integer_least_multiple(space_sz, 64);
// setup buffer for welford intermediate mean
......@@ -454,7 +462,7 @@ struct DeviceBatchNormBwdImpl
DyDataType,
AccDataType,
ScaleDataType,
BiasDataType,
DscaleDbiasDataType,
MeanVarDataType,
DyElementwiseOp,
XYGridDesc_M_K,
......@@ -477,7 +485,7 @@ struct DeviceBatchNormBwdImpl
DxDataType,
AccDataType,
ScaleDataType,
BiasDataType,
DscaleDbiasDataType,
MeanVarDataType,
DyElementwiseOp,
XYGridDesc_M_K,
......@@ -493,8 +501,8 @@ struct DeviceBatchNormBwdImpl
XSrcVectorSize,
DySrcVectorSize,
DxDstVectorSize,
ScaleSrcDstVectorSize,
BiasDstVectorSize,
ScaleSrcVectorSize,
DscaleDbiasDstVectorSize,
MeanVarSrcVectorSize>;
if(UseMultiblockInK && arg.blkGroupSize > 1)
......@@ -553,7 +561,7 @@ struct DeviceBatchNormBwdImpl
DyDataType,
AccDataType,
ScaleDataType,
BiasDataType,
DscaleDbiasDataType,
MeanVarDataType,
DyElementwiseOp,
XYGridDesc_M_K,
......@@ -568,7 +576,7 @@ struct DeviceBatchNormBwdImpl
DyDataType,
DxDataType,
ScaleDataType,
BiasDataType,
DscaleDbiasDataType,
MeanVarDataType,
DyElementwiseOp,
XYGridDesc_M_K,
......@@ -614,8 +622,8 @@ struct DeviceBatchNormBwdImpl
: static_cast<MeanVarDataType*>(arg.workspace_savedInvVar),
arg.p_x_,
arg.p_dy_,
static_cast<ScaleDataType*>(arg.workspace_reduce_dscale),
static_cast<BiasDataType*>(arg.workspace_reduce_dbias));
static_cast<DscaleDbiasDataType*>(arg.workspace_reduce_dscale),
static_cast<DscaleDbiasDataType*>(arg.workspace_reduce_dbias));
avg_time += launch_and_time_kernel(
stream_config,
......@@ -629,13 +637,13 @@ struct DeviceBatchNormBwdImpl
dscale_dbias_grid_desc_m_k,
arg.mean_var_grid_desc_m,
arg.scale_grid_desc_m,
arg.bias_grid_desc_m,
arg.dscale_dbias_grid_desc_m,
arg.blkGroupSize,
arg.reduce_length,
arg.numBlockTileIteration,
numDscaleDbiasBlockTileIteration,
static_cast<const ScaleDataType*>(arg.workspace_reduce_dscale),
static_cast<const BiasDataType*>(arg.workspace_reduce_dbias),
static_cast<const DscaleDbiasDataType*>(arg.workspace_reduce_dscale),
static_cast<const DscaleDbiasDataType*>(arg.workspace_reduce_dbias),
arg.haveSavedMeanInvVar_
? arg.p_savedMean_
: static_cast<const MeanVarDataType*>(arg.workspace_savedMean),
......@@ -664,7 +672,7 @@ struct DeviceBatchNormBwdImpl
DxDataType,
AccDataType,
ScaleDataType,
BiasDataType,
DscaleDbiasDataType,
MeanVarDataType,
DyElementwiseOp,
XYGridDesc_M_K,
......@@ -680,8 +688,8 @@ struct DeviceBatchNormBwdImpl
XSrcVectorSize,
DySrcVectorSize,
DxDstVectorSize,
ScaleSrcDstVectorSize,
BiasDstVectorSize,
ScaleSrcVectorSize,
DscaleDbiasDstVectorSize,
MeanVarSrcVectorSize>;
const auto kern_batchnorm_bwd = kernel_batchnorm_backward_with_blockwise_welford<
......@@ -691,7 +699,7 @@ struct DeviceBatchNormBwdImpl
DxDataType,
AccDataType,
ScaleDataType,
BiasDataType,
DscaleDbiasDataType,
MeanVarDataType,
DyElementwiseOp,
XYGridDesc_M_K,
......@@ -708,7 +716,7 @@ struct DeviceBatchNormBwdImpl
arg.dy_grid_desc_m_k,
arg.dx_grid_desc_m_k,
arg.scale_grid_desc_m,
arg.bias_grid_desc_m,
arg.dscale_dbias_grid_desc_m,
arg.mean_var_grid_desc_m,
get_reduce_count_per_thread,
arg.reduce_length,
......@@ -764,16 +772,16 @@ struct DeviceBatchNormBwdImpl
return false;
};
if(pArg_->bnScaleStrides_[NumInvariantDim - 1] != 1 && ScaleSrcDstVectorSize != 1)
if(pArg_->bnScaleStrides_[NumInvariantDim - 1] != 1 && ScaleSrcVectorSize != 1)
return false;
if(pArg_->bnBiasStrides_[NumInvariantDim - 1] != 1 && BiasDstVectorSize != 1)
if(pArg_->bnDscaleDbiasStrides_[NumInvariantDim - 1] != 1 && DscaleDbiasDstVectorSize != 1)
return false;
if(pArg_->bnScaleBiasMeanVarLengths_[NumInvariantDim - 1] % ScaleSrcDstVectorSize != 0)
if(pArg_->bnScaleBiasMeanVarLengths_[NumInvariantDim - 1] % ScaleSrcVectorSize != 0)
return false;
if(pArg_->bnScaleBiasMeanVarLengths_[NumInvariantDim - 1] % BiasDstVectorSize != 0)
if(pArg_->bnScaleBiasMeanVarLengths_[NumInvariantDim - 1] % DscaleDbiasDstVectorSize != 0)
return false;
if(pArg_->haveSavedMeanInvVar_)
......@@ -806,7 +814,7 @@ struct DeviceBatchNormBwdImpl
const std::array<int, NumBatchNormReduceDim> reduceDims,
const std::array<ck::index_t, NumInvariantDim> bnScaleBiasMeanVarLengths,
const std::array<ck::index_t, NumInvariantDim> bnScaleStrides,
const std::array<ck::index_t, NumInvariantDim> bnBiasStrides,
const std::array<ck::index_t, NumInvariantDim> bnDscaleDbiasStrides,
const std::array<ck::index_t, NumInvariantDim> bnMeanVarStrides,
const void* p_x,
const void* p_dy,
......@@ -826,7 +834,7 @@ struct DeviceBatchNormBwdImpl
reduceDims,
bnScaleBiasMeanVarLengths,
bnScaleStrides,
bnBiasStrides,
bnDscaleDbiasStrides,
bnMeanVarStrides,
static_cast<const XDataType*>(p_x),
static_cast<const DyDataType*>(p_dy),
......@@ -836,8 +844,8 @@ struct DeviceBatchNormBwdImpl
dy_elementwise_op,
epsilon,
static_cast<DxDataType*>(p_dx),
static_cast<ScaleDataType*>(p_dscale),
static_cast<BiasDataType*>(p_dbias));
static_cast<DscaleDbiasDataType*>(p_dscale),
static_cast<DscaleDbiasDataType*>(p_dbias));
};
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
......@@ -854,7 +862,7 @@ struct DeviceBatchNormBwdImpl
str << "M_C" << MThreadClusterSize << "_S" << MThreadSliceSize << ",";
str << "K_C" << KThreadClusterSize << "_S" << KThreadSliceSize << ",";
str << "XDyDxVectorDim_" << XDyDxVectorDim << ",";
str << "VectorSize_X" << XSrcVectorSize << "_scale_" << ScaleSrcDstVectorSize << "_bias_" << BiasDstVectorSize << "_mean_var_" << MeanVarSrcVectorSize << "_Dx_" << DxDstVectorSize << ">";
str << "VectorSize_X" << XSrcVectorSize << "_scale_" << ScaleSrcVectorSize << "_bias_" << DscaleDbiasDstVectorSize << "_mean_var_" << MeanVarSrcVectorSize << "_Dx_" << DxDstVectorSize << ">";
// clang-format on
return str.str();
......
......@@ -187,6 +187,22 @@ struct AddRelu
const float a = x0 + type_convert<float>(x1);
y = a > 0.0f ? a : 0.0f;
};
template <>
__host__ __device__ constexpr void
operator()<int, int, int8_t>(int& y, const int& x0, const int8_t& x1) const
{
const int8_t a = x0 + x1;
y = a > 0 ? a : 0;
};
template <>
__host__ __device__ constexpr void
operator()<int8_t, int8_t, int8_t>(int8_t& y, const int8_t& x0, const int8_t& x1) const
{
const int8_t a = x0 + x1;
y = a > 0 ? a : 0;
};
};
struct AddHardswish
......
......@@ -10,8 +10,8 @@ namespace element_wise {
template <typename Activation>
struct Activation_Mul_Clamp
{
Activation_Mul_Clamp(float multiplier, Activation activationOp)
: multiplier_(multiplier), activationOp_(activationOp)
Activation_Mul_Clamp(float requantScale, Activation activationOp)
: requantScale_(requantScale), activationOp_(activationOp)
{
}
......@@ -19,7 +19,7 @@ struct Activation_Mul_Clamp
{
float x_fp32 = ck::type_convert<float>(x);
activationOp_(x_fp32, x_fp32);
float y_fp32 = math::clamp(multiplier_ * x_fp32, -128.f, 127.f);
float y_fp32 = math::clamp(requantScale_ * x_fp32, -128.f, 127.f);
y = ck::type_convert<int8_t>(y_fp32);
}
......@@ -28,10 +28,29 @@ struct Activation_Mul_Clamp
// We might type_convert to int8 after lambda in someplace
float x_fp32 = ck::type_convert<float>(x);
activationOp_(x_fp32, x_fp32);
y = math::clamp(multiplier_ * x_fp32, -128.f, 127.f);
y = math::clamp(requantScale_ * x_fp32, -128.f, 127.f);
}
float requantScale_;
Activation activationOp_;
};
// Conv Perchannel quantization + Activation function which is piecewise linear function, such as
// relu, leaky relu ...etc
template <typename Activation>
struct Activation_Mul2_Clamp
{
Activation_Mul2_Clamp(Activation activationOp) : activationOp_(activationOp) {}
__host__ __device__ constexpr void
operator()(int8_t& y, const int32_t& x, const float& requantScale) const
{
float y_fp32 = ck::type_convert<float>(x);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale * y_fp32, -128.f, 127.f);
y = ck::type_convert<int8_t>(y_fp32);
}
float multiplier_;
Activation activationOp_;
};
......@@ -39,21 +58,40 @@ struct Activation_Mul_Clamp
template <typename Activation>
struct Add_Activation_Mul_Clamp
{
Add_Activation_Mul_Clamp(float multiplier, Activation activationOp)
: multiplier_(multiplier), activationOp_(activationOp)
Add_Activation_Mul_Clamp(float requantScale, Activation activationOp)
: requantScale_(requantScale), activationOp_(activationOp)
{
}
__host__ __device__ constexpr void
operator()(int8_t& y, const int32_t& x1, const int32_t& x2) const
operator()(int8_t& y, const int32_t& x, const int32_t& bias) const
{
float y_fp32 = ck::type_convert<float>(x + bias);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale_ * y_fp32, -128.f, 127.f);
y = ck::type_convert<int8_t>(y_fp32);
}
float requantScale_;
Activation activationOp_;
};
// Conv Perchannel quantization + Activation function which is piecewise linear function, such as
// relu, leaky relu ...etc
template <typename Activation>
struct Add_Activation_Mul2_Clamp
{
Add_Activation_Mul2_Clamp(Activation activationOp) : activationOp_(activationOp) {}
__host__ __device__ constexpr void
operator()(int8_t& y, const int32_t& x, const int32_t& bias, const float& requantScale) const
{
float y_fp32 = ck::type_convert<float>(x1 + x2);
float y_fp32 = ck::type_convert<float>(x + bias);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(multiplier_ * y_fp32, -128.f, 127.f);
y_fp32 = math::clamp(requantScale * y_fp32, -128.f, 127.f);
y = ck::type_convert<int8_t>(y_fp32);
}
float multiplier_;
Activation activationOp_;
};
......@@ -61,23 +99,23 @@ struct Add_Activation_Mul_Clamp
template <typename Activation>
struct Add_Mul_Activation_Mul_Clamp
{
Add_Mul_Activation_Mul_Clamp(float multiplier1, float multiplier2, Activation activationOp)
: multiplier1_(multiplier1), multiplier2_(multiplier2), activationOp_(activationOp)
Add_Mul_Activation_Mul_Clamp(float requantScale1, float requantScale2, Activation activationOp)
: requantScale1_(requantScale1), requantScale2_(requantScale2), activationOp_(activationOp)
{
}
__host__ __device__ constexpr void
operator()(int8_t& y, const int32_t& x1, const int32_t& x2) const
operator()(int8_t& y, const int32_t& x, const int32_t& bias) const
{
float y_fp32 = ck::type_convert<float>(x1 + x2);
y_fp32 = multiplier1_ * y_fp32;
float y_fp32 = ck::type_convert<float>(x + bias);
y_fp32 = requantScale1_ * y_fp32;
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(multiplier2_ * y_fp32, -128.f, 127.f);
y_fp32 = math::clamp(requantScale2_ * y_fp32, -128.f, 127.f);
y = ck::type_convert<int8_t>(y_fp32);
}
float multiplier1_;
float multiplier2_;
float requantScale1_;
float requantScale2_;
Activation activationOp_;
};
......
......@@ -16,7 +16,7 @@ template <typename GridwiseReduceSecondHalfBatchNormBackwardFinal_,
typename DyDataType,
typename DxDataType,
typename ScaleDataType,
typename BiasDataType,
typename DscaleDbiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp,
typename XYGridDesc_M_K,
......@@ -35,8 +35,8 @@ __global__ void kernel_reduce_second_half_batchnorm_backward_final(
long_index_t reduce_size,
index_t num_xy_k_block_tile_iteration,
index_t num_dscale_dbias_k_block_tile_iteration,
const ScaleDataType* const __restrict__ p_reduce_dscale,
const BiasDataType* const __restrict__ p_reduce_dbias,
const DscaleDbiasDataType* const __restrict__ p_reduce_dscale,
const DscaleDbiasDataType* const __restrict__ p_reduce_dbias,
const MeanVarDataType* const __restrict__ p_mean,
const MeanVarDataType* const __restrict__ p_inv_var,
const XDataType* const __restrict__ p_x,
......@@ -44,8 +44,8 @@ __global__ void kernel_reduce_second_half_batchnorm_backward_final(
const ScaleDataType* const __restrict__ p_scale,
const DyElementwiseOp dy_elementwise_op,
DxDataType* const __restrict__ p_dx,
ScaleDataType* const __restrict__ p_dscale,
BiasDataType* const __restrict__ p_dbias)
DscaleDbiasDataType* const __restrict__ p_dscale,
DscaleDbiasDataType* const __restrict__ p_dbias)
{
GridwiseReduceSecondHalfBatchNormBackwardFinal_::Run(x_grid_desc_m_k,
dy_grid_desc_m_k,
......@@ -76,7 +76,7 @@ template <typename XDataType,
typename DxDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename DscaleDbiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp,
typename XYGridDesc_M_K,
......@@ -92,8 +92,8 @@ template <typename XDataType,
index_t XSrcVectorSize,
index_t DySrcVectorSize,
index_t DxDstVectorSize,
index_t ScaleSrcDstVectorSize,
index_t BiasDstVectorSize,
index_t ScaleSrcVectorSize,
index_t DscaleDbiasDstVectorSize,
index_t MeanVarSrcVectorSize>
struct GridwiseReduceSecondHalfBatchNormBackwardFinal
{
......@@ -155,13 +155,13 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
const DscaleDbiasGridDesc_M_K& dscale_dbias_grid_desc_m_k,
const MeanVarGridDesc_M& mean_var_grid_desc_m,
const ScaleBiasGridDesc_M& scale_grid_desc_m,
const ScaleBiasGridDesc_M& bias_grid_desc_m,
const ScaleBiasGridDesc_M& dscale_dbias_grid_desc_m,
index_t blkgroup_size,
long_index_t reduce_size,
index_t num_xy_k_block_tile_iteration,
index_t num_dscale_dbias_k_block_tile_iteration,
const ScaleDataType* const __restrict__ p_reduce_dscale,
const BiasDataType* const __restrict__ p_reduce_dbias,
const DscaleDbiasDataType* const __restrict__ p_reduce_dscale,
const DscaleDbiasDataType* const __restrict__ p_reduce_dbias,
const MeanVarDataType* const __restrict__ p_mean,
const MeanVarDataType* const __restrict__ p_inv_var,
const XDataType* const __restrict__ p_x,
......@@ -169,8 +169,8 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
const ScaleDataType* const __restrict__ p_scale,
const DyElementwiseOp dy_elementwise_op,
DxDataType* const __restrict__ p_dx,
ScaleDataType* const __restrict__ p_dscale,
BiasDataType* const __restrict__ p_dbias)
DscaleDbiasDataType* const __restrict__ p_dscale,
DscaleDbiasDataType* const __restrict__ p_dbias)
{
__shared__ AccDataType p_reduce_work_buffer[BlockSize];
......@@ -222,24 +222,8 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
// Step 1: do final reduction of dbias = sum(dy), dscale = sum(dy * (x-mean) * inv-variance)
// clang-format on
auto threadwise_dscale_load_m_k =
ThreadwiseTensorSliceTransfer_v2<ScaleDataType,
AccDataType,
DscaleDbiasGridDesc_M_K,
decltype(thread_buffer_desc_m_1),
ThreadBufferLengths_M_1,
Sequence<0, 1>,
1,
1,
1,
true>(
dscale_dbias_grid_desc_m_k,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * 1));
auto threadwise_dbias_load_m_k =
ThreadwiseTensorSliceTransfer_v2<BiasDataType,
auto threadwise_dscale_dbias_load_m_k =
ThreadwiseTensorSliceTransfer_v2<DscaleDbiasDataType,
AccDataType,
DscaleDbiasGridDesc_M_K,
decltype(thread_buffer_desc_m_1),
......@@ -254,38 +238,20 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * 1));
auto threadwise_dscale_store_m =
auto threadwise_dscale_dbias_store_m =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
ScaleDataType,
DscaleDbiasDataType,
decltype(thread_buffer_desc_m),
ScaleBiasGridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>,
0,
ScaleSrcDstVectorSize,
DscaleDbiasDstVectorSize,
InMemoryDataOperationEnum::Set,
1,
true>(
scale_grid_desc_m,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
auto threadwise_dbias_store_m =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
BiasDataType,
decltype(thread_buffer_desc_m),
ScaleBiasGridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>,
0,
BiasDstVectorSize,
InMemoryDataOperationEnum::Set,
1,
true>(
bias_grid_desc_m,
dscale_dbias_grid_desc_m,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
......@@ -297,10 +263,10 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
p_reduce_dbias, dscale_dbias_grid_desc_m_k.GetElementSpaceSize());
auto dscale_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_dscale, scale_grid_desc_m.GetElementSpaceSize());
p_dscale, dscale_dbias_grid_desc_m.GetElementSpaceSize());
auto dbias_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_dbias, bias_grid_desc_m.GetElementSpaceSize());
p_dbias, dscale_dbias_grid_desc_m.GetElementSpaceSize());
constexpr auto dscale_dbias_thread_copy_step_m_k =
make_multi_index(0, KThreadClusterSize * 1);
......@@ -313,25 +279,23 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
for(index_t reducedTiles = 0; reducedTiles < num_dscale_dbias_k_block_tile_iteration;
++reducedTiles)
{
threadwise_dscale_load_m_k.Run(dscale_dbias_grid_desc_m_k,
reduce_dscale_global_buf,
thread_buffer_desc_m_1,
make_tuple(I0, I0),
reduce_dscale_thread_buf);
threadwise_dbias_load_m_k.Run(dscale_dbias_grid_desc_m_k,
reduce_dbias_global_buf,
thread_buffer_desc_m_1,
make_tuple(I0, I0),
reduce_dbias_thread_buf);
threadwise_dscale_dbias_load_m_k.Run(dscale_dbias_grid_desc_m_k,
reduce_dscale_global_buf,
thread_buffer_desc_m_1,
make_tuple(I0, I0),
reduce_dscale_thread_buf);
threadwise_dscale_dbias_load_m_k.Run(dscale_dbias_grid_desc_m_k,
reduce_dbias_global_buf,
thread_buffer_desc_m_1,
make_tuple(I0, I0),
reduce_dbias_thread_buf);
ThreadwiseReduce::Reduce(reduce_dscale_thread_buf, dscale_thread_buf);
ThreadwiseReduce::Reduce(reduce_dbias_thread_buf, dbias_thread_buf);
threadwise_dscale_load_m_k.MoveSrcSliceWindow(dscale_dbias_grid_desc_m_k,
dscale_dbias_thread_copy_step_m_k);
threadwise_dbias_load_m_k.MoveSrcSliceWindow(dscale_dbias_grid_desc_m_k,
dscale_dbias_thread_copy_step_m_k);
threadwise_dscale_dbias_load_m_k.MoveSrcSliceWindow(dscale_dbias_grid_desc_m_k,
dscale_dbias_thread_copy_step_m_k);
}
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
......@@ -343,17 +307,17 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
BlockwiseReduce::Reduce(reduce_work_buf, dbias_thread_buf(I));
});
threadwise_dscale_store_m.Run(thread_buffer_desc_m,
make_tuple(I0),
dscale_thread_buf,
scale_grid_desc_m,
dscale_global_buf);
threadwise_dscale_dbias_store_m.Run(thread_buffer_desc_m,
make_tuple(I0),
dscale_thread_buf,
dscale_dbias_grid_desc_m,
dscale_global_buf);
threadwise_dbias_store_m.Run(thread_buffer_desc_m,
make_tuple(I0),
dbias_thread_buf,
bias_grid_desc_m,
dbias_global_buf);
threadwise_dscale_dbias_store_m.Run(thread_buffer_desc_m,
make_tuple(I0),
dbias_thread_buf,
dscale_dbias_grid_desc_m,
dbias_global_buf);
// clang-format off
// Step 2: calculate dx = 1/N * inv-variance * scale * (N * dy - dbias - dscale * (x - mean) * inv-variance)
......@@ -418,7 +382,7 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
ThreadBufferLengths_M,
Sequence<0>,
0,
ScaleSrcDstVectorSize,
ScaleSrcVectorSize,
1,
true>(
scale_grid_desc_m,
......
......@@ -17,7 +17,7 @@ template <typename GridwiseWelfordSecondHalfReduceFirstHalf_,
typename DyDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename DscaleDbiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp,
typename XYGridDesc_M_K,
......@@ -45,8 +45,8 @@ __global__ void kernel_welford_second_half_reduce_first_half(
MeanVarDataType* const __restrict__ p_out_welford_inv_variance,
const XDataType* const __restrict__ p_x,
const DyDataType* const __restrict__ p_dy,
ScaleDataType* const __restrict__ p_reduce_dscale,
BiasDataType* const __restrict__ p_reduce_dbias)
DscaleDbiasDataType* const __restrict__ p_reduce_dscale,
DscaleDbiasDataType* const __restrict__ p_reduce_dbias)
{
GridwiseWelfordSecondHalfReduceFirstHalf_::Run(x_grid_desc_m_k,
dy_grid_desc_m_k,
......@@ -76,7 +76,7 @@ template <typename XDataType,
typename DyDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename DscaleDbiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp,
typename XYGridDesc_M_K,
......@@ -174,8 +174,8 @@ struct GridwiseWelfordSecondHalfReduceFirstHalf
MeanVarDataType* const __restrict__ p_out_welford_inv_variance,
const XDataType* const __restrict__ p_x,
const DyDataType* const __restrict__ p_dy,
ScaleDataType* const __restrict__ p_reduce_dscale,
BiasDataType* const __restrict__ p_reduce_dbias)
DscaleDbiasDataType* const __restrict__ p_reduce_dscale,
DscaleDbiasDataType* const __restrict__ p_reduce_dbias)
{
__shared__ AccDataType p_reduce_work_buffer[BlockSize];
......@@ -511,28 +511,9 @@ struct GridwiseWelfordSecondHalfReduceFirstHalf
BlockwiseReduce::Reduce(reduce_work_buf, reduce_dbias_thread_buf(I));
});
auto threadwise_dscale_store =
auto threadwise_dscale_dbias_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
ScaleDataType,
decltype(thread_buffer_desc_m_1),
DscaleDbiasGridDesc_M_G,
PassThroughOp,
ThreadBufferLengths_M_1,
Sequence<0, 1>,
1,
1,
InMemoryDataOperationEnum::Set,
1,
true>(
dscale_dbias_grid_desc_m_g,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
block_local_id),
PassThroughOp{});
auto threadwise_dbias_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
BiasDataType,
DscaleDbiasDataType,
decltype(thread_buffer_desc_m_1),
DscaleDbiasGridDesc_M_G,
PassThroughOp,
......@@ -557,17 +538,17 @@ struct GridwiseWelfordSecondHalfReduceFirstHalf
if(thread_k_cluster_id == 0)
{
threadwise_dscale_store.Run(thread_buffer_desc_m_1,
make_tuple(I0, I0),
reduce_dscale_thread_buf,
dscale_dbias_grid_desc_m_g,
reduce_dscale_global_buf);
threadwise_dbias_store.Run(thread_buffer_desc_m_1,
make_tuple(I0, I0),
reduce_dbias_thread_buf,
dscale_dbias_grid_desc_m_g,
reduce_dbias_global_buf);
threadwise_dscale_dbias_store.Run(thread_buffer_desc_m_1,
make_tuple(I0, I0),
reduce_dscale_thread_buf,
dscale_dbias_grid_desc_m_g,
reduce_dscale_global_buf);
threadwise_dscale_dbias_store.Run(thread_buffer_desc_m_1,
make_tuple(I0, I0),
reduce_dbias_thread_buf,
dscale_dbias_grid_desc_m_g,
reduce_dbias_global_buf);
};
};
};
......
......@@ -796,6 +796,11 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
}
});
}
else
{
static_for<0, acc_thread_buf.Size(), 1>{}(
[&](auto i) { acc_element_op(acc_thread_buf(i), acc_thread_buf[i]); });
}
block_sync_lds(); // wait for lds read in gemm0 blockwise gemm
......
......@@ -21,7 +21,7 @@ template <typename GridwiseBatchrNormBackwardWithBlockwiseWelford_,
typename DxDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename DscaleDbiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp,
typename XYGridDesc_M_K,
......@@ -33,7 +33,7 @@ __global__ void kernel_batchnorm_backward_with_blockwise_welford(
const XYGridDesc_M_K dy_grid_desc_m_k,
const XYGridDesc_M_K dx_grid_desc_m_k,
const ScaleBiasGridDesc_M scale_grid_desc_m,
const ScaleBiasGridDesc_M bias_grid_desc_m,
const ScaleBiasGridDesc_M dscale_dbias_grid_desc_m,
const MeanVarGridDesc_M mean_var_grid_desc_m,
const GetReduceCountPerThreadFunctor get_reduce_count_per_thread,
long_index_t reduce_size,
......@@ -47,14 +47,14 @@ __global__ void kernel_batchnorm_backward_with_blockwise_welford(
const MeanVarDataType* const __restrict__ p_savedInvVar,
const DyElementwiseOp dy_elementwise_op,
DxDataType* const __restrict__ p_dx,
ScaleDataType* const __restrict__ p_dscale,
BiasDataType* const __restrict__ p_dbias)
DscaleDbiasDataType* const __restrict__ p_dscale,
DscaleDbiasDataType* const __restrict__ p_dbias)
{
GridwiseBatchrNormBackwardWithBlockwiseWelford_::Run(x_grid_desc_m_k,
dy_grid_desc_m_k,
dx_grid_desc_m_k,
scale_grid_desc_m,
bias_grid_desc_m,
dscale_dbias_grid_desc_m,
mean_var_grid_desc_m,
get_reduce_count_per_thread,
reduce_size,
......@@ -77,7 +77,7 @@ template <typename XDataType,
typename DxDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename DscaleDbiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp,
typename XYGridDesc_M_K,
......@@ -93,8 +93,8 @@ template <typename XDataType,
index_t XSrcVectorSize,
index_t DySrcVectorSize,
index_t DxDstVectorSize,
index_t ScaleSrcDstVectorSize,
index_t BiasDstVectorSize,
index_t ScaleSrcVectorSize,
index_t DscaleDbiasDstVectorSize,
index_t MeanVarSrcVectorSize>
struct GridwiseBatchNormBackwardWithBlockwiseWelford
{
......@@ -165,7 +165,7 @@ struct GridwiseBatchNormBackwardWithBlockwiseWelford
const XYGridDesc_M_K dy_grid_desc_m_k,
const XYGridDesc_M_K dx_grid_desc_m_k,
const ScaleBiasGridDesc_M scale_grid_desc_m,
const ScaleBiasGridDesc_M bias_grid_desc_m,
const ScaleBiasGridDesc_M dscale_dbias_grid_desc_m,
const MeanVarGridDesc_M mean_var_grid_desc_m,
const GetReduceCountPerThreadFunctor get_reduce_count_per_thread,
long_index_t reduce_size,
......@@ -179,8 +179,8 @@ struct GridwiseBatchNormBackwardWithBlockwiseWelford
const MeanVarDataType* const __restrict__ p_savedInvVar,
const DyElementwiseOp dy_elementwise_op,
DxDataType* const __restrict__ p_dx,
ScaleDataType* const __restrict__ p_dscale,
BiasDataType* const __restrict__ p_dbias)
DscaleDbiasDataType* const __restrict__ p_dscale,
DscaleDbiasDataType* const __restrict__ p_dbias)
{
using ck::math::sqrt;
......@@ -253,7 +253,7 @@ struct GridwiseBatchNormBackwardWithBlockwiseWelford
XSrcVectorSize,
1,
true>(
x_grid_desc_m_k,
dy_grid_desc_m_k,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * KThreadSliceSize));
......@@ -271,7 +271,7 @@ struct GridwiseBatchNormBackwardWithBlockwiseWelford
InMemoryDataOperationEnum::Set,
1,
true>(
dy_grid_desc_m_k,
dx_grid_desc_m_k,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * KThreadSliceSize),
......@@ -285,45 +285,27 @@ struct GridwiseBatchNormBackwardWithBlockwiseWelford
ThreadBufferLengths_M,
Sequence<0>,
0,
ScaleSrcDstVectorSize,
ScaleSrcVectorSize,
1,
true>(
scale_grid_desc_m,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize));
auto threadwise_dscale_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
ScaleDataType,
decltype(thread_buffer_desc_m),
ScaleBiasGridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>,
0,
ScaleSrcDstVectorSize,
InMemoryDataOperationEnum::Set,
1,
true>(
scale_grid_desc_m,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
auto threadwise_dbias_store =
auto threadwise_dscale_dbias_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
BiasDataType,
DscaleDbiasDataType,
decltype(thread_buffer_desc_m),
ScaleBiasGridDesc_M,
PassThroughOp,
ThreadBufferLengths_M,
Sequence<0>,
0,
BiasDstVectorSize,
DscaleDbiasDstVectorSize,
InMemoryDataOperationEnum::Set,
1,
true>(
bias_grid_desc_m,
dscale_dbias_grid_desc_m,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp{});
......@@ -344,10 +326,10 @@ struct GridwiseBatchNormBackwardWithBlockwiseWelford
p_scale, scale_grid_desc_m.GetElementSpaceSize());
auto dscale_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_dscale, scale_grid_desc_m.GetElementSpaceSize());
p_dscale, dscale_dbias_grid_desc_m.GetElementSpaceSize());
auto dbias_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_dbias, bias_grid_desc_m.GetElementSpaceSize());
p_dbias, dscale_dbias_grid_desc_m.GetElementSpaceSize());
// clang-format off
// Step 1: calculating mean and inv-variance using welford method (if savedMean/savedInvVar not available), where inv-variance = 1/sqrt(epsilon+variance)
......@@ -487,17 +469,17 @@ struct GridwiseBatchNormBackwardWithBlockwiseWelford
if(thread_k_cluster_id == 0)
{
threadwise_dscale_store.Run(thread_buffer_desc_m,
make_tuple(I0),
dscale_thread_buf,
scale_grid_desc_m,
dscale_global_buf);
threadwise_dbias_store.Run(thread_buffer_desc_m,
make_tuple(I0),
dbias_thread_buf,
bias_grid_desc_m,
dbias_global_buf);
threadwise_dscale_dbias_store.Run(thread_buffer_desc_m,
make_tuple(I0),
dscale_thread_buf,
dscale_dbias_grid_desc_m,
dscale_global_buf);
threadwise_dscale_dbias_store.Run(thread_buffer_desc_m,
make_tuple(I0),
dbias_thread_buf,
dscale_dbias_grid_desc_m,
dbias_global_buf);
};
// clang-format off
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_dl_v2r3.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_tensor_slice_transfer_v5r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_set.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
template <index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename DsDataType,
typename FloatC,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
typename AGridDesc_K0_M_K1,
typename BGridDesc_K0_N_K1,
typename CGridDesc_M_N,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t K1Value,
index_t M1PerThreadM111,
index_t N1PerThreadN111,
index_t KPerThread,
typename M11N11ThreadClusterM110Xs,
typename M11N11ThreadClusterN110Xs,
typename ABlockTransferThreadSliceLengths_K0_M0_M1_K1,
typename ABlockTransferThreadClusterLengths_K0_M0_M1_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
typename ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1,
typename ABlockTransferSrcVectorTensorContiguousDimOrder,
typename ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1,
typename BBlockTransferThreadSliceLengths_K0_N0_N1_K1,
typename BBlockTransferThreadClusterLengths_K0_N0_N1_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
typename BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1,
typename BBlockTransferSrcVectorTensorContiguousDimOrder,
typename BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector>
struct GridwiseGemmDlMultipleD_km_kn_mn
{
static constexpr index_t NumDTensor = DsDataType::Size();
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
// K1 should be Number<...>
static constexpr auto K1 = Number<K1Value>{};
// ck::Tuple<const D0DataType*, const D1DataType*, ...>
static constexpr auto MakeDsGridPointer()
{
return generate_tuple(
[&](auto i) {
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
return static_cast<const DDataType*>(nullptr);
},
Number<NumDTensor>{});
}
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
// TODO: change this. I think it needs multi-dimensional alignment
constexpr auto max_lds_align = K1;
// TODO: check alignment
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_k_m = make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
// TODO: check alignment
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_k_n = make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
// TODO: check alignment
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_aligned_space_size =
math::integer_least_multiple(a_block_desc_k_m.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_aligned_space_size =
math::integer_least_multiple(b_block_desc_k_n.GetElementSpaceSize(), max_lds_align);
return 2 * (a_block_aligned_space_size + b_block_aligned_space_size) * sizeof(FloatAB);
}
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_K0_M_K1& a_grid_desc_k0_m_k1,
const BGridDesc_K0_N_K1& b_grid_desc_k0_n_k1,
const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = a_grid_desc_k0_m_k1.GetLength(I1);
const auto N = b_grid_desc_k0_n_k1.GetLength(I1);
const auto K0 = a_grid_desc_k0_m_k1.GetLength(I0);
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return (M == c_grid_desc_m_n.GetLength(I0) && N == c_grid_desc_m_n.GetLength(I1) &&
K0 == b_grid_desc_k0_n_k1.GetLength(I0) &&
K1 == a_grid_desc_k0_m_k1.GetLength(I2) &&
K1 == b_grid_desc_k0_n_k1.GetLength(I2)) &&
(M % MPerBlock == 0 && N % NPerBlock == 0 && K0 % K0PerBlock == 0);
}
__host__ __device__ static constexpr index_t CalculateGridSize(index_t M, index_t N)
{
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock);
return grid_size;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K0)
{
const bool has_main_k_block_loop = (K0 + K0PerBlock) / (2 * K0PerBlock) > 1;
return has_main_k_block_loop;
}
__host__ __device__ static constexpr bool CalculateHasDoubleTailKBlockLoop(index_t K0)
{
const bool has_double_tail_k_block_loop = (K0 / K0PerBlock) % 2 == 0;
return has_double_tail_k_block_loop;
}
__host__ __device__ static constexpr auto
MakeAGridDescriptor_K0_M0_M1_K1(const AGridDesc_K0_M_K1& a_grid_desc_k0_m_k1)
{
const auto K0 = a_grid_desc_k0_m_k1.GetLength(I0);
const auto M = a_grid_desc_k0_m_k1.GetLength(I1);
const auto M1 = Number<MPerBlock>{};
const auto M0 = M / M1;
const auto a_grid_desc_k0_m0_m1_k1 =
transform_tensor_descriptor(a_grid_desc_k0_m_k1,
make_tuple(make_pass_through_transform(K0),
make_unmerge_transform(make_tuple(M0, M1)),
make_pass_through_transform(K1)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
return a_grid_desc_k0_m0_m1_k1;
}
__host__ __device__ static constexpr auto
MakeBGridDescriptor_K0_N0_N1_K1(const BGridDesc_K0_N_K1& b_grid_desc_k0_n_k1)
{
const auto K0 = b_grid_desc_k0_n_k1.GetLength(I0);
const auto N = b_grid_desc_k0_n_k1.GetLength(I1);
const auto N1 = Number<NPerBlock>{};
const auto N0 = N / N1;
const auto b_grid_desc_k0_n0_n1_k1 =
transform_tensor_descriptor(b_grid_desc_k0_n_k1,
make_tuple(make_pass_through_transform(K0),
make_unmerge_transform(make_tuple(N0, N1)),
make_pass_through_transform(K1)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
return b_grid_desc_k0_n0_n1_k1;
}
__host__ __device__ static constexpr auto
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
constexpr auto M11 =
Number<container_reduce(M11N11ThreadClusterM110Xs{}, math::multiplies{}, I1) *
M1PerThreadM111>{};
constexpr auto N11 =
Number<container_reduce(M11N11ThreadClusterN110Xs{}, math::multiplies{}, I1) *
N1PerThreadN111>{};
constexpr auto M10 = M1 / M11;
constexpr auto N10 = N1 / N11;
const auto c_grid_desc_m0_m10_m11_n0_n10_n11 = transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(M0, M10, M11)),
make_unmerge_transform(make_tuple(N0, N10, N11))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 2>{}, Sequence<3, 4, 5>{}));
return c_grid_desc_m0_m10_m11_n0_n10_n11;
}
// Ds desc for source in blockwise copy
template <typename DsGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeDsGridDescriptor_M0_M10_M11_N0_N10_N11(const DsGridDesc_M_N& ds_grid_desc_m_n)
{
return generate_tuple(
[&](auto i) { return MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(ds_grid_desc_m_n[i]); },
Number<NumDTensor>{});
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto
MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n)
{
return BlockToCTileMap_M00_N00_M01_N01<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n);
}
using AGridDesc_K0_M0_M1_K1 = decltype(MakeAGridDescriptor_K0_M0_M1_K1(AGridDesc_K0_M_K1{}));
using BGridDesc_K0_N0_N1_K1 = decltype(MakeBGridDescriptor_K0_N0_N1_K1(BGridDesc_K0_N_K1{}));
using CGridDesc_M0_M10_M11_N0_N10_N11 =
decltype(MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(CGridDesc_M_N{}));
using Block2CTileMap = decltype(MakeDefaultBlock2CTileMap(CGridDesc_M_N{}));
using DsGridPointer = decltype(MakeDsGridPointer());
template <typename DsGridDesc_M0_M10_M11_N0_N10_N11,
bool HasMainKBlockLoop,
bool HasDoubleTailKBlockLoop>
__device__ static void
Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
DsGridPointer p_ds_grid,
FloatC* __restrict__ p_c_grid,
FloatAB* __restrict__ p_shared_block,
const AElementwiseOperation&,
const BElementwiseOperation&,
const CDEElementwiseOperation& cde_element_op,
const AGridDesc_K0_M0_M1_K1& a_grid_desc_k0_m0_m1_k1,
const BGridDesc_K0_N0_N1_K1& b_grid_desc_k0_n0_n1_k1,
const DsGridDesc_M0_M10_M11_N0_N10_N11& ds_grid_desc_m0_m10_m11_n0_n10_n11,
const CGridDesc_M0_M10_M11_N0_N10_N11& c_grid_desc_m0_m10_m11_n0_n10_n11,
const Block2CTileMap& block_2_ctile_map,
integral_constant<bool, HasMainKBlockLoop>,
integral_constant<bool, HasDoubleTailKBlockLoop>)
{
const auto a_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_k0_m0_m1_k1.GetElementSpaceSize());
const auto b_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_k0_n0_n1_k1.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_m0_m10_m11_n0_n10_n11.GetElementSpaceSize());
// divide block work by [M, N]
const auto c_m0_n0_block_cluster_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
// HACK: this force index data into SGPR
const index_t im0 = __builtin_amdgcn_readfirstlane(c_m0_n0_block_cluster_idx[I0]);
const index_t in0 = __builtin_amdgcn_readfirstlane(c_m0_n0_block_cluster_idx[I1]);
if(!block_2_ctile_map.ValidCTileIndex(
make_tuple(im0, in0),
make_tuple(c_grid_desc_m0_m10_m11_n0_n10_n11.GetLength(I0),
c_grid_desc_m0_m10_m11_n0_n10_n11.GetLength(I3))))
{
return;
}
// TODO: change this. I think it needs multi-dimensional alignment
constexpr auto max_lds_align = K1;
// TODO: check alignment
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto a_block_desc_k0_m0_m1_k1 = make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, I1, Number<MPerBlock>{}, K1), max_lds_align);
// TODO: check alignment
// B matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto b_block_desc_k0_n0_n1_k1 = make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, I1, Number<NPerBlock>{}, K1), max_lds_align);
// TODO: check alignment
// A matrix in LDS memory, for blockwise GEMM
constexpr auto a_k0_m_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
// TODO: check alignment
// B matrix in LDS memory, for blockwise GEMM
constexpr auto b_k0_n_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
static_assert(a_block_desc_k0_m0_m1_k1.GetElementSpaceSize() ==
a_k0_m_k1_block_desc.GetElementSpaceSize() &&
b_block_desc_k0_n0_n1_k1.GetElementSpaceSize() ==
b_k0_n_k1_block_desc.GetElementSpaceSize() &&
"wrong!");
// A matrix blockwise copy
auto a_blockwise_copy = BlockwiseTensorSliceTransfer_v5r1<
BlockSize,
InMemoryDataOperationEnum::Set,
Sequence<K0PerBlock, 1, MPerBlock, K1.value>,
ABlockTransferThreadSliceLengths_K0_M0_M1_K1,
ABlockTransferThreadClusterLengths_K0_M0_M1_K1,
ABlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
remove_reference_t<decltype(a_grid_desc_k0_m0_m1_k1)>,
decltype(a_block_desc_k0_m0_m1_k1),
ABlockTransferSrcAccessOrder,
Sequence<0, 1, 2, 3>,
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1, // SrcVectorTensorLengths
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1, // DstVectorTensorLengths
ABlockTransferSrcVectorTensorContiguousDimOrder, // SrcVectorTensorContiguousDimOrder
Sequence<0, 1, 2, 3>, // DstVectorTensorContiguousDimOrder
false,
true>(a_grid_desc_k0_m0_m1_k1,
make_multi_index(0, im0, 0, 0),
a_block_desc_k0_m0_m1_k1,
make_multi_index(0, 0, 0, 0));
// B matrix blockwise copy
auto b_blockwise_copy = BlockwiseTensorSliceTransfer_v5r1<
BlockSize,
InMemoryDataOperationEnum::Set,
Sequence<K0PerBlock, 1, NPerBlock, K1.value>,
BBlockTransferThreadSliceLengths_K0_N0_N1_K1,
BBlockTransferThreadClusterLengths_K0_N0_N1_K1,
BBlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
remove_reference_t<decltype(b_grid_desc_k0_n0_n1_k1)>,
decltype(b_block_desc_k0_n0_n1_k1),
BBlockTransferSrcAccessOrder,
Sequence<0, 1, 2, 3>,
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1, // SrcVectorTensorLengths
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1, // DstVectorTensorLengths
BBlockTransferSrcVectorTensorContiguousDimOrder, // SrcVectorTensorContiguousDimOrder
Sequence<0, 1, 2, 3>, // DstVectorTensorContiguousDimOrder
false,
true>(b_grid_desc_k0_n0_n1_k1,
make_multi_index(0, in0, 0, 0),
b_block_desc_k0_n0_n1_k1,
make_multi_index(0, 0, 0, 0));
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[KPerBlocl, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
const auto blockwise_gemm =
BlockwiseGemmDl_A_BK0_BM_BK1_B_BK0_BN_BK1_C_BM0_BM1_BN0_BN1_pipeline_BM0_2_BN0_2<
BlockSize,
FloatAB,
FloatAB,
FloatAcc,
decltype(a_k0_m_k1_block_desc),
decltype(b_k0_n_k1_block_desc),
M1PerThreadM111,
N1PerThreadN111,
KPerThread,
M11N11ThreadClusterM110Xs,
M11N11ThreadClusterN110Xs,
M1PerThreadM111,
N1PerThreadN111>{};
constexpr auto c_m10_m11_n10_n11_thread_tensor_lengths =
decltype(blockwise_gemm)::GetCThreadTensorLengths_BM0_BM1_BN0_BN1();
constexpr auto c_thread_desc_m10_m11_n10_n11 = make_naive_tensor_descriptor_packed(
sequence_to_tuple_of_number(c_m10_m11_n10_n11_thread_tensor_lengths));
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_aligned_space_size = math::integer_least_multiple(
a_block_desc_k0_m0_m1_k1.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_aligned_space_size = math::integer_least_multiple(
b_block_desc_k0_n0_n1_k1.GetElementSpaceSize(), max_lds_align);
FloatAB* p_a_block_double = p_shared_block;
FloatAB* p_b_block_double = p_shared_block + 2 * a_block_aligned_space_size;
// register allocation for output
auto c_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAcc>(
c_thread_desc_m10_m11_n10_n11.GetElementSpaceSize());
// Initialize C
c_thread_buf.Clear();
constexpr auto a_block_slice_copy_step = make_multi_index(K0PerBlock, 0, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(K0PerBlock, 0, 0, 0);
auto a_block_even_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
p_a_block_double, a_block_desc_k0_m0_m1_k1.GetElementSpaceSize());
auto b_block_even_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
p_b_block_double, b_block_desc_k0_n0_n1_k1.GetElementSpaceSize());
auto a_block_odd_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
p_a_block_double + a_block_aligned_space_size,
a_block_desc_k0_m0_m1_k1.GetElementSpaceSize());
auto b_block_odd_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
p_b_block_double + b_block_aligned_space_size,
b_block_desc_k0_n0_n1_k1.GetElementSpaceSize());
// LDS double buffer: preload data into LDS
{
a_blockwise_copy.RunRead(a_grid_desc_k0_m0_m1_k1, a_global_buf);
b_blockwise_copy.RunRead(b_grid_desc_k0_n0_n1_k1, b_global_buf);
a_blockwise_copy.RunWrite(a_block_desc_k0_m0_m1_k1, a_block_even_buf);
b_blockwise_copy.RunWrite(b_block_desc_k0_n0_n1_k1, b_block_even_buf);
}
if constexpr(HasMainKBlockLoop)
{
const auto K0 = a_grid_desc_k0_m0_m1_k1.GetLength(I0);
index_t k_block_data_begin = 0;
// LDS double buffer: main body
// use Do-While loop instead of For loop to simplify control flow
do
{
// even iteration
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc_k0_m0_m1_k1,
a_block_slice_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc_k0_n0_n1_k1,
b_block_slice_copy_step);
// LDS doubel buffer: load next data from device mem
a_blockwise_copy.RunRead(a_grid_desc_k0_m0_m1_k1, a_global_buf);
b_blockwise_copy.RunRead(b_grid_desc_k0_n0_n1_k1, b_global_buf);
block_sync_lds();
// LDS double buffer: GEMM on current data
blockwise_gemm.Run(c_thread_desc_m10_m11_n10_n11,
a_block_even_buf,
b_block_even_buf,
c_thread_buf);
// LDS double buffer: store next data to LDS
a_blockwise_copy.RunWrite(a_block_desc_k0_m0_m1_k1, a_block_odd_buf);
b_blockwise_copy.RunWrite(b_block_desc_k0_n0_n1_k1, b_block_odd_buf);
// odd iteration
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc_k0_m0_m1_k1,
a_block_slice_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc_k0_n0_n1_k1,
b_block_slice_copy_step);
// LDS doubel buffer: load next data from device mem
a_blockwise_copy.RunRead(a_grid_desc_k0_m0_m1_k1, a_global_buf);
b_blockwise_copy.RunRead(b_grid_desc_k0_n0_n1_k1, b_global_buf);
block_sync_lds();
// LDS double buffer: GEMM on current data
blockwise_gemm.Run(
c_thread_desc_m10_m11_n10_n11, a_block_odd_buf, b_block_odd_buf, c_thread_buf);
// LDS double buffer: store next data to LDS
a_blockwise_copy.RunWrite(a_block_desc_k0_m0_m1_k1, a_block_even_buf);
b_blockwise_copy.RunWrite(b_block_desc_k0_n0_n1_k1, b_block_even_buf);
k_block_data_begin += 2 * K0PerBlock;
} while(k_block_data_begin < K0 - 2 * K0PerBlock);
}
// LDS double buffer: tail
if constexpr(HasDoubleTailKBlockLoop) // if has 2 iteration left
{
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc_k0_m0_m1_k1, a_block_slice_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc_k0_n0_n1_k1, b_block_slice_copy_step);
block_sync_lds();
// LDS double buffer: load last data from device mem
a_blockwise_copy.RunRead(a_grid_desc_k0_m0_m1_k1, a_global_buf);
b_blockwise_copy.RunRead(b_grid_desc_k0_n0_n1_k1, b_global_buf);
// LDS double buffer: GEMM on 2nd-last data
blockwise_gemm.Run(
c_thread_desc_m10_m11_n10_n11, a_block_even_buf, b_block_even_buf, c_thread_buf);
// LDS double buffer: store last data to LDS
a_blockwise_copy.RunWrite(a_block_desc_k0_m0_m1_k1, a_block_odd_buf);
b_blockwise_copy.RunWrite(b_block_desc_k0_n0_n1_k1, b_block_odd_buf);
block_sync_lds();
// LDS double buffer: GEMM on last data
blockwise_gemm.Run(
c_thread_desc_m10_m11_n10_n11, a_block_odd_buf, b_block_odd_buf, c_thread_buf);
}
else // if has 1 iteration left
{
__syncthreads();
// LDS double buffer: GEMM on last data
blockwise_gemm.Run(
c_thread_desc_m10_m11_n10_n11, a_block_even_buf, b_block_even_buf, c_thread_buf);
}
// output: register to global memory
{
constexpr auto c_thread_desc_m0_m10_m11_n0_n10_n11 =
make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<c_m10_m11_n10_n11_thread_tensor_lengths[I0]>{},
Number<c_m10_m11_n10_n11_thread_tensor_lengths[I1]>{},
I1,
Number<c_m10_m11_n10_n11_thread_tensor_lengths[I2]>{},
Number<c_m10_m11_n10_n11_thread_tensor_lengths[I3]>{}));
const auto c_m10_m11_n10_n11_thread_origin_idx_on_block =
blockwise_gemm.CalculateCThreadOriginOnBlock_BM0_BM1_BN0_BN1(
get_thread_local_1d_id());
const auto ds_grid_buf = generate_tuple(
[&](auto i) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_ds_grid[i], ds_grid_desc_m0_m10_m11_n0_n10_n11[i].GetElementSpaceSize());
},
Number<NumDTensor>{});
auto ds_thread_buf = generate_tuple(
[&](auto i) {
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
return StaticBuffer<AddressSpaceEnum::Vgpr,
DDataType,
c_m10_m11_n10_n11_thread_tensor_lengths[I3],
true>{};
},
Number<NumDTensor>{});
auto ds_threadwise_copy = generate_tuple(
[&](auto i) {
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
return ThreadwiseTensorSliceTransfer_v2<
DDataType,
DDataType,
decltype(ds_grid_desc_m0_m10_m11_n0_n10_n11[i]),
decltype(c_thread_desc_m0_m10_m11_n0_n10_n11),
Sequence<I1,
I1,
I1,
I1,
I1,
Number<c_m10_m11_n10_n11_thread_tensor_lengths[I3]>{}>,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector,
1,
false>(ds_grid_desc_m0_m10_m11_n0_n10_n11[i],
make_multi_index(im0,
c_m10_m11_n10_n11_thread_origin_idx_on_block[I0],
c_m10_m11_n10_n11_thread_origin_idx_on_block[I1],
in0,
c_m10_m11_n10_n11_thread_origin_idx_on_block[I2],
c_m10_m11_n10_n11_thread_origin_idx_on_block[I3]));
},
Number<NumDTensor>{});
static_for<0, c_m10_m11_n10_n11_thread_tensor_lengths[I0], 1>{}([&](auto m10) {
static_for<0, c_m10_m11_n10_n11_thread_tensor_lengths[I1], 1>{}([&](auto m11) {
static_for<0, c_m10_m11_n10_n11_thread_tensor_lengths[I2], 1>{}([&](auto n10) {
// load d matrix data
static_for<0, NumDTensor, 1>{}([&](auto i) {
ds_threadwise_copy(i).Run(ds_grid_desc_m0_m10_m11_n0_n10_n11[i],
ds_grid_buf[i],
c_thread_desc_m0_m10_m11_n0_n10_n11,
make_tuple(I0, I0, I0, I0, I0, I0),
ds_thread_buf(i));
});
// cal element op
static_for<0, c_m10_m11_n10_n11_thread_tensor_lengths[I3], 1>{}(
[&](auto i) {
// get reference to src data
const auto src_data_refs = generate_tie(
// return type should be lvalue
[&](auto iSrc) -> const auto& {
return ds_thread_buf[iSrc][i];
},
Number<NumDTensor>{});
// get reference to dst data
constexpr index_t c_offset =
c_thread_desc_m0_m10_m11_n0_n10_n11.CalculateOffset(
make_tuple(0, m10, m11, 0, n10, i));
auto dst_data_refs = generate_tie(
// return type should be lvalue
[&](auto) -> auto& { return c_thread_buf(Number<c_offset>{}); },
Number<2>{});
unpack2(cde_element_op, dst_data_refs, src_data_refs);
});
static_for<0, NumDTensor, 1>{}([&](auto i) {
ds_threadwise_copy(i).MoveSrcSliceWindow(
ds_grid_desc_m0_m10_m11_n0_n10_n11[i],
make_multi_index(0, 0, 0, 0, 1, 0));
});
});
static_for<0, NumDTensor, 1>{}([&](auto i) {
ds_threadwise_copy(i).MoveSrcSliceWindow(
ds_grid_desc_m0_m10_m11_n0_n10_n11[i],
make_multi_index(
0, 0, 1, 0, -c_m10_m11_n10_n11_thread_tensor_lengths[I2], 0));
});
});
static_for<0, NumDTensor, 1>{}([&](auto i) {
ds_threadwise_copy(i).MoveSrcSliceWindow(
ds_grid_desc_m0_m10_m11_n0_n10_n11[i],
make_multi_index(
0, 1, -c_m10_m11_n10_n11_thread_tensor_lengths[I1], 0, 0, 0));
});
});
ThreadwiseTensorSliceTransfer_v1r3<
FloatAcc,
FloatC,
decltype(c_thread_desc_m0_m10_m11_n0_n10_n11),
decltype(c_grid_desc_m0_m10_m11_n0_n10_n11),
ck::tensor_operation::element_wise::PassThrough,
Sequence<1,
c_m10_m11_n10_n11_thread_tensor_lengths[I0],
c_m10_m11_n10_n11_thread_tensor_lengths[I1],
1,
c_m10_m11_n10_n11_thread_tensor_lengths[I2],
c_m10_m11_n10_n11_thread_tensor_lengths[I3]>,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector,
CGlobalMemoryDataOperation,
1,
true>{c_grid_desc_m0_m10_m11_n0_n10_n11,
make_multi_index(im0,
c_m10_m11_n10_n11_thread_origin_idx_on_block[I0],
c_m10_m11_n10_n11_thread_origin_idx_on_block[I1],
in0,
c_m10_m11_n10_n11_thread_origin_idx_on_block[I2],
c_m10_m11_n10_n11_thread_origin_idx_on_block[I3]),
ck::tensor_operation::element_wise::PassThrough{}}
.Run(c_thread_desc_m0_m10_m11_n0_n10_n11,
make_tuple(I0, I0, I0, I0, I0, I0),
c_thread_buf,
c_grid_desc_m0_m10_m11_n0_n10_n11,
c_grid_buf);
}
}
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/utility/math.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_welford.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_welford.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
template <typename GridwiseMultiblockWelfordFirstHalf_,
typename XDataType,
typename MeanVarDataType,
typename XGridDesc_M_K,
typename MeanVarCountGridDesc_M_G,
typename GetReduceCountPerThreadFunctor>
__global__ void kernel_multiblock_welford_first_half(
const XGridDesc_M_K x_grid_desc_m_k,
const MeanVarCountGridDesc_M_G mean_var_count_grid_desc_m_g,
const GetReduceCountPerThreadFunctor get_reduce_count_per_thread,
index_t num_k_block_tile_iteration,
const XDataType* const __restrict__ p_x,
MeanVarDataType* const p_welford_mean,
MeanVarDataType* const p_welford_variance,
int32_t* const p_welford_count)
{
GridwiseMultiblockWelfordFirstHalf_::Run(x_grid_desc_m_k,
mean_var_count_grid_desc_m_g,
get_reduce_count_per_thread,
num_k_block_tile_iteration,
p_x,
p_welford_mean,
p_welford_variance,
p_welford_count);
};
template <typename XDataType,
typename AccDataType,
typename MeanVarDataType,
typename XGridDesc_M_K,
typename MeanVarCountGridDesc_M_G,
typename GetReduceCountPerThreadFunctor,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
index_t MThreadSliceSize,
index_t KThreadSliceSize,
index_t XSrcCountSrcVectorDim,
index_t XSrcCountSrcVectorSize>
struct GridwiseMultiblockWelfordFirstHalf
{
static_assert((XSrcCountSrcVectorDim == 0 && MThreadSliceSize % XSrcCountSrcVectorSize == 0) ||
(XSrcCountSrcVectorDim == 1 &&
KThreadSliceSize % XSrcCountSrcVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static constexpr bool reorder_thread_cluster = (XSrcCountSrcVectorDim == 0);
using ThreadClusterLengths_M_K = Sequence<MThreadClusterSize, KThreadClusterSize>;
using ThreadBufferDimAccessOrder =
typename conditional<reorder_thread_cluster, Sequence<1, 0>, Sequence<0, 1>>::type;
using ThreadClusterArrangeOrder =
typename conditional<reorder_thread_cluster, Sequence<1, 0>, Sequence<0, 1>>::type;
static constexpr auto thread_cluster_desc =
make_cluster_descriptor(ThreadClusterLengths_M_K{}, ThreadClusterArrangeOrder{});
using ThreadReduceSrcDesc_M_K = decltype(make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<KThreadSliceSize>{})));
using ThreadReduceDstDesc_M =
decltype(make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{})));
using ThreadwiseWelford =
ThreadwiseWelford<AccDataType, ThreadReduceSrcDesc_M_K, ThreadReduceDstDesc_M>;
using BlockwiseWelford = BlockwiseWelford<AccDataType,
BlockSize,
ThreadClusterLengths_M_K,
ThreadClusterArrangeOrder,
false>;
using PassThroughOp = tensor_operation::element_wise::PassThrough;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
__device__ static void Run(const XGridDesc_M_K& x_grid_desc_m_k,
const MeanVarCountGridDesc_M_G& mean_var_count_grid_desc_m_g,
const GetReduceCountPerThreadFunctor& get_reduce_count_per_thread,
index_t num_k_block_tile_iteration,
const XDataType* const __restrict__ p_x,
MeanVarDataType* const p_welford_mean,
MeanVarDataType* const p_welford_variance,
int32_t* const p_welford_count)
{
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
x_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true>
welford_mean_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true>
welford_var_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, int32_t, MThreadSliceSize, true>
welford_count_thread_buf;
const index_t blkgroup_size = mean_var_count_grid_desc_m_g.GetLength(I1);
const index_t thread_local_id = get_thread_local_1d_id();
const index_t block_global_id = get_block_1d_id();
const index_t blkgroup_id = block_global_id / blkgroup_size;
const index_t block_local_id = block_global_id % blkgroup_size;
const auto thread_cluster_idx =
thread_cluster_desc.CalculateBottomIndex(make_multi_index(thread_local_id));
const auto thread_m_cluster_id = thread_cluster_idx[I0];
const auto thread_k_cluster_id = thread_cluster_idx[I1];
using ThreadBufferLengths_M_K = Sequence<MThreadSliceSize, KThreadSliceSize>;
using ThreadBufferLengths_M_1 = Sequence<MThreadSliceSize, 1>;
constexpr auto thread_buffer_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<KThreadSliceSize>{}));
constexpr auto thread_buffer_desc_m_1 = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<1>{}));
const index_t reduceSizePerBlock = K_BlockTileSize * num_k_block_tile_iteration;
auto threadwise_x_load = ThreadwiseTensorSliceTransfer_v2<XDataType,
AccDataType,
XGridDesc_M_K,
decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder,
XSrcCountSrcVectorDim,
XSrcCountSrcVectorSize,
1,
true>(
x_grid_desc_m_k,
make_multi_index(blkgroup_id * M_BlockTileSize + thread_m_cluster_id * MThreadSliceSize,
block_local_id * reduceSizePerBlock +
thread_k_cluster_id * KThreadSliceSize));
auto threadwise_welford_mean_var_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
MeanVarDataType,
decltype(thread_buffer_desc_m_1),
MeanVarCountGridDesc_M_G,
PassThroughOp,
ThreadBufferLengths_M_1,
Sequence<0, 1>,
1,
1,
InMemoryDataOperationEnum::Set,
1,
true>(
mean_var_count_grid_desc_m_g,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
block_local_id),
PassThroughOp{});
auto threadwise_welford_count_store =
ThreadwiseTensorSliceTransfer_v1r3<int32_t,
int32_t,
decltype(thread_buffer_desc_m_1),
MeanVarCountGridDesc_M_G,
PassThroughOp,
ThreadBufferLengths_M_1,
Sequence<0, 1>,
1,
1,
InMemoryDataOperationEnum::Set,
1,
true>(
mean_var_count_grid_desc_m_g,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
block_local_id),
PassThroughOp{});
constexpr auto thread_copy_fwd_step_m_k = make_multi_index(0, K_BlockTileSize);
const auto x_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_x, x_grid_desc_m_k.GetElementSpaceSize());
auto welford_mean_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_welford_mean, mean_var_count_grid_desc_m_g.GetElementSpaceSize());
auto welford_var_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_welford_variance, mean_var_count_grid_desc_m_g.GetElementSpaceSize());
auto welford_count_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_welford_count, mean_var_count_grid_desc_m_g.GetElementSpaceSize());
auto threadwise_welford = ThreadwiseWelford();
threadwise_welford.max_count_ =
get_reduce_count_per_thread(block_local_id, thread_k_cluster_id);
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
welford_mean_thread_buf(I) = type_convert<AccDataType>(0.0f);
welford_var_thread_buf(I) = type_convert<AccDataType>(0.0f);
});
for(index_t reducedTiles = 0; reducedTiles < num_k_block_tile_iteration; ++reducedTiles)
{
threadwise_x_load.Run(x_grid_desc_m_k,
x_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
x_thread_buf);
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_fwd_step_m_k);
threadwise_welford.Run(x_thread_buf, welford_mean_thread_buf, welford_var_thread_buf);
}
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
if constexpr(I > 0)
block_sync_lds();
welford_count_thread_buf(I) = threadwise_welford.cur_count_;
BlockwiseWelford::Run(
welford_mean_thread_buf(I), welford_var_thread_buf(I), welford_count_thread_buf(I));
});
if(thread_k_cluster_id == 0)
{
threadwise_welford_mean_var_store.Run(thread_buffer_desc_m_1,
make_tuple(I0, I0),
welford_mean_thread_buf,
mean_var_count_grid_desc_m_g,
welford_mean_global_val_buf);
threadwise_welford_mean_var_store.Run(thread_buffer_desc_m_1,
make_tuple(I0, I0),
welford_var_thread_buf,
mean_var_count_grid_desc_m_g,
welford_var_global_val_buf);
threadwise_welford_count_store.Run(thread_buffer_desc_m_1,
make_tuple(I0, I0),
welford_count_thread_buf,
mean_var_count_grid_desc_m_g,
welford_count_global_val_buf);
};
}
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_AMD_WMMA_HPP
#define CK_AMD_WMMA_HPP
#include "data_type.hpp"
// TODO: Add arch limitation
namespace ck {
// wave32 only
// src: fp16, dst: fp32
template <index_t MPerWave, index_t NPerWave>
struct intrin_wmma_f32_16x16x16_f16_w32;
template <>
struct intrin_wmma_f32_16x16x16_f16_w32<16, 16>
{
template <class FloatC>
__device__ static void Run(const half16_t& reg_a, const half16_t& reg_b, FloatC& reg_c)
{
reg_c.template AsType<float8_t>()(Number<0>{}) = __builtin_amdgcn_wmma_f32_16x16x16_f16_w32(
reg_a, reg_b, reg_c.template AsType<float8_t>()[Number<0>{}]);
}
};
// src: bf16, dst: fp32
template <index_t MPerWave, index_t NPerWave>
struct intrin_wmma_f32_16x16x16_bf16_w32;
template <>
struct intrin_wmma_f32_16x16x16_bf16_w32<16, 16>
{
template <class FloatC>
__device__ static void Run(const bhalf16_t& reg_a, const bhalf16_t& reg_b, FloatC& reg_c)
{
reg_c.template AsType<float8_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32(
reg_a, reg_b, reg_c.template AsType<float8_t>()[Number<0>{}]);
}
};
// src: fp16, dst: fp16
template <index_t MPerWave, index_t NPerWave, index_t Opsel>
struct intrin_wmma_f16_16x16x16_f16_w32;
template <index_t Opsel>
struct intrin_wmma_f16_16x16x16_f16_w32<16, 16, Opsel>
{
template <class FloatC>
__device__ static void Run(const half16_t& reg_a, const half16_t& reg_b, FloatC& reg_c)
{
// opsel usage
// false: D0.[0:15] = result
// true : D0.[16:31]= result
reg_c.template AsType<half16_t>()(Number<0>{}) = __builtin_amdgcn_wmma_f16_16x16x16_f16_w32(
reg_a, reg_b, reg_c.template AsType<half16_t>()[Number<0>{}], Opsel);
}
};
// src: bf16, dst: bf16
template <index_t MPerWave, index_t NPerWave, index_t Opsel>
struct intrin_wmma_bf16_16x16x16_bf16_w32;
template <index_t Opsel>
struct intrin_wmma_bf16_16x16x16_bf16_w32<16, 16, Opsel>
{
template <class FloatC>
__device__ static void Run(const bhalf16_t& reg_a, const bhalf16_t& reg_b, FloatC& reg_c)
{
// opsel usage
// false: D0.[0:15] = result
// true : D0.[16:31]= result
reg_c.template AsType<bhalf16_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32(
reg_a, reg_b, reg_c.template AsType<bhalf16_t>()[Number<0>{}], Opsel);
}
};
// src: iu8, dst: i32
template <index_t MPerWave, index_t NPerWave, bool neg_a, bool neg_b, bool clamp>
struct intrin_wmma_i32_16x16x16_iu8_w32;
template <bool neg_a, bool neg_b, bool clamp>
struct intrin_wmma_i32_16x16x16_iu8_w32<16, 16, neg_a, neg_b, clamp>
{
template <class FloatC>
__device__ static void Run(const int8x16_t& reg_a, const int8x16_t& reg_b, FloatC& reg_c)
{
reg_c.template AsType<int32x8_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32(
neg_a,
bit_cast<int32x4_t>(reg_a),
neg_b,
bit_cast<int32x4_t>(reg_b),
reg_c.template AsType<int32x8_t>()[Number<0>{}],
clamp);
}
};
} // namespace ck
#endif
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <array>
#include <algorithm>
#include <thread>
#include "ck/utility/math_v2.hpp"
#include "ck/utility/ignore.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/tensor_operation/gpu/device/device_batchnorm_backward.hpp"
namespace ck {
namespace tensor_operation {
namespace host {
template <typename XDataType,
typename DxDataType,
typename DyDataType,
typename AccDataType,
typename ScaleDataType,
typename DscaleDbiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp,
index_t Rank,
index_t NumBatchNormReduceDim>
struct ReferenceBatchNormBwd : public device::DeviceBatchNormBwd<XDataType,
DxDataType,
DyDataType,
AccDataType,
ScaleDataType,
DscaleDbiasDataType,
MeanVarDataType,
DyElementwiseOp,
Rank,
NumBatchNormReduceDim>
{
static_assert(Rank <= 6, "Bigger Rank size is not supported!");
static constexpr index_t NumInvariantDim = Rank - NumBatchNormReduceDim;
struct Argument : public device::BaseArgument
{
Argument(const std::array<index_t, Rank> xyLengths,
const std::array<index_t, Rank> xStrides,
const std::array<index_t, Rank> dxStrides,
const std::array<index_t, Rank> dyStrides,
const std::array<int, NumBatchNormReduceDim> reduceDims,
const std::array<index_t, NumInvariantDim> bnScaleBiasMeanVarLengths,
const std::array<index_t, NumInvariantDim> bnScaleStrides,
const std::array<index_t, NumInvariantDim> bnDscaleDbiasStrides,
const std::array<index_t, NumInvariantDim> bnMeanVarStrides,
const XDataType* p_x,
const DyDataType* p_dy,
const ScaleDataType* p_scale,
const MeanVarDataType* p_savedMean,
const MeanVarDataType* p_savedInvVar,
double epsilon,
const DyElementwiseOp dy_elementwise_op,
DxDataType* p_dx,
DscaleDbiasDataType* p_dscale,
DscaleDbiasDataType* p_dbias)
: reduceDims_(reduceDims),
bnScaleBiasMeanVarLengths_(bnScaleBiasMeanVarLengths),
bnScaleStrides_(bnScaleStrides),
bnDscaleDbiasStrides_(bnDscaleDbiasStrides),
bnMeanVarStrides_(bnMeanVarStrides),
p_x_(p_x),
p_dy_(p_dy),
p_scale_(p_scale),
p_savedMean_(p_savedMean),
p_savedInvVar_(p_savedInvVar),
dy_elementwise_op_(dy_elementwise_op),
p_dx_(p_dx),
p_dscale_(p_dscale),
p_dbias_(p_dbias)
{
using ck::host_common::get_index_set;
if(std::any_of(
reduceDims.begin(), reduceDims.end(), [](int d) { return d < 0 || d >= Rank; }))
throw std::runtime_error("Invalid reduce dimensions!");
// get invariant_dims[] and invariant_lengths[]
for(int dim = 0, i = 0; dim < Rank; dim++)
if(std::none_of(
reduceDims.begin(), reduceDims.end(), [&](int d) { return d == dim; }))
{
invariantDims_[i] = dim;
invariant_lengths_[i] = xyLengths[dim];
i++;
};
// get reduce_lengths_[]
for(int j = 0, i = 0; j < NumBatchNormReduceDim; j++)
{
int dim = reduceDims[j];
reduce_lengths_[i++] = xyLengths[dim];
};
for(int i = 0; i < NumInvariantDim; i++)
if(invariant_lengths_[i] != bnScaleBiasMeanVarLengths_[i])
throw std::runtime_error("Invalid lengths parameters!");
for(int j = 0, i = 0; j < NumInvariantDim; j++)
{
int dim = invariantDims_[j];
x_invariant_strides_[i] = xStrides[dim];
dy_invariant_strides_[i] = dyStrides[dim];
dx_invariant_strides_[i] = dxStrides[dim];
i++;
};
for(int j = 0, i = 0; j < NumBatchNormReduceDim; j++)
{
int dim = reduceDims_[j];
x_reduce_strides_[i] = xStrides[dim];
dy_reduce_strides_[i] = dyStrides[dim];
dx_reduce_strides_[i] = dxStrides[dim];
i++;
};
reduceSize_ = std::accumulate(
reduce_lengths_.begin(), reduce_lengths_.end(), 1, std::multiplies<size_t>{});
invariant_index_set_ = get_index_set<NumInvariantDim>(invariant_lengths_);
reduce_index_set_ = get_index_set<NumBatchNormReduceDim>(reduce_lengths_);
epsilon_ = type_convert<AccDataType>(epsilon);
haveSavedMeanInvVar_ = (p_savedMean != nullptr && p_savedInvVar != nullptr);
}
std::array<int, NumBatchNormReduceDim> reduceDims_;
std::array<int, NumInvariantDim> invariantDims_;
std::array<index_t, NumInvariantDim> invariant_lengths_;
std::array<index_t, NumBatchNormReduceDim> reduce_lengths_;
const std::array<index_t, NumInvariantDim> bnScaleBiasMeanVarLengths_;
const std::array<index_t, NumInvariantDim> bnScaleStrides_;
const std::array<index_t, NumInvariantDim> bnDscaleDbiasStrides_;
const std::array<index_t, NumInvariantDim> bnMeanVarStrides_;
std::array<index_t, NumInvariantDim> x_invariant_strides_;
std::array<index_t, NumInvariantDim> dy_invariant_strides_;
std::array<index_t, NumInvariantDim> dx_invariant_strides_;
std::array<index_t, NumBatchNormReduceDim> x_reduce_strides_;
std::array<index_t, NumBatchNormReduceDim> dy_reduce_strides_;
std::array<index_t, NumBatchNormReduceDim> dx_reduce_strides_;
const XDataType* p_x_;
const DyDataType* p_dy_;
const ScaleDataType* p_scale_;
const MeanVarDataType* p_savedMean_;
const MeanVarDataType* p_savedInvVar_;
const DyElementwiseOp dy_elementwise_op_;
DxDataType* p_dx_;
DscaleDbiasDataType* p_dscale_;
DscaleDbiasDataType* p_dbias_;
bool haveSavedMeanInvVar_;
std::vector<std::array<index_t, NumInvariantDim>> invariant_index_set_;
std::vector<std::array<index_t, NumBatchNormReduceDim>> reduce_index_set_;
AccDataType epsilon_;
size_t reduceSize_;
};
struct Invoker : public device::BaseInvoker
{
float Run(const Argument& arg)
{
using ck::host_common::get_offset_from_index;
auto thread_reduce_func = [&](auto invariant_index) {
size_t x_invariant_offset = get_offset_from_index<NumInvariantDim>(
arg.x_invariant_strides_, invariant_index);
size_t dy_invariant_offset = get_offset_from_index<NumInvariantDim>(
arg.dy_invariant_strides_, invariant_index);
size_t dx_invariant_offset = get_offset_from_index<NumInvariantDim>(
arg.dx_invariant_strides_, invariant_index);
AccDataType mean = type_convert<AccDataType>(0.0f);
AccDataType variance = type_convert<AccDataType>(0.0f);
AccDataType invVar;
int32_t curr_count = 0;
if(arg.haveSavedMeanInvVar_)
{
size_t mean_invVar_invariant_offset = get_offset_from_index<NumInvariantDim>(
arg.bnMeanVarStrides_, invariant_index);
mean =
type_convert<AccDataType>(arg.p_savedMean_[mean_invVar_invariant_offset]);
invVar =
type_convert<AccDataType>(arg.p_savedInvVar_[mean_invVar_invariant_offset]);
}
else
{
// compute mean, variance using welford method
for(const auto& reduce_index : arg.reduce_index_set_)
{
size_t x_reduce_offset = get_offset_from_index<NumBatchNormReduceDim>(
arg.x_reduce_strides_, reduce_index);
auto x_offset = x_invariant_offset + x_reduce_offset;
curr_count++;
AccDataType x = type_convert<AccDataType>(arg.p_x_[x_offset]);
AccDataType delta = x - mean;
mean += delta / curr_count;
AccDataType delta2 = x - mean;
variance += delta * delta2;
};
// actual variance
variance = variance / curr_count;
// inv-variance defined as 1/sqrt(epsilon+variance)
invVar =
type_convert<AccDataType>(1.0f) / ck::math::sqrt(arg.epsilon_ + variance);
};
AccDataType dbias =
type_convert<AccDataType>(0.0f); // Sum on reduced dimensions of dy
AccDataType dscale =
type_convert<AccDataType>(0.0f); // Sum on reduced dimensions of dy * norm_x
// 1) calculate dy * (x - mean) * inv-variance
// 2) calculate sum(dy) on reduced dimensions
// 3) calculate sum(dy * norm_x) on reduced dimensions
for(const auto& reduce_index : arg.reduce_index_set_)
{
size_t x_reduce_offset = get_offset_from_index<NumBatchNormReduceDim>(
arg.x_reduce_strides_, reduce_index);
size_t dy_reduce_offset = get_offset_from_index<NumBatchNormReduceDim>(
arg.dy_reduce_strides_, reduce_index);
auto x_offset = x_invariant_offset + x_reduce_offset;
auto dy_offset = dy_invariant_offset + dy_reduce_offset;
AccDataType x = type_convert<AccDataType>(arg.p_x_[x_offset]);
AccDataType norm_x = (x - mean) * invVar;
AccDataType dy = type_convert<AccDataType>(arg.p_dy_[dy_offset]);
arg.dy_elementwise_op_(dy, dy);
dbias += dy;
dscale += norm_x * dy;
};
size_t dscale_offset = get_offset_from_index<NumInvariantDim>(
arg.bnDscaleDbiasStrides_, invariant_index);
size_t dbias_offset = get_offset_from_index<NumInvariantDim>(
arg.bnDscaleDbiasStrides_, invariant_index);
arg.p_dscale_[dscale_offset] = type_convert<DscaleDbiasDataType>(dscale);
arg.p_dbias_[dbias_offset] = type_convert<DscaleDbiasDataType>(dbias);
size_t scale_offset =
get_offset_from_index<NumInvariantDim>(arg.bnScaleStrides_, invariant_index);
AccDataType scale = type_convert<AccDataType>(arg.p_scale_[scale_offset]);
AccDataType multiplier = type_convert<AccDataType>(1.0f) /
type_convert<AccDataType>(arg.reduceSize_) * invVar *
scale;
// 1) calculate tmp = dscale * (x - mean) * inv-variance
// 2) calculate dx = 1/reduceSize * inv-variance * scale * (reduceSize * dy - dbias
// - tmp)
for(const auto& reduce_index : arg.reduce_index_set_)
{
size_t x_reduce_offset = get_offset_from_index<NumBatchNormReduceDim>(
arg.x_reduce_strides_, reduce_index);
size_t dy_reduce_offset = get_offset_from_index<NumBatchNormReduceDim>(
arg.dy_reduce_strides_, reduce_index);
size_t dx_reduce_offset = get_offset_from_index<NumBatchNormReduceDim>(
arg.dx_reduce_strides_, reduce_index);
auto x_offset = x_invariant_offset + x_reduce_offset;
auto dy_offset = dy_invariant_offset + dy_reduce_offset;
auto dx_offset = dx_invariant_offset + dx_reduce_offset;
AccDataType x = type_convert<AccDataType>(arg.p_x_[x_offset]);
AccDataType norm_x = (x - mean) * invVar;
AccDataType dy = type_convert<AccDataType>(arg.p_dy_[dy_offset]);
arg.dy_elementwise_op_(dy, dy);
AccDataType tmpVal = norm_x * dscale;
AccDataType dx = multiplier * (type_convert<AccDataType>(arg.reduceSize_) * dy -
dbias - tmpVal);
arg.p_dx_[dx_offset] = type_convert<DxDataType>(dx);
};
};
std::size_t num_thread = std::thread::hardware_concurrency();
std::size_t work_per_thread =
(arg.invariant_index_set_.size() + num_thread - 1) / num_thread;
std::vector<joinable_thread> threads(num_thread);
for(std::size_t it = 0; it < num_thread; ++it)
{
std::size_t i_begin = it * work_per_thread;
std::size_t i_end = std::min(static_cast<size_t>((it + 1) * work_per_thread),
arg.invariant_index_set_.size());
auto f = [=] {
for(std::size_t i = i_begin; i < i_end; ++i)
{
thread_reduce_func(arg.invariant_index_set_[i]);
}
};
threads[it] = joinable_thread(f);
}
return (0.0f);
};
float Run(const device::BaseArgument* p_arg,
const StreamConfig& /*stream_config*/ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
};
};
bool IsSupportedArgument(const device::BaseArgument* p_arg) override
{
(void)p_arg;
return (true);
};
std::unique_ptr<device::BaseArgument>
MakeArgumentPointer(const std::array<index_t, Rank> xyLengths,
const std::array<index_t, Rank> xStrides,
const std::array<index_t, Rank> dxStrides,
const std::array<index_t, Rank> dyStrides,
const std::array<int, NumBatchNormReduceDim> reduceDims,
const std::array<index_t, NumInvariantDim> bnScaleBiasMeanVarLengths,
const std::array<index_t, NumInvariantDim> bnScaleStrides,
const std::array<index_t, NumInvariantDim> bnDscaleDbiasStrides,
const std::array<index_t, NumInvariantDim> bnMeanVarStrides,
const void* p_x,
const void* p_dy,
const void* p_scale,
const void* p_savedMean,
const void* p_savedInvVar,
double epsilon,
const DyElementwiseOp dy_elementwise_op,
void* p_dx,
void* p_dscale,
void* p_dbias) override
{
return std::make_unique<Argument>(xyLengths,
xStrides,
dxStrides,
dyStrides,
reduceDims,
bnScaleBiasMeanVarLengths,
bnScaleStrides,
bnDscaleDbiasStrides,
bnMeanVarStrides,
static_cast<const XDataType*>(p_x),
static_cast<const DyDataType*>(p_dy),
static_cast<const ScaleDataType*>(p_scale),
static_cast<const MeanVarDataType*>(p_savedMean),
static_cast<const MeanVarDataType*>(p_savedInvVar),
epsilon,
dy_elementwise_op,
static_cast<DxDataType*>(p_dx),
static_cast<DscaleDbiasDataType*>(p_dscale),
static_cast<DscaleDbiasDataType*>(p_dbias));
};
std::unique_ptr<device::BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
};
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "Reference_BatchNorm_Backward" << std::endl;
// clang-format on
return str.str();
}
};
} // namespace host
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include <algorithm>
#include "ck/tensor_operation/gpu/device/device_batchnorm_backward.hpp"
namespace ck {
namespace tensor_operation {
namespace host {
template <typename XDataType,
typename DyDataType,
typename DxDataType,
typename AccDataType,
typename ScaleDataType,
typename BiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp>
struct ReferenceBatchNormBwd_Input_N_H_W_C_Output_C
: public device::DeviceBatchNormBwd<4, 3, DyElementwiseOp>
{
struct Argument : public device::BaseArgument
{
Argument(const std::array<index_t, 4> xyLengths,
const std::array<index_t, 4> xStrides,
const std::array<index_t, 4> dyStrides,
const std::array<index_t, 4> dxStrides,
const std::array<int, 3> reduceDims,
const std::array<ck::index_t, 1> bnScaleBiasMeanVarLengths,
const std::array<ck::index_t, 1> bnScaleStrides,
const std::array<ck::index_t, 1> bnBiasStrides,
const std::array<ck::index_t, 1> bnMeanVarStrides,
const XDataType* p_x,
const DyDataType* p_dy,
const ScaleDataType* p_scale,
const MeanVarDataType* p_savedMean,
const MeanVarDataType* p_savedInvVar,
double epsilon,
const DyElementwiseOp dy_elementwise_op,
DxDataType* p_dx,
ScaleDataType* p_dscale,
BiasDataType* p_dbias)
: p_x_(p_x),
p_dy_(p_dy),
p_scale_(p_scale),
p_savedMean_(p_savedMean),
p_savedInvVar_(p_savedInvVar),
epsilon_(epsilon),
dy_elementwise_op_(dy_elementwise_op),
p_dx_(p_dx),
p_dscale_(p_dscale),
p_dbias_(p_dbias)
{
ignore = xStrides;
ignore = dyStrides;
ignore = dxStrides;
ignore = bnScaleStrides;
ignore = bnBiasStrides;
ignore = bnMeanVarStrides;
if(xyLengths.size() != 4 || bnScaleBiasMeanVarLengths.size() != 1 ||
bnScaleBiasMeanVarLengths[0] != xyLengths[3])
throw std::runtime_error("Invalid tensor dimensions!");
if(reduceDims[0] != 0 || reduceDims[1] != 1 || reduceDims[2] != 2)
throw std::runtime_error("Invalid reduce dimensions!");
n_ = xyLengths[0];
h_ = xyLengths[1];
w_ = xyLengths[2];
c_ = xyLengths[3];
haveSavedMeanInvVar_ = (p_savedMean != nullptr && p_savedInvVar != nullptr);
}
const XDataType* p_x_;
const DyDataType* p_dy_;
const ScaleDataType* p_scale_;
const MeanVarDataType* p_savedMean_;
const MeanVarDataType* p_savedInvVar_;
double epsilon_;
const DyElementwiseOp dy_elementwise_op_;
DxDataType* p_dx_;
ScaleDataType* p_dscale_;
BiasDataType* p_dbias_;
bool haveSavedMeanInvVar_;
index_t n_, h_, w_, c_;
};
struct Invoker : public device::BaseInvoker
{
float Run(const Argument& arg)
{
auto thread_reduce_func = [&](auto iC) {
AccDataType reduceSize = type_convert<AccDataType>(arg.n_) *
type_convert<AccDataType>(arg.h_) *
type_convert<AccDataType>(arg.w_);
index_t offset_C = iC;
AccDataType mean;
AccDataType invVar;
if(arg.haveSavedMeanInvVar_)
{
mean = arg.p_savedMean_[offset_C];
invVar = arg.p_savedInvVar_[offset_C];
}
else
{
AccDataType meansquare;
meansquare = type_convert<AccDataType>(0.0f);
mean = type_convert<AccDataType>(0.0f);
// compute mean, meanquare, variance, inv-variance
for(index_t iN = 0; iN < arg.n_; iN++)
{
index_t offset_N = iN * arg.h_ * arg.w_ * arg.c_;
for(index_t iH = 0; iH < arg.h_; iH++)
{
index_t offset_H = iH * arg.w_ * arg.c_;
for(index_t iW = 0; iW < arg.w_; iW++)
{
index_t offset_W = iW * arg.c_;
auto offset = offset_N + offset_H + offset_W + offset_C;
AccDataType x = type_convert<AccDataType>(arg.p_x_[offset]);
mean += x;
meansquare += x * x;
};
}
};
mean = mean / reduceSize;
meansquare = meansquare / reduceSize;
AccDataType variance = meansquare - mean * mean;
invVar = type_convert<AccDataType>(1.0f) /
std::sqrt(type_convert<AccDataType>(arg.epsilon_) + variance);
};
AccDataType dbias = type_convert<AccDataType>(0.0f); // Sum on NHW of dy
AccDataType dscale = type_convert<AccDataType>(0.0f); // Sum on NHW of dy * norm_x
// 1) calculate dy * (x - mean) * inv-variance
// 2) calculate sum(dy) on NHW dimensions
// 3) calculate sum(dy * norm_x) on NHW dimensions
for(index_t iN = 0; iN < arg.n_; iN++)
{
index_t offset_N = iN * arg.h_ * arg.w_ * arg.c_;
for(index_t iH = 0; iH < arg.h_; iH++)
{
index_t offset_H = iH * arg.w_ * arg.c_;
for(index_t iW = 0; iW < arg.w_; iW++)
{
index_t offset_W = iW * arg.c_;
auto offset = offset_N + offset_H + offset_W + offset_C;
AccDataType x = type_convert<AccDataType>(arg.p_x_[offset]);
AccDataType norm_x = (x - mean) * invVar;
AccDataType dy = type_convert<AccDataType>(arg.p_dy_[offset]);
arg.dy_elementwise_op_(dy, dy);
dbias += dy;
dscale += norm_x * dy;
};
}
};
arg.p_dscale_[offset_C] = type_convert<ScaleDataType>(dscale);
arg.p_dbias_[offset_C] = type_convert<BiasDataType>(dbias);
AccDataType scale = type_convert<AccDataType>(arg.p_scale_[offset_C]);
AccDataType multiplier =
type_convert<AccDataType>(1.0f) / reduceSize * invVar * scale;
// 1) calculate tmp = dscale * (x - mean) * inv-variance
// 2) calculate dx = 1/nhw * inv-variance * scale * (nhw * dy - dbias - tmp)
for(index_t iN = 0; iN < arg.n_; iN++)
{
index_t offset_N = iN * arg.h_ * arg.w_ * arg.c_;
for(index_t iH = 0; iH < arg.h_; iH++)
{
index_t offset_H = iH * arg.w_ * arg.c_;
for(index_t iW = 0; iW < arg.w_; iW++)
{
index_t offset_W = iW * arg.c_;
auto offset = offset_N + offset_H + offset_W + offset_C;
AccDataType x = type_convert<AccDataType>(arg.p_x_[offset]);
AccDataType norm_x = (x - mean) * invVar;
AccDataType dy = type_convert<AccDataType>(arg.p_dy_[offset]);
arg.dy_elementwise_op_(dy, dy);
AccDataType tmpVal = norm_x * dscale;
AccDataType dx = multiplier * (reduceSize * dy - dbias - tmpVal);
arg.p_dx_[offset] = type_convert<XDataType>(dx);
};
}
};
};
std::size_t num_thread = std::thread::hardware_concurrency();
std::size_t work_per_thread = (arg.c_ + num_thread - 1) / num_thread;
std::vector<joinable_thread> threads(num_thread);
for(std::size_t it = 0; it < num_thread; ++it)
{
std::size_t ic_begin = it * work_per_thread;
std::size_t ic_end = std::min(static_cast<int>((it + 1) * work_per_thread), arg.c_);
auto f = [=] {
for(std::size_t ic = ic_begin; ic < ic_end; ++ic)
{
thread_reduce_func(ic);
}
};
threads[it] = joinable_thread(f);
}
return (0.0f);
};
float Run(const device::BaseArgument* p_arg,
const StreamConfig& /*stream_config*/ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
};
};
bool IsSupportedArgument(const device::BaseArgument* p_arg) override
{
(void)p_arg;
return (true);
};
std::unique_ptr<device::BaseArgument>
MakeArgumentPointer(const std::array<index_t, 4> xyLengths,
const std::array<index_t, 4> xStrides,
const std::array<index_t, 4> dyStrides,
const std::array<index_t, 4> dxStrides,
const std::array<int, 3> reduceDims,
const std::array<ck::index_t, 1> bnScaleBiasMeanVarLengths,
const std::array<ck::index_t, 1> bnScaleStrides,
const std::array<ck::index_t, 1> bnBiasStrides,
const std::array<ck::index_t, 1> bnMeanVarStrides,
const void* p_x,
const void* p_dy,
const void* p_scale,
const void* p_savedMean,
const void* p_savedInvVar,
double epsilon,
const DyElementwiseOp dy_elementwise_op,
void* p_dx,
void* p_dscale,
void* p_dbias) override
{
return std::make_unique<Argument>(xyLengths,
xStrides,
dyStrides,
dxStrides,
reduceDims,
bnScaleBiasMeanVarLengths,
bnScaleStrides,
bnBiasStrides,
bnMeanVarStrides,
static_cast<const XDataType*>(p_x),
static_cast<const DyDataType*>(p_dy),
static_cast<const ScaleDataType*>(p_scale),
static_cast<const MeanVarDataType*>(p_savedMean),
static_cast<const MeanVarDataType*>(p_savedInvVar),
epsilon,
dy_elementwise_op,
static_cast<DxDataType*>(p_dx),
static_cast<ScaleDataType*>(p_dscale),
static_cast<BiasDataType*>(p_dbias));
};
std::unique_ptr<device::BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
};
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "Reference_BatchNorm_Backward_NHWC_C<" << std::endl;
// clang-format on
return str.str();
}
};
} // namespace host
} // namespace tensor_operation
} // namespace ck
......@@ -26,9 +26,9 @@ using Empty_Tuple = ck::Tuple<>;
using F16_Tuple = ck::Tuple<F16>;
using F16_F16_Tuple = ck::Tuple<F16, F16>;
using F32_Tuple = ck::Tuple<F32>;
using I32_Tuple = ck::Tuple<I32>;
using F32_Tuple = ck::Tuple<F32>;
using I32_Tuple = ck::Tuple<I32>;
using I32_F32_Tuple = ck::Tuple<I32, F32>;
// GEMM layout
using Row = ck::tensor_layout::gemm::RowMajor;
......@@ -78,8 +78,9 @@ using NHWGK = ck::tensor_layout::convolution::NHWGK;
using NDHWGK = ck::tensor_layout::convolution::NDHWGK;
//
using GK = ck::tensor_layout::convolution::G_K;
using GK_TUPLE = ck::Tuple<GK>;
using GK = ck::tensor_layout::convolution::G_K;
using GK_Tuple = ck::Tuple<GK>;
using GK_GK_Tuple = ck::Tuple<GK, GK>;
// pointwise functor
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
......@@ -97,6 +98,13 @@ template <typename Activation>
using Add_Activation_Mul_Clamp =
ck::tensor_operation::element_wise::Add_Activation_Mul_Clamp<Activation>;
template <typename Activation>
using Activation_Mul2_Clamp = ck::tensor_operation::element_wise::Activation_Mul2_Clamp<Activation>;
template <typename Activation>
using Add_Activation_Mul2_Clamp =
ck::tensor_operation::element_wise::Add_Activation_Mul2_Clamp<Activation>;
template <typename DeviceOp, typename Tag = void>
struct DeviceOperationInstanceFactory;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_batchnorm_backward.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// FP16
void add_device_batchnorm_backward_rank_4_3_f16_instances(
std::vector<std::unique_ptr<
DeviceBatchNormBwd<F16, F32, F32, F32, F16, F32, F32, PassThrough, 4, 3>>>&);
// FP32
void add_device_batchnorm_backward_rank_4_3_f32_instances(
std::vector<std::unique_ptr<
DeviceBatchNormBwd<F32, F32, F32, F32, F32, F32, F32, PassThrough, 4, 3>>>&);
// BF16
void add_device_batchnorm_backward_rank_4_3_bf16_instances(
std::vector<std::unique_ptr<
DeviceBatchNormBwd<BF16, F32, F32, F32, BF16, F32, F32, PassThrough, 4, 3>>>&);
// FP64
void add_device_batchnorm_backward_rank_4_3_f64_instances(
std::vector<std::unique_ptr<
DeviceBatchNormBwd<F64, F64, F64, F64, F64, F64, F64, PassThrough, 4, 3>>>&);
template <typename XDataType,
typename DxDataType,
typename DyDataType,
typename AccDataType,
typename ScaleDataType,
typename DscaleDbiasDataType,
typename MeanVarDataType,
typename DyElementwiseOp,
index_t Rank,
index_t NumReduceDim>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceBatchNormBwd<XDataType,
DxDataType,
DyDataType,
AccDataType,
ScaleDataType,
DscaleDbiasDataType,
MeanVarDataType,
DyElementwiseOp,
Rank,
NumReduceDim>>
{
using DeviceOp = DeviceBatchNormBwd<XDataType,
DxDataType,
DyDataType,
AccDataType,
ScaleDataType,
DscaleDbiasDataType,
MeanVarDataType,
DyElementwiseOp,
Rank,
NumReduceDim>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<XDataType, F16> && is_same_v<DxDataType, F32> &&
is_same_v<DyDataType, F32> && is_same_v<AccDataType, F32> &&
is_same_v<ScaleDataType, F16> && is_same_v<DscaleDbiasDataType, F32> &&
is_same_v<MeanVarDataType, F32>)
{
if constexpr(Rank == 4 && NumReduceDim == 3 && is_same_v<DyElementwiseOp, PassThrough>)
{
add_device_batchnorm_backward_rank_4_3_f16_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, F32> && is_same_v<DxDataType, F32> &&
is_same_v<DyDataType, F32> && is_same_v<AccDataType, F32> &&
is_same_v<ScaleDataType, F32> && is_same_v<DscaleDbiasDataType, F32> &&
is_same_v<MeanVarDataType, F32>)
{
if constexpr(Rank == 4 && NumReduceDim == 3 && is_same_v<DyElementwiseOp, PassThrough>)
{
add_device_batchnorm_backward_rank_4_3_f32_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, BF16> && is_same_v<DxDataType, F32> &&
is_same_v<DyDataType, F32> && is_same_v<AccDataType, F32> &&
is_same_v<ScaleDataType, BF16> && is_same_v<DscaleDbiasDataType, F32> &&
is_same_v<MeanVarDataType, F32>)
{
if constexpr(Rank == 4 && NumReduceDim == 3 && is_same_v<DyElementwiseOp, PassThrough>)
{
add_device_batchnorm_backward_rank_4_3_bf16_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, F64> && is_same_v<DxDataType, F64> &&
is_same_v<DyDataType, F64> && is_same_v<AccDataType, F64> &&
is_same_v<ScaleDataType, F64> && is_same_v<DscaleDbiasDataType, F64> &&
is_same_v<MeanVarDataType, F64>)
{
if constexpr(Rank == 4 && NumReduceDim == 3 && is_same_v<DyElementwiseOp, PassThrough>)
{
add_device_batchnorm_backward_rank_4_3_f64_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -131,6 +131,47 @@ void add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_int8_instances(
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
......@@ -273,11 +314,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<OutDataType, float>)
{
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f32_instances(op_ptrs);
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs);
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> &&
......@@ -289,6 +332,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<OutDataType, int8_t>)
{
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_int8_instances(op_ptrs);
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment