Commit 11279540 authored by Astha Rai's avatar Astha Rai
Browse files

Merge branch 'transpose_5d' of github.com:ROCmSoftwarePlatform/composable_kernel into transpose_5d

parents 14daa201 33e78b9a
......@@ -240,11 +240,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBw
if constexpr(NumDimSpatial == 1 && is_same_v<InLayout, NWC> && is_same_v<WeiLayout, KXC> &&
is_same_v<OutLayout, NWK>)
{
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
......@@ -267,17 +269,23 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBw
}
#endif
}
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWC> &&
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWC> &&
is_same_v<WeiLayout, KYXC> && is_same_v<OutLayout, NHWK>)
{
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
#ifdef DL_KERNELS
add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
}
#endif
#if defined(DL_KERNELS) && defined(CK_ENABLE_FP32)
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv2d_bwd_data_dl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
......@@ -306,14 +314,16 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBw
}
#endif
}
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWC> &&
if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWC> &&
is_same_v<WeiLayout, KZYXC> && is_same_v<OutLayout, NDHWK>)
{
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
......
......@@ -98,13 +98,15 @@ struct DeviceOperationInstanceFactory<
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWC> &&
is_same_v<WeiLayout, KYXC> && is_same_v<OutLayout, NHWK>)
{
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_FP16
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
......@@ -112,15 +114,14 @@ struct DeviceOperationInstanceFactory<
}
#endif
#ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> && is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_INT8
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(op_ptrs);
......
......@@ -328,7 +328,18 @@ void add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_instances(
void add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_nk_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Col, Row, F8, F8, F8, PassThrough, PassThrough, PassThrough>>>& instances);
void add_device_gemm_xdl_c_shuffle_f16_f8_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Row, Row, F16, F8, F16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_xdl_c_shuffle_f16_f8_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Col, Row, F16, F8, F16, PassThrough, PassThrough, PassThrough>>>&
instances);
#endif
template <typename ALayout,
typename BLayout,
typename CLayout,
......@@ -548,6 +559,20 @@ struct DeviceOperationInstanceFactory<
add_device_gemm_xdl_c_shuffle_f8_f8_f8_km_nk_mn_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ADataType, ck::half_t> && is_same_v<BDataType, ck::f8_t> &&
is_same_v<CDataType, ck::half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_c_shuffle_f16_f8_f16_mk_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_c_shuffle_f16_f8_f16_mk_nk_mn_instances(op_ptrs);
}
}
#endif
return op_ptrs;
}
......
......@@ -155,7 +155,7 @@ struct DeviceOperationInstanceFactory<
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<ADataType, float> && is_same_v<BDataType, float> &&
is_same_v<CDataType, float>)
is_same_v<CDataType, float> && is_same_v<ComputeType, float>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
......@@ -180,7 +180,7 @@ struct DeviceOperationInstanceFactory<
}
#endif
#ifdef CK_ENABLE_FP16
else if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<CDataType, half_t> && is_same_v<ComputeType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
......@@ -206,8 +206,8 @@ struct DeviceOperationInstanceFactory<
}
#endif
#if(defined(CK_ENABLE_FP16) || defined(CK_ENABLE_FP8))
else if constexpr(is_same_v<ADataType, f8_t> && is_same_v<BDataType, half_t> &&
is_same_v<CDataType, half_t>)
if constexpr(is_same_v<ADataType, f8_t> && is_same_v<BDataType, half_t> &&
is_same_v<CDataType, half_t> && is_same_v<ComputeType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
......@@ -230,8 +230,8 @@ struct DeviceOperationInstanceFactory<
add_device_gemm_xdl_splitk_f8_f16_f16_km_nk_mn_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, f8_t> &&
is_same_v<CDataType, half_t>)
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, f8_t> &&
is_same_v<CDataType, half_t> && is_same_v<ComputeType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
......
......@@ -6,8 +6,6 @@
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_dl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_wmma_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using I8 = int8_t;
using I32 = int32_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using namespace ck::tensor_layout::convolution;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvBwdWeightDefault =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Default;
static constexpr auto ConvBwdWeightFilter1x1Stride1Pad0 =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0;
template <index_t NDSpatial,
typename ALayout,
typename BLayout,
typename CLayout,
ConvolutionBackwardWeightSpecialization ConvSpec>
using device_grouped_conv_bwd_weight_wmma_f16_instances =
std::tuple<
// clang-format off
//#####################################| NumDim| A| B| C| AData| BData| CData| AccData| A| B| C| ConvForward| Block| MPer| NPer| KPer| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| Spatial| Layout| Layout| Layout| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MRepeatPerWave| NRepeatPerWave| _MBlock_MPerBlock| ScalarPerVector|
//#####################################| | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 64, 64, 4, 8, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 1>,
// blocksize=256
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 128, 256, 8, 8, 16, 16, 2, 8, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 256, 128, 8, 8, 16, 16, 8, 2, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 2>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 256, 64, 8, 8, 16, 16, 4, 2, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 64, 256, 8, 8, 16, 16, 2, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 16>, 4>,
// blocksize=128
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 64, 128, 8, 8, 16, 16, 2, 4, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 64, 8, 8, 16, 16, 4, 2, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 128, 8, 8, 16, 16, 4, 4, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 32, 256, 8, 8, 16, 16, 1, 8, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 256, 32, 8, 8, 16, 16, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
// blocksize=64
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 32, 8, 8, 16, 16, 4, 1, S<8, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, S<8, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 64, 8, 8, 16, 16, 1, 4, S<8, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<8, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 2>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 64, 8, 8, 16, 16, 2, 4, S<8, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, S<8, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 2>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 128, 32, 8, 8, 16, 16, 8, 1, S<8, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, S<8, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 128, 8, 8, 16, 16, 1, 8, S<8, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<8, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 2>, 8>,
// blocksize=32
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 32, 16, 32, 8, 8, 16, 16, 1, 2, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 32, 16, 64, 8, 8, 16, 16, 1, 4, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 32, 32, 64, 8, 8, 16, 16, 2, 4, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 32, 32, 32, 8, 8, 16, 16, 2, 2, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 32, 64, 32, 8, 8, 16, 16, 4, 2, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 32, 64, 16, 8, 8, 16, 16, 4, 1, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 32, 32, 16, 8, 8, 16, 16, 2, 1, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>
// clang-format on
>;
template <index_t NDSpatial,
typename ALayout,
typename BLayout,
typename CLayout,
ConvolutionBackwardWeightSpecialization ConvSpec>
using device_grouped_conv_bwd_weight_wmma_i8_instances =
std::tuple<
// clang-format off
//#####################################| NumDim| A| B| C| AData| BData| CData| AccData| A| B| C| ConvForward| Block| MPer| NPer| KPer| K1| MPer| NPer| MRepeat| NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| Spatial| Layout| Layout| Layout| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MRepeatPerWave| NRepeatPerWave| _MBlock_MPerBlock| ScalarPerVector|
//#####################################| | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, I8, I8, I8, I32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 64, 64, 4, 8, 16, 16, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 1>,
// blocksize=256
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, I8, I8, I8, I32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 64, 256, 8, 8, 16, 16, 2, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, I8, I8, I8, I32, PassThrough, PassThrough, PassThrough, ConvSpec, 256, 256, 64, 8, 8, 16, 16, 4, 2, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 64, 1, 4>, 8>,
// blocksize=128
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, I8, I8, I8, I32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 256, 8, 8, 16, 16, 4, 8, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, I8, I8, I8, I32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 64, 256, 8, 8, 16, 16, 2, 8, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, I8, I8, I8, I32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 32, 256, 8, 8, 16, 16, 1, 8, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, I8, I8, I8, I32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 64, 128, 8, 8, 16, 16, 2, 4, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, I8, I8, I8, I32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 128, 64, 8, 8, 16, 16, 4, 2, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, I8, I8, I8, I32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 256, 32, 8, 8, 16, 16, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, I8, I8, I8, I32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 256, 64, 8, 8, 16, 16, 8, 2, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 2>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, I8, I8, I8, I32, PassThrough, PassThrough, PassThrough, ConvSpec, 128, 256, 128, 8, 8, 16, 16, 8, 4, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
// blocksize=64
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, I8, I8, I8, I32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 32, 128, 8, 8, 16, 16, 1, 8, S<8, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<8, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 8, 1, 1, 1, S<1, 32, 1, 2>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, I8, I8, I8, I32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 64, 128, 8, 8, 16, 16, 2, 8, S<8, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, S<8, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 8, 1, 1, 1, S<1, 32, 1, 2>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, I8, I8, I8, I32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 128, 64, 8, 8, 16, 16, 8, 2, S<8, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 8, 1, S<8, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, I8, I8, I8, I32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 128, 32, 8, 8, 16, 16, 8, 1, S<8, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 8, 1, S<8, 8, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
// blocksize=32
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, I8, I8, I8, I32, PassThrough, PassThrough, PassThrough, ConvSpec, 32, 16, 64, 8, 8, 16, 16, 1, 4, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, I8, I8, I8, I32, PassThrough, PassThrough, PassThrough, ConvSpec, 32, 64, 64, 8, 8, 16, 16, 4, 4, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 8, 1, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, I8, I8, I8, I32, PassThrough, PassThrough, PassThrough, ConvSpec, 32, 32, 32, 8, 8, 16, 16, 2, 2, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGroupedConvBwdWeight_Wmma_CShuffle<NDSpatial, ALayout, BLayout, CLayout, I8, I8, I8, I32, PassThrough, PassThrough, PassThrough, ConvSpec, 32, 64, 16, 8, 8, 16, 16, 4, 1, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 16, 8, 1, S<8, 4, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 2>, 8>
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using BF16 = ck::bhalf_t;
using F16 = ck::half_t;
using F32 = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using namespace ck::tensor_layout::convolution;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ScaleAddScaleAddRelu = ck::tensor_operation::element_wise::ScaleAddScaleAddRelu;
static constexpr auto ConvFwdDefault =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto ConvFwd1x1P0 = ConvolutionForwardSpecialization::Filter1x1Pad0;
static constexpr auto ConvFwd1x1S1P0 = ConvolutionForwardSpecialization::Filter1x1Stride1Pad0;
static constexpr auto ConvFwdOddC =
ck::tensor_operation::device::ConvolutionForwardSpecialization::OddC;
static constexpr auto GemmMNKPadding = GemmSpecialization::MNKPadding;
template <index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
ConvolutionForwardSpecialization ConvSpec>
using device_grouped_conv_fwd_xdl_scaleadd_scaleadd_relu_bf16_instances = std::tuple<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, BF16, BF16, F32, BF16, ck::Tuple<BF16, BF16>, BF16, PassThrough, PassThrough, ScaleAddScaleAddRelu, ConvSpec, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1>,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, BF16, BF16, F32, BF16, ck::Tuple<BF16, BF16>, BF16, PassThrough, PassThrough, ScaleAddScaleAddRelu, ConvSpec, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 1>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, BF16, BF16, F32, BF16, ck::Tuple<BF16, BF16>, BF16, PassThrough, PassThrough, ScaleAddScaleAddRelu, ConvSpec, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, BF16, BF16, F32, BF16, ck::Tuple<BF16, BF16>, BF16, PassThrough, PassThrough, ScaleAddScaleAddRelu, ConvSpec, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>
// clang-format on
>;
template <index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
ConvolutionForwardSpecialization ConvSpec>
using device_grouped_conv_fwd_xdl_scaleadd_scaleadd_relu_f16_instances = std::tuple<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, ck::Tuple<F16, F16>, F16, PassThrough, PassThrough, ScaleAddScaleAddRelu, ConvSpec, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1>,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, ck::Tuple<F16, F16>, F16, PassThrough, PassThrough, ScaleAddScaleAddRelu, ConvSpec, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 1>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, ck::Tuple<F16, F16>, F16, PassThrough, PassThrough, ScaleAddScaleAddRelu, ConvSpec, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F16, F16, F32, F16, ck::Tuple<F16, F16>, F16, PassThrough, PassThrough, ScaleAddScaleAddRelu, ConvSpec, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>
// clang-format on
>;
template <index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
ConvolutionForwardSpecialization ConvSpec>
using device_grouped_conv_fwd_xdl_scaleadd_scaleadd_relu_f32_instances = std::tuple<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F32, F32, F32, F32, ck::Tuple<F32, F32>, F32, PassThrough, PassThrough, ScaleAddScaleAddRelu, ConvSpec, GemmMNKPadding, 1, 64, 64, 64, 16, 4, 4, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 4, 1, 1, 1, S<1, 8, 1, 8>, 1>,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F32, F32, F32, F32, ck::Tuple<F32, F32>, F32, PassThrough, PassThrough, ScaleAddScaleAddRelu, ConvSpec, GemmMNKPadding, 1, 64, 64, 32, 16, 4, 4, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 8, 1, 8>, 1>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F32, F32, F32, F32, ck::Tuple<F32, F32>, F32, PassThrough, PassThrough, ScaleAddScaleAddRelu, ConvSpec, GemmMNKPadding, 1, 256, 128, 128, 16, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, F32, F32, F32, F32, ck::Tuple<F32, F32>, F32, PassThrough, PassThrough, ScaleAddScaleAddRelu, ConvSpec, GemmMNKPadding, 1, 256, 256, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>
// clang-format on
>;
template <index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
ConvolutionForwardSpecialization ConvSpec>
using device_grouped_conv_fwd_xdl_scaleadd_scaleadd_relu_int8_instances = std::tuple<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, int8_t, int8_t, int32_t, int8_t, ck::Tuple<F32, F32>, int8_t, PassThrough, PassThrough, ScaleAddScaleAddRelu, ConvSpec, GemmMNKPadding, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1>,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, int8_t, int8_t, int32_t, int8_t, ck::Tuple<F32, F32>, int8_t, PassThrough, PassThrough, ScaleAddScaleAddRelu, ConvSpec, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 1>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, int8_t, int8_t, int32_t, int8_t, ck::Tuple<F32, F32>, int8_t, PassThrough, PassThrough, ScaleAddScaleAddRelu, ConvSpec, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<NDimSpatial,ALayout,BLayout, DsLayout,ELayout, int8_t, int8_t, int32_t, int8_t, ck::Tuple<F32, F32>, int8_t, PassThrough, PassThrough, ScaleAddScaleAddRelu, ConvSpec, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -496,7 +496,8 @@ struct DeviceOperationInstanceFactory<
{
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, F16> && is_same_v<WeiDataType, F16> &&
is_same_v<OutDataType, F16>)
is_same_v<OutDataType, F16> && is_same_v<ComputeTypeA, F16> &&
is_same_v<ComputeTypeB, F16>)
{
add_device_grouped_conv2d_bwd_data_xdl_gnhwk_gkyxc_gnhwc_f16_instances(op_ptrs);
add_device_grouped_conv2d_bwd_data_wmma_gnhwk_gkyxc_gnhwc_f16_instances(
......@@ -507,14 +508,16 @@ struct DeviceOperationInstanceFactory<
#endif
#ifdef CK_ENABLE_FP32
else if constexpr(is_same_v<InDataType, F32> && is_same_v<WeiDataType, F32> &&
is_same_v<OutDataType, F32>)
is_same_v<OutDataType, F32> && is_same_v<ComputeTypeA, F32> &&
is_same_v<ComputeTypeB, F32>)
{
add_device_grouped_conv2d_bwd_data_xdl_gnhwk_gkyxc_gnhwc_f32_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, BF16> && is_same_v<WeiDataType, BF16> &&
is_same_v<OutDataType, BF16>)
is_same_v<OutDataType, BF16> && is_same_v<ComputeTypeA, BF16> &&
is_same_v<ComputeTypeB, BF16>)
{
add_device_grouped_conv2d_bwd_data_xdl_gnhwk_gkyxc_gnhwc_bf16_instances(
op_ptrs);
......@@ -522,7 +525,9 @@ struct DeviceOperationInstanceFactory<
#endif
#ifdef CK_ENABLE_INT8
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
is_same_v<OutDataType, int8_t> &&
is_same_v<ComputeTypeA, int8_t> &&
is_same_v<ComputeTypeB, int8_t>)
{
add_device_grouped_conv2d_bwd_data_wmma_gnhwk_gkyxc_gnhwc_i8_instances(op_ptrs);
add_device_grouped_conv2d_bwd_data_wmma_gnhwk_gkyxc_gnhwc_i8_1x1s1p0_instances(
......@@ -535,7 +540,8 @@ struct DeviceOperationInstanceFactory<
{
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, F16> && is_same_v<WeiDataType, F16> &&
is_same_v<OutDataType, F16>)
is_same_v<OutDataType, F16> && is_same_v<ComputeTypeA, F16> &&
is_same_v<ComputeTypeB, F16>)
{
add_device_grouped_conv2d_bwd_data_xdl_nhwgk_gkyxc_nhwgc_f16_instances(op_ptrs);
add_device_grouped_conv2d_bwd_data_wmma_nhwgk_gkyxc_nhwgc_f16_instances(
......@@ -546,14 +552,16 @@ struct DeviceOperationInstanceFactory<
#endif
#ifdef CK_ENABLE_FP32
else if constexpr(is_same_v<InDataType, F32> && is_same_v<WeiDataType, F32> &&
is_same_v<OutDataType, F32>)
is_same_v<OutDataType, F32> && is_same_v<ComputeTypeA, F32> &&
is_same_v<ComputeTypeB, F32>)
{
add_device_grouped_conv2d_bwd_data_xdl_nhwgk_gkyxc_nhwgc_f32_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, BF16> && is_same_v<WeiDataType, BF16> &&
is_same_v<OutDataType, BF16>)
is_same_v<OutDataType, BF16> && is_same_v<ComputeTypeA, BF16> &&
is_same_v<ComputeTypeB, BF16>)
{
add_device_grouped_conv2d_bwd_data_xdl_nhwgk_gkyxc_nhwgc_bf16_instances(
op_ptrs);
......@@ -561,7 +569,9 @@ struct DeviceOperationInstanceFactory<
#endif
#ifdef CK_ENABLE_INT8
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
is_same_v<OutDataType, int8_t> &&
is_same_v<ComputeTypeA, int8_t> &&
is_same_v<ComputeTypeB, int8_t>)
{
add_device_grouped_conv2d_bwd_data_wmma_nhwgk_gkyxc_nhwgc_i8_instances(op_ptrs);
add_device_grouped_conv2d_bwd_data_wmma_nhwgk_gkyxc_nhwgc_i8_1x1s1p0_instances(
......@@ -578,7 +588,8 @@ struct DeviceOperationInstanceFactory<
{
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, F16> && is_same_v<WeiDataType, F16> &&
is_same_v<OutDataType, F16>)
is_same_v<OutDataType, F16> && is_same_v<ComputeTypeA, F16> &&
is_same_v<ComputeTypeB, F16>)
{
add_device_grouped_conv3d_bwd_data_xdl_gndhwk_gkzyxc_gndhwc_f16_instances(
op_ptrs);
......@@ -590,7 +601,8 @@ struct DeviceOperationInstanceFactory<
#endif
#ifdef CK_ENABLE_FP32
else if constexpr(is_same_v<InDataType, F32> && is_same_v<WeiDataType, F32> &&
is_same_v<OutDataType, F32>)
is_same_v<OutDataType, F32> && is_same_v<ComputeTypeA, F32> &&
is_same_v<ComputeTypeB, F32>)
{
add_device_grouped_conv3d_bwd_data_xdl_gndhwk_gkzyxc_gndhwc_f32_instances(
op_ptrs);
......@@ -598,7 +610,8 @@ struct DeviceOperationInstanceFactory<
#endif
#ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, BF16> && is_same_v<WeiDataType, BF16> &&
is_same_v<OutDataType, BF16>)
is_same_v<OutDataType, BF16> && is_same_v<ComputeTypeA, BF16> &&
is_same_v<ComputeTypeB, BF16>)
{
add_device_grouped_conv3d_bwd_data_xdl_gndhwk_gkzyxc_gndhwc_bf16_instances(
op_ptrs);
......@@ -606,7 +619,9 @@ struct DeviceOperationInstanceFactory<
#endif
#ifdef CK_ENABLE_INT8
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
is_same_v<OutDataType, int8_t> &&
is_same_v<ComputeTypeA, int8_t> &&
is_same_v<ComputeTypeB, int8_t>)
{
add_device_grouped_conv3d_bwd_data_wmma_gndhwk_gkzyxc_gndhwc_i8_instances(
op_ptrs);
......@@ -642,7 +657,8 @@ struct DeviceOperationInstanceFactory<
#endif
#ifdef CK_ENABLE_FP32
else if constexpr(is_same_v<InDataType, F32> && is_same_v<WeiDataType, F32> &&
is_same_v<OutDataType, F32>)
is_same_v<OutDataType, F32> && is_same_v<ComputeTypeA, F32> &&
is_same_v<ComputeTypeB, F32>)
{
add_device_grouped_conv3d_bwd_data_xdl_ndhwgk_gkzyxc_ndhwgc_f32_instances(
op_ptrs);
......@@ -650,7 +666,8 @@ struct DeviceOperationInstanceFactory<
#endif
#ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, BF16> && is_same_v<WeiDataType, BF16> &&
is_same_v<OutDataType, BF16>)
is_same_v<OutDataType, BF16> && is_same_v<ComputeTypeA, BF16> &&
is_same_v<ComputeTypeB, BF16>)
{
add_device_grouped_conv3d_bwd_data_xdl_ndhwgk_gkzyxc_ndhwgc_bf16_instances(
op_ptrs);
......@@ -658,7 +675,9 @@ struct DeviceOperationInstanceFactory<
#endif
#ifdef CK_ENABLE_INT8
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
is_same_v<OutDataType, int8_t> &&
is_same_v<ComputeTypeA, int8_t> &&
is_same_v<ComputeTypeB, int8_t>)
{
add_device_grouped_conv3d_bwd_data_wmma_ndhwgk_gkzyxc_ndhwgc_i8_instances(
op_ptrs);
......
......@@ -163,6 +163,30 @@ void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f16_instances
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_wmma_gndhwc_gkzyxc_gndhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GNDHWC,
GKZYXC,
GNDHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_wmma_gndhwc_gkzyxc_gndhwk_f16_1x1s1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GNDHWC,
GKZYXC,
GNDHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP32
void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f32_instances(
......@@ -177,6 +201,31 @@ void add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f32_instances
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_INT8
void add_device_grouped_conv3d_bwd_weight_wmma_gndhwc_gkzyxc_gndhwk_i8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GNDHWC,
GKZYXC,
GNDHWK,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_wmma_gndhwc_gkzyxc_gndhwk_i8_1x1s1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
GNDHWC,
GKZYXC,
GNDHWK,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_BF16
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
......@@ -202,6 +251,30 @@ void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_wmma_ndhwgc_gkzyxc_ndhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_wmma_ndhwgc_gkzyxc_ndhwgk_f16_1x1s1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP32
void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances(
......@@ -231,6 +304,31 @@ void add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_
BF8,
F8>>>& instances);
#endif
#ifdef CK_ENABLE_INT8
void add_device_grouped_conv3d_bwd_weight_wmma_ndhwgc_gkzyxc_ndhwgk_i8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_bwd_weight_wmma_ndhwgc_gkzyxc_ndhwgk_i8_1x1s1p0_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdWeight<3,
NDHWGC,
GKZYXC,
NDHWGK,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef DL_KERNELS
// dl
......@@ -520,7 +618,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
is_same_v<OutDataType, float> && is_same_v<ComputeTypeA, float> &&
is_same_v<ComputeTypeB, float>)
{
#ifdef DL_KERNELS
add_device_grouped_conv1d_bwd_weight_dl_gnwc_gkxc_gnwk_f32_instances(op_ptrs);
......@@ -529,8 +628,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
}
#endif
#ifdef CK_ENABLE_FP16
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> &&
is_same_v<ComputeTypeB, half_t>)
{
#ifdef DL_KERNELS
add_device_grouped_conv1d_bwd_weight_dl_gnwc_gkxc_gnwk_f16_instances(op_ptrs);
......@@ -539,9 +639,10 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
}
#endif
#ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t> &&
is_same_v<ComputeTypeA, ck::bhalf_t> &&
is_same_v<ComputeTypeB, ck::bhalf_t>)
{
#ifdef DL_KERNELS
add_device_grouped_conv1d_bwd_weight_dl_gnwc_gkxc_gnwk_bf16_f32_bf16_instances(
......@@ -552,28 +653,31 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
}
#endif
}
else if constexpr(is_same_v<InLayout, NWGC> && is_same_v<WeiLayout, GKXC> &&
if constexpr(is_same_v<InLayout, NWGC> && is_same_v<WeiLayout, GKXC> &&
is_same_v<OutLayout, NWGK>)
{
#ifdef DL_KERNELS
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
is_same_v<OutDataType, float> && is_same_v<ComputeTypeA, float> &&
is_same_v<ComputeTypeB, float>)
{
add_device_grouped_conv1d_bwd_weight_dl_nwgc_gkxc_nwgk_f32_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_FP16
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> &&
is_same_v<ComputeTypeB, half_t>)
{
add_device_grouped_conv1d_bwd_weight_dl_nwgc_gkxc_nwgk_f16_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t> &&
is_same_v<ComputeTypeA, ck::bhalf_t> &&
is_same_v<ComputeTypeB, ck::bhalf_t>)
{
add_device_grouped_conv1d_bwd_weight_dl_nwgc_gkxc_nwgk_bf16_f32_bf16_instances(
op_ptrs);
......@@ -582,14 +686,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif
}
}
else if constexpr(NumDimSpatial == 2)
if constexpr(NumDimSpatial == 2)
{
if constexpr(is_same_v<InLayout, GNHWC> && is_same_v<WeiLayout, GKYXC> &&
is_same_v<OutLayout, GNHWK>)
{
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
is_same_v<OutDataType, float> && is_same_v<ComputeTypeA, float> &&
is_same_v<ComputeTypeB, float>)
{
#ifdef DL_KERNELS
add_device_grouped_conv2d_bwd_weight_dl_gnhwc_gkyxc_gnhwk_f32_instances(
......@@ -600,8 +705,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
}
#endif
#ifdef CK_ENABLE_FP16
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> &&
is_same_v<ComputeTypeB, half_t>)
{
#ifdef DL_KERNELS
add_device_grouped_conv2d_bwd_weight_dl_gnhwc_gkyxc_gnhwk_f16_instances(
......@@ -612,9 +718,10 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
}
#endif
#ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t> &&
is_same_v<ComputeTypeA, ck::bhalf_t> &&
is_same_v<ComputeTypeB, ck::bhalf_t>)
{
#ifdef DL_KERNELS
add_device_grouped_conv2d_bwd_weight_dl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_instances(
......@@ -625,12 +732,13 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
}
#endif
}
else if constexpr(is_same_v<InLayout, NHWGC> && is_same_v<WeiLayout, GKYXC> &&
if constexpr(is_same_v<InLayout, NHWGC> && is_same_v<WeiLayout, GKYXC> &&
is_same_v<OutLayout, NHWGK>)
{
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
is_same_v<OutDataType, float> && is_same_v<ComputeTypeA, float> &&
is_same_v<ComputeTypeB, float>)
{
#ifdef DL_KERNELS
add_device_grouped_conv2d_bwd_weight_dl_nhwgc_gkyxc_nhwgk_f32_instances(
......@@ -641,8 +749,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
}
#endif
#ifdef CK_ENABLE_FP16
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> &&
is_same_v<ComputeTypeB, half_t>)
{
#ifdef DL_KERNELS
add_device_grouped_conv2d_bwd_weight_dl_nhwgc_gkyxc_nhwgk_f16_instances(
......@@ -653,9 +762,10 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
}
#endif
#ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t> &&
is_same_v<ComputeTypeA, ck::bhalf_t> &&
is_same_v<ComputeTypeB, ck::bhalf_t>)
{
#ifdef DL_KERNELS
add_device_grouped_conv2d_bwd_weight_dl_nhwgc_gkyxc_nhwgk_bf16_f32_bf16_instances(
......@@ -667,14 +777,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif
}
}
else if constexpr(NumDimSpatial == 3)
if constexpr(NumDimSpatial == 3)
{
if constexpr(is_same_v<InLayout, GNDHWC> && is_same_v<WeiLayout, GKZYXC> &&
is_same_v<OutLayout, GNDHWK>)
{
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
is_same_v<OutDataType, float> && is_same_v<ComputeTypeA, float> &&
is_same_v<ComputeTypeB, float>)
{
#ifdef DL_KERNELS
add_device_grouped_conv3d_bwd_weight_dl_gndhwc_gkzyxc_gndhwk_f32_instances(
......@@ -685,8 +796,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
}
#endif
#ifdef CK_ENABLE_FP16
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> &&
is_same_v<ComputeTypeB, half_t>)
{
#ifdef DL_KERNELS
add_device_grouped_conv3d_bwd_weight_dl_gndhwc_gkzyxc_gndhwk_f16_instances(
......@@ -694,12 +806,17 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_f16_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_wmma_gndhwc_gkzyxc_gndhwk_f16_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_wmma_gndhwc_gkzyxc_gndhwk_f16_1x1s1p0_instances(
op_ptrs);
}
#endif
#ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t> &&
is_same_v<ComputeTypeA, ck::bhalf_t> &&
is_same_v<ComputeTypeB, ck::bhalf_t>)
{
#ifdef DL_KERNELS
add_device_grouped_conv3d_bwd_weight_dl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_instances(
......@@ -708,14 +825,27 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
add_device_grouped_conv3d_bwd_weight_xdl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_instances(
op_ptrs);
}
#endif
#ifdef CK_ENABLE_INT8
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t> &&
is_same_v<ComputeTypeA, int8_t> &&
is_same_v<ComputeTypeB, int8_t>)
{
add_device_grouped_conv3d_bwd_weight_wmma_gndhwc_gkzyxc_gndhwk_i8_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_wmma_gndhwc_gkzyxc_gndhwk_i8_1x1s1p0_instances(
op_ptrs);
}
#endif
}
else if constexpr(is_same_v<InLayout, NDHWGC> && is_same_v<WeiLayout, GKZYXC> &&
if constexpr(is_same_v<InLayout, NDHWGC> && is_same_v<WeiLayout, GKZYXC> &&
is_same_v<OutLayout, NDHWGK>)
{
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
is_same_v<OutDataType, float> && is_same_v<ComputeTypeA, float> &&
is_same_v<ComputeTypeB, float>)
{
#ifdef DL_KERNELS
add_device_grouped_conv3d_bwd_weight_dl_ndhwgc_gkzyxc_ndhwgk_f32_instances(
......@@ -726,9 +856,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
}
#endif
#ifdef CK_ENABLE_FP16
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t> &&
is_same_v<ComputeTypeA, half_t> &&
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> &&
is_same_v<ComputeTypeB, half_t>)
{
#ifdef DL_KERNELS
......@@ -737,12 +866,17 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_wmma_ndhwgc_gkzyxc_ndhwgk_f16_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_wmma_ndhwgc_gkzyxc_ndhwgk_f16_1x1s1p0_instances(
op_ptrs);
}
#endif
#ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t> &&
is_same_v<ComputeTypeA, ck::bhalf_t> &&
is_same_v<ComputeTypeB, ck::bhalf_t>)
{
#ifdef DL_KERNELS
add_device_grouped_conv3d_bwd_weight_dl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instances(
......@@ -752,10 +886,22 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
op_ptrs);
}
#endif
#ifdef CK_ENABLE_INT8
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t> &&
is_same_v<ComputeTypeA, int8_t> &&
is_same_v<ComputeTypeB, int8_t>)
{
add_device_grouped_conv3d_bwd_weight_wmma_ndhwgc_gkzyxc_ndhwgk_i8_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_wmma_ndhwgc_gkzyxc_ndhwgk_i8_1x1s1p0_instances(
op_ptrs);
}
#endif
#if defined CK_ENABLE_FP16 && defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t> &&
is_same_v<ComputeTypeA, bf8_t> && is_same_v<ComputeTypeB, f8_t>)
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, bf8_t> &&
is_same_v<ComputeTypeB, f8_t>)
{
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_comp_bf8_f8_instances(
op_ptrs);
......
......@@ -928,28 +928,29 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
is_same_v<OutDataType, float> && is_same_v<ComputeType, float>)
{
add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f32_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
is_same_v<OutDataType, half_t> && is_same_v<ComputeType, half_t>)
{
add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f16_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_BF16
if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> && is_same_v<OutDataType, ck::bhalf_t>)
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t> && is_same_v<ComputeType, bhalf_t>)
{
add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_bf16_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_INT8
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
is_same_v<OutDataType, int8_t> && is_same_v<ComputeType, int8_t>)
{
add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_int8_instances(op_ptrs);
}
......@@ -961,7 +962,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
is_same_v<OutDataType, float> && is_same_v<ComputeType, float>)
{
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f32_instances(op_ptrs);
}
......@@ -969,7 +970,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#if(defined(CK_ENABLE_FP32) && defined(DL_KERNELS))
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
is_same_v<OutDataType, float> && is_same_v<ComputeType, float>)
{
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances(op_ptrs);
}
......@@ -977,7 +978,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
is_same_v<OutDataType, half_t> && is_same_v<ComputeType, half_t>)
{
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs);
add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs);
......@@ -989,7 +990,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#if(defined(CK_ENABLE_FP16) && defined(DL_KERNELS))
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
is_same_v<OutDataType, half_t> && is_same_v<ComputeType, half_t>)
{
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs);
}
......@@ -997,7 +998,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#ifdef CK_ENABLE_BF16
if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> && is_same_v<OutDataType, ck::bhalf_t>)
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t> && is_same_v<ComputeType, bhalf_t>)
{
add_device_grouped_conv1d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instances(op_ptrs);
}
......@@ -1005,7 +1007,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#ifdef CK_ENABLE_INT8
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
is_same_v<OutDataType, int8_t> && is_same_v<ComputeType, int8_t>)
{
add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_instances(op_ptrs);
add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_1x1p0_instances(op_ptrs);
......@@ -1021,7 +1023,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
is_same_v<OutDataType, float> && is_same_v<ComputeType, float>)
{
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instances(op_ptrs);
}
......@@ -1029,7 +1031,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#if(defined(CK_ENABLE_FP32) && defined(DL_KERNELS))
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
is_same_v<OutDataType, float> && is_same_v<ComputeType, float>)
{
add_device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f32_instances(op_ptrs);
}
......@@ -1037,7 +1039,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
is_same_v<OutDataType, half_t> && is_same_v<ComputeType, half_t>)
{
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instances(op_ptrs);
}
......@@ -1045,7 +1047,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#if(defined(CK_ENABLE_FP16) && defined(DL_KERNELS))
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
is_same_v<OutDataType, half_t> && is_same_v<ComputeType, half_t>)
{
add_device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f16_instances(op_ptrs);
}
......@@ -1053,14 +1055,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#ifdef CK_ENABLE_BF16
if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> && is_same_v<OutDataType, ck::bhalf_t>)
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t> && is_same_v<ComputeType, bhalf_t>)
{
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_bf16_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_INT8
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
is_same_v<OutDataType, int8_t> && is_same_v<ComputeType, int8_t>)
{
add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_instances(op_ptrs);
add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_1x1p0_instances(op_ptrs);
......@@ -1075,14 +1078,14 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
is_same_v<OutDataType, float> && is_same_v<ComputeType, float>)
{
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f32_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
is_same_v<OutDataType, half_t> && is_same_v<ComputeType, half_t>)
{
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f16_instances(op_ptrs);
add_device_grouped_conv3d_fwd_wmma_gndhwc_gkzyxc_gndhwk_f16_instances(op_ptrs);
......@@ -1095,14 +1098,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif
#ifdef CK_ENABLE_BF16
if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> && is_same_v<OutDataType, ck::bhalf_t>)
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t> && is_same_v<ComputeType, bhalf_t>)
{
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_bf16_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_INT8
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
is_same_v<OutDataType, int8_t> && is_same_v<ComputeType, int8_t>)
{
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instances(op_ptrs);
add_device_grouped_conv3d_fwd_wmma_gndhwc_gkzyxc_gndhwk_i8_instances(op_ptrs);
......@@ -1119,7 +1123,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
is_same_v<OutDataType, float> && is_same_v<ComputeType, float>)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances(op_ptrs);
}
......@@ -1148,14 +1152,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif
#ifdef CK_ENABLE_BF16
if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> && is_same_v<OutDataType, ck::bhalf_t>)
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t> && is_same_v<ComputeType, bhalf_t>)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instances(op_ptrs);
}
#endif
#ifdef CK_ENABLE_INT8
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
is_same_v<OutDataType, int8_t> && is_same_v<ComputeType, int8_t>)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_int8_instances(op_ptrs);
add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_i8_instances(op_ptrs);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ScaleAddScaleAddRelu = ck::tensor_operation::element_wise::ScaleAddScaleAddRelu;
#ifdef CK_ENABLE_BF16
// grouped conv3d forward, NDHWGC/GKZYXC/NDHWGK
void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhwgk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
NDHWGK,
BF16,
BF16,
ck::Tuple<BF16, BF16>,
BF16,
PassThrough,
PassThrough,
ScaleAddScaleAddRelu>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
NDHWGK,
F16,
F16,
ck::Tuple<F16, F16>,
F16,
PassThrough,
PassThrough,
ScaleAddScaleAddRelu>>>& instances);
#endif
#ifdef CK_ENABLE_FP32
void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
NDHWGK,
F32,
F32,
ck::Tuple<F32, F32>,
F32,
PassThrough,
PassThrough,
ScaleAddScaleAddRelu>>>& instances);
#endif
#ifdef CK_ENABLE_INT8
void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhwgk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
NDHWGK,
int8_t,
int8_t,
ck::Tuple<F32, F32>,
int8_t,
PassThrough,
PassThrough,
ScaleAddScaleAddRelu>>>& instances);
#endif
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename DLayouts,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename DDataTypes,
typename OutDataType,
typename ComputeType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<
NumDimSpatial,
InLayout,
WeiLayout,
DLayouts,
OutLayout,
InDataType,
WeiDataType,
DDataTypes,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::ScaleAddScaleAddRelu,
ComputeType>>
{
using DeviceOp =
DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
DLayouts,
OutLayout,
InDataType,
WeiDataType,
DDataTypes,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::ScaleAddScaleAddRelu,
ComputeType>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWGC> &&
is_same_v<WeiLayout, GKZYXC> && is_same_v<OutLayout, NDHWGK>)
{
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhwgk_f32_instances(
op_ptrs);
}
#endif
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t> && is_same_v<ComputeType, half_t>)
{
add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhwgk_f16_instances(
op_ptrs);
}
#endif
#ifdef CK_ENABLE_BF16
if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> && is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhwgk_bf16_instances(
op_ptrs);
}
#endif
#ifdef CK_ENABLE_INT8
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhwgk_int8_instances(
op_ptrs);
}
#endif
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -120,6 +120,32 @@ void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instances
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_irregular_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Row,
Empty_Tuple,
Row,
F16,
F8,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_irregular_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Row,
Empty_Tuple,
Row,
F8,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <typename ALayout,
typename BLayout,
typename ELayout,
......@@ -184,6 +210,24 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, f8_t> &&
is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_irregular_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ADataType, f8_t> && is_same_v<BDataType, half_t> &&
is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_irregular_instances(op_ptrs);
}
}
return op_ptrs;
}
};
......
......@@ -19,13 +19,13 @@ namespace instance {
#ifdef CK_ENABLE_FP16
// FP16
void add_device_normalization_rank_2_1_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, PassThrough, 2, 1>>>&);
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, PassThrough, 2, 1>>>&);
void add_device_normalization_rank_4_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, PassThrough, 4, 3>>>&);
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, PassThrough, 4, 3>>>&);
void add_device_normalization_rank_5_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, PassThrough, 5, 3>>>&);
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, PassThrough, 5, 3>>>&);
#endif
#ifdef CK_ENABLE_FP32
// FP32
......@@ -42,14 +42,15 @@ template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename SaveMeanInvStdDataType,
index_t Rank,
index_t NumReduceDim>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceNormalization<
XDataType,
GammaDataType,
BetaDataType,
F32,
YDataType,
SaveMeanInvStdDataType,
ck::tensor_operation::element_wise::PassThrough,
Rank,
NumReduceDim>>
......@@ -57,8 +58,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceNormal
using DeviceOp = DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
F32,
YDataType,
SaveMeanInvStdDataType,
ck::tensor_operation::element_wise::PassThrough,
Rank,
NumReduceDim>;
......@@ -68,7 +69,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceNormal
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<XDataType, F16> && is_same_v<GammaDataType, F16> &&
is_same_v<BetaDataType, F16> && is_same_v<YDataType, F16>)
is_same_v<BetaDataType, F16> && is_same_v<YDataType, F16> &&
is_same_v<SaveMeanInvStdDataType, F32>)
{
if constexpr(Rank == 2 && NumReduceDim == 1)
{
......@@ -86,7 +88,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceNormal
#endif
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<XDataType, F32> && is_same_v<GammaDataType, F32> &&
is_same_v<BetaDataType, F32> && is_same_v<YDataType, F32>)
is_same_v<BetaDataType, F32> && is_same_v<YDataType, F32> &&
is_same_v<SaveMeanInvStdDataType, F32>)
{
if constexpr(Rank == 2 && NumReduceDim == 1)
{
......
......@@ -19,7 +19,7 @@ namespace instance {
// FP16
void add_device_normalization_rank_5_3_swish_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, Swish, 5, 3>>>&);
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, Swish, 5, 3>>>&);
// FP32
void add_device_normalization_rank_5_3_swish_f32_instances(
......@@ -27,20 +27,21 @@ void add_device_normalization_rank_5_3_swish_f32_instances(
// [x, gamma, beta, y] = [f16, f32, f32, f16]
void add_device_normalization_rank_5_3_swish_f16_f32_f32_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F32, F32, F32, F16, Swish, 5, 3>>>&);
std::vector<std::unique_ptr<DeviceNormalization<F16, F32, F32, F16, F32, Swish, 5, 3>>>&);
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename SaveMeanInvStdDataType,
index_t Rank,
index_t NumReduceDim>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
F32,
YDataType,
SaveMeanInvStdDataType,
ck::tensor_operation::element_wise::Swish,
Rank,
NumReduceDim>>
......@@ -48,8 +49,8 @@ struct DeviceOperationInstanceFactory<
using DeviceOp = DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
F32,
YDataType,
SaveMeanInvStdDataType,
ck::tensor_operation::element_wise::Swish,
Rank,
NumReduceDim>;
......@@ -59,7 +60,8 @@ struct DeviceOperationInstanceFactory<
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<XDataType, F16> && is_same_v<GammaDataType, F16> &&
is_same_v<BetaDataType, F16> && is_same_v<YDataType, F16>)
is_same_v<BetaDataType, F16> && is_same_v<YDataType, F16> &&
is_same_v<SaveMeanInvStdDataType, F32>)
{
if constexpr(Rank == 5 && NumReduceDim == 3)
{
......@@ -67,7 +69,8 @@ struct DeviceOperationInstanceFactory<
}
}
else if constexpr(is_same_v<XDataType, F32> && is_same_v<GammaDataType, F32> &&
is_same_v<BetaDataType, F32> && is_same_v<YDataType, F32>)
is_same_v<BetaDataType, F32> && is_same_v<YDataType, F32> &&
is_same_v<SaveMeanInvStdDataType, F32>)
{
if constexpr(Rank == 5 && NumReduceDim == 3)
{
......@@ -75,7 +78,8 @@ struct DeviceOperationInstanceFactory<
}
}
else if constexpr(is_same_v<XDataType, F16> && is_same_v<GammaDataType, F32> &&
is_same_v<BetaDataType, F32> && is_same_v<YDataType, F16>)
is_same_v<BetaDataType, F32> && is_same_v<YDataType, F16> &&
is_same_v<SaveMeanInvStdDataType, F32>)
{
if constexpr(Rank == 5 && NumReduceDim == 3)
{
......
......@@ -230,7 +230,6 @@ check_err(const Range& out,
return res;
}
#if defined CK_ENABLE_FP8
template <typename Range, typename RefRange>
std::enable_if_t<(std::is_same_v<ranges::range_value_t<Range>, ranges::range_value_t<RefRange>> &&
std::is_same_v<ranges::range_value_t<Range>, f8_t>),
......@@ -275,9 +274,7 @@ check_err(const Range& out,
}
return res;
}
#endif
#if defined CK_ENABLE_BF8
template <typename Range, typename RefRange>
std::enable_if_t<(std::is_same_v<ranges::range_value_t<Range>, ranges::range_value_t<RefRange>> &&
std::is_same_v<ranges::range_value_t<Range>, bf8_t>),
......@@ -322,7 +319,6 @@ check_err(const Range& out,
}
return res;
}
#endif
} // namespace utils
} // namespace ck
......@@ -22,7 +22,7 @@ static inline void dumpBufferToFile(const char* fileName, T* data, size_t dataNu
std::ofstream outFile(fileName, std::ios::binary);
if(outFile)
{
outFile.write(reinterpret_cast<char*>(data), dataNumItems * sizeof(T));
outFile.write(reinterpret_cast<const char*>(data), dataNumItems * sizeof(T));
outFile.close();
std::cout << "Write output to file " << fileName << std::endl;
}
......
......@@ -200,10 +200,11 @@ struct GeneratorTensor_3<ck::bf8_t>
template <typename T>
struct GeneratorTensor_4
{
std::default_random_engine generator;
std::mt19937 generator;
std::normal_distribution<float> distribution;
GeneratorTensor_4(float mean, float stddev) : generator(1), distribution(mean, stddev){};
GeneratorTensor_4(float mean, float stddev, unsigned int seed = 1)
: generator(seed), distribution(mean, stddev){};
template <typename... Is>
T operator()(Is...)
......
......@@ -19,7 +19,7 @@ function(add_instance_library INSTANCE_NAME)
set(type1 "_i8")
endif()
#make an exception for reduction kernels
if("${source}" MATCHES "${type}" OR "${source}" MATCHES "${type1}" OR "${source}" MATCHES "device_reduce_instance")
if("${source}" MATCHES "${type}" OR "${source}" MATCHES "${type1}" OR "${source}" MATCHES "device_reduce_instance" OR ${source} MATCHES "device_image_to_column")
#if filename matches any selected type, exit type loop and do no exclude the file from the list
set(test 0)
break()
......@@ -49,8 +49,10 @@ function(add_instance_library INSTANCE_NAME)
set_target_properties(${INSTANCE_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
clang_tidy_check(${INSTANCE_NAME})
set(result 0)
message("add_instance_library ${INSTANCE_NAME}")
else()
message("skip_instance_libary ${INSTANCE_NAME}")
endif()
#message("add_instance_library returns ${result}")
set(result ${result} PARENT_SCOPE)
endfunction(add_instance_library INSTANCE_NAME)
......@@ -58,8 +60,8 @@ endfunction(add_instance_library INSTANCE_NAME)
file(GLOB dir_list LIST_DIRECTORIES true *)
set(CK_DEVICE_INSTANCES)
FOREACH(subdir_path ${dir_list})
set(target_dir)
IF(IS_DIRECTORY "${subdir_path}")
set(target_dir)
IF(IS_DIRECTORY "${subdir_path}")
set(cmake_instance)
file(READ "${subdir_path}/CMakeLists.txt" cmake_instance)
set(add_inst 0)
......@@ -67,6 +69,10 @@ IF(IS_DIRECTORY "${subdir_path}")
message("fp8 instance found!")
set(add_inst 1)
endif()
if(("${cmake_instance}" MATCHES "_bf8" OR "${cmake_instance}" MATCHES "_b8") AND DTYPES MATCHES "bf8")
message("bf8 instance found!")
set(add_inst 1)
endif()
if(("${cmake_instance}" MATCHES "_fp16" OR "${cmake_instance}" MATCHES "_f16") AND DTYPES MATCHES "fp16")
message("fp16 instance found!")
set(add_inst 1)
......@@ -87,36 +93,41 @@ IF(IS_DIRECTORY "${subdir_path}")
message("int8 instance found!")
set(add_inst 1)
endif()
if(NOT "${cmake_instance}" MATCHES "_fp8" OR
NOT "${cmake_instance}" MATCHES "_f8" OR
NOT "${cmake_instance}" MATCHES "_fp16" OR
NOT "${cmake_instance}" MATCHES "_f16" OR
NOT "${cmake_instance}" MATCHES "_fp32" OR
NOT "${cmake_instance}" MATCHES "_f32" OR
NOT "${cmake_instance}" MATCHES "_fp64" OR
NOT "${cmake_instance}" MATCHES "_f64" OR
NOT "${cmake_instance}" MATCHES "_bf16" OR
NOT "${cmake_instance}" MATCHES "_int8" OR
NOT "${cmake_instance}" MATCHES "_i8" OR
NOT "${cmake_instance}" MATCHES "_int4" OR
NOT DEFINED DTYPES)
if(NOT ("${cmake_instance}" MATCHES "_fp8" OR
"${cmake_instance}" MATCHES "_f8" OR
"${cmake_instance}" MATCHES "_fp16" OR
"${cmake_instance}" MATCHES "_f16" OR
"${cmake_instance}" MATCHES "_fp32" OR
"${cmake_instance}" MATCHES "_f32" OR
"${cmake_instance}" MATCHES "_fp64" OR
"${cmake_instance}" MATCHES "_f64" OR
"${cmake_instance}" MATCHES "_bf16" OR
"${cmake_instance}" MATCHES "_int8" OR
"${cmake_instance}" MATCHES "_i8" OR
"${cmake_instance}" MATCHES "_int4"))
message("instance should be built for all types!")
set(add_inst 1)
endif()
if("${cmake_instance}" MATCHES "quantization" AND DEFINED DTYPES AND NOT DTYPES MATCHES "int8")
if(NOT DEFINED DTYPES)
set(add_inst 1)
endif()
if(("${cmake_instance}" MATCHES "quantization") AND (DEFINED DTYPES) AND (NOT DTYPES MATCHES "int8"))
message("quantization instances will not be built!")
set(add_inst 0)
endif()
if("${cmake_instance}" MATCHES "ONLY DL_KERNELS" AND NOT DEFINED DL_KERNELS)
if(("${cmake_instance}" MATCHES "ONLY DL_KERNELS") AND (NOT DEFINED DL_KERNELS))
message("Found only dl instances, but DL_KERNELS is not set. Skipping.")
set(add_inst 0)
endif()
if(add_inst EQUAL 1)
if((add_inst EQUAL 1))
get_filename_component(target_dir ${subdir_path} NAME)
add_subdirectory(${target_dir})
list(APPEND CK_DEVICE_INSTANCES $<TARGET_OBJECTS:device_${target_dir}_instance>)
message("add_instance_directory ${subdir_path}")
else()
message("skip_instance_directory ${subdir_path}")
endif()
ENDIF()
ENDIF()
ENDFOREACH()
add_library(device_operations STATIC ${CK_DEVICE_INSTANCES})
......
add_instance_library(device_column_to_image_instance
device_column_to_image_nhwc_1d_instance.cpp
device_column_to_image_nhwc_2d_instance.cpp
device_column_to_image_nhwc_3d_instance.cpp
device_column_to_image_gnwc_1d_instance.cpp
device_column_to_image_gnhwc_2d_instance.cpp
device_column_to_image_gndhwc_3d_instance.cpp
device_column_to_image_nwgc_1d_instance.cpp
device_column_to_image_nhwgc_2d_instance.cpp
device_column_to_image_ndhwgc_3d_instance.cpp
)
......@@ -11,7 +11,7 @@ namespace instance {
using namespace ck::conv_tensor_rearrange_op;
void add_device_column_to_image_ndhwc_3d_bf16_instances(
void add_device_column_to_image_gndhwc_3d_bf16_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<3, GNDHWC, BF16, BF16, ColumnToImage>>>&
instances)
{
......@@ -22,7 +22,7 @@ void add_device_column_to_image_ndhwc_3d_bf16_instances(
#endif
}
void add_device_column_to_image_ndhwc_3d_f16_instances(
void add_device_column_to_image_gndhwc_3d_f16_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<3, GNDHWC, F16, F16, ColumnToImage>>>&
instances)
{
......@@ -33,7 +33,7 @@ void add_device_column_to_image_ndhwc_3d_f16_instances(
#endif
}
void add_device_column_to_image_ndhwc_3d_f32_instances(
void add_device_column_to_image_gndhwc_3d_f32_instances(
std::vector<std::unique_ptr<DeviceConvTensorRearrange<3, GNDHWC, F32, F32, ColumnToImage>>>&
instances)
{
......@@ -44,7 +44,7 @@ void add_device_column_to_image_ndhwc_3d_f32_instances(
#endif
}
void add_device_column_to_image_ndhwc_3d_i8_instances(
void add_device_column_to_image_gndhwc_3d_i8_instances(
std::vector<
std::unique_ptr<DeviceConvTensorRearrange<3, GNDHWC, int8_t, int8_t, ColumnToImage>>>&
instances)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment