Unverified Commit 0f799721 authored by arai713's avatar arai713 Committed by GitHub
Browse files

Merge branch 'develop' into gridwise_2d

parents 7ef521c2 43a889b7
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template <ck::index_t... Is> template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
...@@ -302,20 +303,14 @@ int main(int argc, char* argv[]) ...@@ -302,20 +303,14 @@ int main(int argc, char* argv[])
Tensor<DDataType> d_ms_ns(d_ms_ns_lengths, d_ms_ns_strides); Tensor<DDataType> d_ms_ns(d_ms_ns_lengths, d_ms_ns_strides);
Tensor<EDataType> e_ms_ns_device_result(e_ms_ns_lengths, e_ms_ns_strides); Tensor<EDataType> e_ms_ns_device_result(e_ms_ns_lengths, e_ms_ns_strides);
ck::index_t M_ = std::accumulate(e_ms_ns_lengths.begin(), ck::index_t M_ =
e_ms_ns_lengths.begin() + NumDimM, ck::accumulate_n<ck::index_t>(e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N_ = std::accumulate(e_ms_ns_lengths.begin() + NumDimM, ck::index_t N_ = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM + NumDimN, e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K_ = std::accumulate(a_ms_ks_lengths.begin() + NumDimM, ck::index_t K_ = ck::accumulate_n<ck::index_t>(
a_ms_ks_lengths.begin() + NumDimM + NumDimK, a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
a_tensors.push_back(a_ms_ks); a_tensors.push_back(a_ms_ks);
b_tensors.push_back(b_ns_ks); b_tensors.push_back(b_ns_ks);
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template <ck::index_t... Is> template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
...@@ -317,25 +318,17 @@ int main(int argc, char* argv[]) ...@@ -317,25 +318,17 @@ int main(int argc, char* argv[])
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel}); float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t G = std::accumulate(e_gs_ms_ns_lengths.begin(), ck::index_t G =
e_gs_ms_ns_lengths.begin() + NumDimG, ck::accumulate_n<ck::index_t>(e_gs_ms_ns_lengths.begin(), NumDimG, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{}); ck::index_t M = ck::accumulate_n<ck::index_t>(
e_gs_ms_ns_lengths.begin() + NumDimG, NumDimM, 1, std::multiplies<>{});
ck::index_t M = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimG,
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM, ck::index_t N = ck::accumulate_n<ck::index_t>(
ck::index_t{1}, e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM, NumDimN, 1, std::multiplies<>{});
std::multiplies<ck::index_t>{});
ck::index_t K = ck::accumulate_n<ck::index_t>(
ck::index_t N = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM, a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM, NumDimK, 1, std::multiplies<>{});
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM + NumDimN,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = std::accumulate(a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM,
a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM + NumDimK,
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t flop = std::size_t(2) * G * M * N * K; std::size_t flop = std::size_t(2) * G * M * N * K;
std::size_t num_btype = sizeof(ADataType) * G * M * K + sizeof(BDataType) * G * K * N + std::size_t num_btype = sizeof(ADataType) * G * M * K + sizeof(BDataType) * G * K * N +
......
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
......
...@@ -116,7 +116,7 @@ bool run_grouped_conv_fwd(const ExecutionConfig& config, ...@@ -116,7 +116,7 @@ bool run_grouped_conv_fwd(const ExecutionConfig& config,
std::array<ck::index_t, NDimSpatial> input_left_pads{}; std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{}; std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); }; auto copy = [](auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths); copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides); copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
......
add_example_executable(example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp) add_example_executable(example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp)
add_example_executable(example_batched_gemm_scale_softmax_gemm_xdl_bf16 batched_gemm_scale_softmax_gemm_xdl_bf16.cpp)
add_example_executable(example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp) add_example_executable(example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp)
add_example_executable(example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16 batched_gemm_scale_softmax_gemm_permute_xdl_bf16.cpp)
add_example_executable(example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp) add_example_executable(example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp)
add_example_executable(example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp) add_example_executable(example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp)
add_example_executable(example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp) add_example_executable(example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp)
add_custom_target(example_gemm_scale_softmax_gemm) add_custom_target(example_gemm_scale_softmax_gemm)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16) add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_bf16)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16) add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16)
add_dependencies(example_gemm_scale_softmax_gemm example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16) add_dependencies(example_gemm_scale_softmax_gemm example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16) add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16)
add_dependencies(example_gemm_scale_softmax_gemm example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16) add_dependencies(example_gemm_scale_softmax_gemm example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = BF16;
using B0DataType = BF16;
using B1DataType = BF16;
using AccDataType = F32;
using CShuffleDataType = F32;
using CDataType = BF16;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
static constexpr ck::index_t NumDimO = 1;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
64, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
2, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec>; // MaskingSpecialization
// Ref Gemm0: bf16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: fp32 in, bf16 out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: bf16 in, bf16 out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
#include "run_batched_gemm_scale_softmax_gemm_permute.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = BF16;
using B0DataType = BF16;
using B1DataType = BF16;
using AccDataType = F32;
using CShuffleDataType = F32;
using CDataType = BF16;
using ALayout = Row;
using B0Layout = Col;
using B1Layout = Row;
using CLayout = Row;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle<
ALayout,
B0Layout,
B1Layout,
CLayout,
ADataType,
B0DataType,
B1DataType,
CDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
64, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
2, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
false>;
// Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: fp32 in, fp16 out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: fp16 in, fp16 out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
#include "run_batched_gemm_scale_softmax_gemm.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
...@@ -139,261 +139,6 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm< ...@@ -139,261 +139,6 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
B1ElementOp, B1ElementOp,
CElementOp>; CElementOp>;
int main(int argc, char* argv[]) #include "run_batched_gemm_scale_softmax_gemm.inc"
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape int main(int argc, char* argv[]) { return run(argc, argv); }
ck::index_t M = 1020;
ck::index_t N = 1020;
ck::index_t K = 64;
ck::index_t O = 128;
ck::index_t BatchCount = 4;
ck::index_t StrideA = -1;
ck::index_t StrideB0 = -1;
ck::index_t StrideB1 = -1;
ck::index_t StrideC = -1;
ck::index_t BatchStrideA = -1;
ck::index_t BatchStrideB0 = -1;
ck::index_t BatchStrideB1 = -1;
ck::index_t BatchStrideC = -1;
float alpha = 1;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 9)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
BatchCount = std::stoi(argv[8]);
}
else if(argc == 18)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
BatchCount = std::stoi(argv[8]);
StrideA = std::stoi(argv[9]);
StrideB0 = std::stoi(argv[10]);
StrideB1 = std::stoi(argv[11]);
StrideC = std::stoi(argv[12]);
BatchStrideA = std::stoi(argv[13]);
BatchStrideB0 = std::stoi(argv[14]);
BatchStrideB1 = std::stoi(argv[15]);
BatchStrideC = std::stoi(argv[16]);
alpha = std::stof(argv[17]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 16: M, N, K, O, Batch, StrideA, StrideB0, StrideB1, StrideC, BatchStrideA, "
"BatchStrideB0, BatchStrideB1, BatchStrideC\n");
printf("arg17: scale (alpha)\n");
exit(0);
}
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB0 = ck::is_same_v<B0Layout, Row> ? N : K;
const int DefaultStrideB1 = ck::is_same_v<B1Layout, Row> ? O : N;
const int DefaultStrideC = ck::is_same_v<CLayout, Row> ? O : M;
StrideA = (StrideA < 0) ? DefaultStrideA : StrideA;
StrideB0 = (StrideB0 < 0) ? DefaultStrideB0 : StrideB0;
StrideB1 = (StrideB1 < 0) ? DefaultStrideB1 : StrideB1;
StrideC = (StrideC < 0) ? DefaultStrideC : StrideC;
const int DefaultBatchStrideA = (ck::is_same_v<ALayout, Col> ? K : M) * StrideA;
const int DefaultBatchStrideB0 = (ck::is_same_v<B0Layout, Col> ? N : K) * StrideB0;
const int DefaultBatchStrideB1 = (ck::is_same_v<B1Layout, Col> ? O : N) * StrideB1;
const int DefaultBatchStrideC = (ck::is_same_v<CLayout, Col> ? O : M) * StrideC;
BatchStrideA = BatchStrideA < 0 ? DefaultBatchStrideA : BatchStrideA;
BatchStrideB0 = BatchStrideB0 < 0 ? DefaultBatchStrideB0 : BatchStrideB0;
BatchStrideB1 = BatchStrideB1 < 0 ? DefaultBatchStrideB1 : BatchStrideB1;
BatchStrideC = BatchStrideC < 0 ? DefaultBatchStrideC : BatchStrideC;
auto f_host_tensor_descriptor = [](std::size_t batch_count,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), Row>::value)
{
return HostTensorDescriptor({batch_count, row, col}, {batch_stride, stride, 1_uz});
}
else
{
return HostTensorDescriptor({batch_count, row, col}, {batch_stride, 1_uz, stride});
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor<ADataType> a_g_m_k(
f_host_tensor_descriptor(BatchCount, M, K, StrideA, BatchStrideA, ALayout{}));
Tensor<B0DataType> b0_g_k_n(
f_host_tensor_descriptor(BatchCount, K, N, StrideB0, BatchStrideB0, B0Layout{}));
Tensor<B1DataType> b1_g_n_o(
f_host_tensor_descriptor(BatchCount, N, O, StrideB1, BatchStrideB1, B1Layout{}));
Tensor<CDataType> c_g_m_o_host_result(
f_host_tensor_descriptor(BatchCount, M, O, StrideC, BatchStrideC, CLayout{}));
Tensor<CDataType> c_g_m_o_device_result(
f_host_tensor_descriptor(BatchCount, M, O, StrideC, BatchStrideC, CLayout{}));
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b0_g_k_n: " << b0_g_k_n.mDesc << std::endl;
std::cout << "b1_g_n_o: " << b1_g_n_o.mDesc << std::endl;
std::cout << "c_g_m_o: " << c_g_m_o_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-5, 5});
break;
case 2:
a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
DeviceMem a_g_m_k_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSpaceSize());
DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSpaceSize());
DeviceMem c_g_m_o_device_buf(sizeof(CDataType) *
c_g_m_o_device_result.mDesc.GetElementSpaceSize());
a_g_m_k_device_buf.ToDevice(a_g_m_k.mData.data());
b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data());
b1_g_n_o_device_buf.ToDevice(b1_g_n_o.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument =
gemm.MakeArgument(static_cast<ADataType*>(a_g_m_k_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_g_k_n_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_g_n_o_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_g_m_o_device_buf.GetDeviceBuffer()),
M,
N,
K,
O,
BatchCount,
StrideA,
StrideB0,
StrideB1,
StrideC,
BatchStrideA,
BatchStrideB0,
BatchStrideB1,
BatchStrideC,
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
c_g_m_o_device_buf.FromDevice(c_g_m_o_device_result.mData.data());
if(do_verification)
{
// Output of Gemm0 is input A of Gemm1
Tensor<AccDataType> acc0_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
Tensor<ADataType> a1_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument = ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2});
ref_softmax_invoker.Run(ref_softmax_argument);
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(
a1_g_m_n, b1_g_n_o, c_g_m_o_host_result, PassThrough{}, b1_element_op, c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
return ck::utils::check_err(c_g_m_o_device_result, c_g_m_o_host_result) ? 0 : 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 2;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 1020;
ck::index_t N = 1020;
ck::index_t K = 64;
ck::index_t O = 128;
ck::index_t BatchCount = 4;
ck::index_t StrideA = -1;
ck::index_t StrideB0 = -1;
ck::index_t StrideB1 = -1;
ck::index_t StrideC = -1;
ck::index_t BatchStrideA = -1;
ck::index_t BatchStrideB0 = -1;
ck::index_t BatchStrideB1 = -1;
ck::index_t BatchStrideC = -1;
float alpha = 1;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 9)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
BatchCount = std::stoi(argv[8]);
}
else if(argc == 18)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
BatchCount = std::stoi(argv[8]);
StrideA = std::stoi(argv[9]);
StrideB0 = std::stoi(argv[10]);
StrideB1 = std::stoi(argv[11]);
StrideC = std::stoi(argv[12]);
BatchStrideA = std::stoi(argv[13]);
BatchStrideB0 = std::stoi(argv[14]);
BatchStrideB1 = std::stoi(argv[15]);
BatchStrideC = std::stoi(argv[16]);
alpha = std::stof(argv[17]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 16: M, N, K, O, Batch, StrideA, StrideB0, StrideB1, StrideC, BatchStrideA, "
"BatchStrideB0, BatchStrideB1, BatchStrideC\n");
printf("arg17: scale (alpha)\n");
exit(0);
}
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB0 = ck::is_same_v<B0Layout, Row> ? N : K;
const int DefaultStrideB1 = ck::is_same_v<B1Layout, Row> ? O : N;
const int DefaultStrideC = ck::is_same_v<CLayout, Row> ? O : M;
StrideA = (StrideA < 0) ? DefaultStrideA : StrideA;
StrideB0 = (StrideB0 < 0) ? DefaultStrideB0 : StrideB0;
StrideB1 = (StrideB1 < 0) ? DefaultStrideB1 : StrideB1;
StrideC = (StrideC < 0) ? DefaultStrideC : StrideC;
const int DefaultBatchStrideA = (ck::is_same_v<ALayout, Col> ? K : M) * StrideA;
const int DefaultBatchStrideB0 = (ck::is_same_v<B0Layout, Col> ? N : K) * StrideB0;
const int DefaultBatchStrideB1 = (ck::is_same_v<B1Layout, Col> ? O : N) * StrideB1;
const int DefaultBatchStrideC = (ck::is_same_v<CLayout, Col> ? O : M) * StrideC;
BatchStrideA = BatchStrideA < 0 ? DefaultBatchStrideA : BatchStrideA;
BatchStrideB0 = BatchStrideB0 < 0 ? DefaultBatchStrideB0 : BatchStrideB0;
BatchStrideB1 = BatchStrideB1 < 0 ? DefaultBatchStrideB1 : BatchStrideB1;
BatchStrideC = BatchStrideC < 0 ? DefaultBatchStrideC : BatchStrideC;
auto f_host_tensor_descriptor = [](std::size_t batch_count,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
if(std::is_same<decltype(layout), Row>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, 1, stride}));
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor<ADataType> a_g_m_k(
f_host_tensor_descriptor(BatchCount, M, K, StrideA, BatchStrideA, ALayout{}));
Tensor<B0DataType> b0_g_k_n(
f_host_tensor_descriptor(BatchCount, K, N, StrideB0, BatchStrideB0, B0Layout{}));
Tensor<B1DataType> b1_g_n_o(
f_host_tensor_descriptor(BatchCount, N, O, StrideB1, BatchStrideB1, B1Layout{}));
Tensor<CDataType> c_g_m_o_host_result(
f_host_tensor_descriptor(BatchCount, M, O, StrideC, BatchStrideC, CLayout{}));
Tensor<CDataType> c_g_m_o_device_result(
f_host_tensor_descriptor(BatchCount, M, O, StrideC, BatchStrideC, CLayout{}));
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b0_g_k_n: " << b0_g_k_n.mDesc << std::endl;
std::cout << "b1_g_n_o: " << b1_g_n_o.mDesc << std::endl;
std::cout << "c_g_m_o: " << c_g_m_o_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-5, 5});
break;
case 2:
a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
DeviceMem a_g_m_k_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSpaceSize());
DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSpaceSize());
DeviceMem c_g_m_o_device_buf(sizeof(CDataType) *
c_g_m_o_device_result.mDesc.GetElementSpaceSize());
a_g_m_k_device_buf.ToDevice(a_g_m_k.mData.data());
b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data());
b1_g_n_o_device_buf.ToDevice(b1_g_n_o.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument =
gemm.MakeArgument(static_cast<ADataType*>(a_g_m_k_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_g_k_n_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_g_n_o_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_g_m_o_device_buf.GetDeviceBuffer()),
M,
N,
K,
O,
BatchCount,
StrideA,
StrideB0,
StrideB1,
StrideC,
BatchStrideA,
BatchStrideB0,
BatchStrideB1,
BatchStrideC,
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
c_g_m_o_device_buf.FromDevice(c_g_m_o_device_result.mData.data());
if(do_verification)
{
// Output of Gemm0 is input A of Gemm1
Tensor<AccDataType> acc0_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
Tensor<ADataType> a1_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument = ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2});
ref_softmax_invoker.Run(ref_softmax_argument);
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(
a1_g_m_n, b1_g_n_o, c_g_m_o_host_result, PassThrough{}, b1_element_op, c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
return ck::utils::check_err(c_g_m_o_device_result.mData, c_g_m_o_host_result.mData) ? 0 : 1;
}
return 0;
}
...@@ -253,7 +253,23 @@ int run(int argc, char* argv[]) ...@@ -253,7 +253,23 @@ int run(int argc, char* argv[])
self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]); self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]);
}); });
return ck::utils::check_err(c_gs_ms_os_device_result.mData, c_gs_ms_os_host_result.mData) // default absolute error and relative error is 0.001
double rtol = 1e-3;
double atol = 1e-3;
// when BF16 is taken, set absolute error and relative error to 0.01
if(std::is_same_v<ADataType, ck::bhalf_t> && std::is_same_v<B0DataType, ck::bhalf_t> &&
std::is_same_v<B1DataType, ck::bhalf_t> && std::is_same_v<CDataType, ck::bhalf_t>)
{
rtol = 1e-2;
atol = 1e-2;
}
return ck::utils::check_err(c_gs_ms_os_device_result.mData,
c_gs_ms_os_host_result.mData,
"Error: Incorrect results!",
rtol,
atol)
? 0 ? 0
: 1; : 1;
} }
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp" #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_parameter.hpp" #include "ck/library/utility/convolution_parameter.hpp"
......
...@@ -52,7 +52,7 @@ bool run_conv_bwd_data(const ExecutionConfig& config, ...@@ -52,7 +52,7 @@ bool run_conv_bwd_data(const ExecutionConfig& config,
std::array<ck::index_t, NDimSpatial> input_left_pads{}; std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{}; std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); }; auto copy = [](auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(out_g_n_k_wos_desc.GetLengths(), a_g_n_k_wos_lengths); copy(out_g_n_k_wos_desc.GetLengths(), a_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), a_g_n_k_wos_strides); copy(out_g_n_k_wos_desc.GetStrides(), a_g_n_k_wos_strides);
......
...@@ -120,18 +120,14 @@ bool run_grouped_conv_conv_fwd(bool do_verification, ...@@ -120,18 +120,14 @@ bool run_grouped_conv_conv_fwd(bool do_verification,
const ck::index_t gemm_batch = a0_g_n_c_wis_lengths[0]; const ck::index_t gemm_batch = a0_g_n_c_wis_lengths[0];
const ck::index_t gemm0_m_length = const ck::index_t gemm0_m_length =
e1_g_n_k_wos_lengths[1] * std::accumulate(e1_g_n_k_wos_lengths.begin() + 3, e1_g_n_k_wos_lengths[1] *
e1_g_n_k_wos_lengths.begin() + 3 + NDimSpatial, ck::accumulate_n<ck::index_t>(
ck::index_t{1}, e1_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>{});
std::multiplies<ck::index_t>{});
const ck::index_t gemm0_n_length = b0_g_k_c_xs_lengths[1]; const ck::index_t gemm0_n_length = b0_g_k_c_xs_lengths[1];
const ck::index_t gemm0_k_length = const ck::index_t gemm0_k_length = ck::accumulate_n<ck::index_t>(
std::accumulate(b0_g_k_c_xs_lengths.begin() + 2, b0_g_k_c_xs_lengths.begin() + 2, NDimSpatial + 1, 1, std::multiplies<>{});
b0_g_k_c_xs_lengths.begin() + 2 + NDimSpatial + 1,
ck::index_t{1},
std::multiplies<ck::index_t>{});
const ck::index_t gemm1_n_length = b1_g_k_c_xs_lengths[1]; const ck::index_t gemm1_n_length = b1_g_k_c_xs_lengths[1];
......
...@@ -6,6 +6,7 @@ ...@@ -6,6 +6,7 @@
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp" #include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
...@@ -144,7 +145,7 @@ bool run_grouped_conv_fwd(bool do_verification, ...@@ -144,7 +145,7 @@ bool run_grouped_conv_fwd(bool do_verification,
std::array<ck::index_t, NDimSpatial> input_left_pads{}; std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{}; std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); }; auto copy = [](auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths); copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides); copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
......
...@@ -6,6 +6,7 @@ ...@@ -6,6 +6,7 @@
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp" #include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
...@@ -131,7 +132,7 @@ bool run_grouped_conv_fwd(bool do_verification, ...@@ -131,7 +132,7 @@ bool run_grouped_conv_fwd(bool do_verification,
std::array<ck::index_t, NDimSpatial> input_left_pads{}; std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{}; std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); }; auto copy = [](auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths); copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides); copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
......
...@@ -5,6 +5,7 @@ ...@@ -5,6 +5,7 @@
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp" #include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
...@@ -69,7 +70,7 @@ int main() ...@@ -69,7 +70,7 @@ int main()
static_cast<int>(nhwc[2] * nhwc[3]), static_cast<int>(nhwc[2] * nhwc[3]),
static_cast<int>(nhwc[3])}; static_cast<int>(nhwc[3])};
std::copy(nchw.begin(), nchw.end(), ab_lengths.begin()); ck::ranges::copy(nchw, ab_lengths.begin());
auto broadcastPermute = DeviceElementwisePermuteInstance{}; auto broadcastPermute = DeviceElementwisePermuteInstance{};
auto argument = broadcastPermute.MakeArgumentPointer( auto argument = broadcastPermute.MakeArgumentPointer(
......
...@@ -154,6 +154,13 @@ ...@@ -154,6 +154,13 @@
// tuning parameter // tuning parameter
#define CK_WORKAROUND_SWDEV_325164 0 #define CK_WORKAROUND_SWDEV_325164 0
// workaround: a BF16 attention kernel for gfx908 is likely affected by a compiler issue
#ifdef __gfx908__
#define CK_WORKAROUND_SWDEV_XXXXXX_BF16_ATTEN_FWD_GFX908_ISSUE 1
#else // __gfx90a__, ...
#define CK_WORKAROUND_SWDEV_XXXXXX_BF16_ATTEN_FWD_GFX908_ISSUE 0
#endif // __gfx908__
namespace ck { namespace ck {
enum struct InMemoryDataOperationEnum enum struct InMemoryDataOperationEnum
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_data.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_data_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_dl_v1r3.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename AccDataType,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation,
ConvolutionBackwardDataSpecialization ConvBackwardDataSpecialization,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
index_t M1PerThread,
index_t N1PerThread,
index_t KPerThread,
typename M1N1ThreadClusterM1Xs,
typename M1N1ThreadClusterN1Xs,
typename ABlockTransferThreadSliceLengths_K0_M0_M1_K1,
typename ABlockTransferThreadClusterLengths_K0_M0_M1_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
typename ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1,
typename ABlockTransferSrcVectorTensorContiguousDimOrder,
typename ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1,
typename BBlockTransferThreadSliceLengths_K0_N0_N1_K1,
typename BBlockTransferThreadClusterLengths_K0_N0_N1_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
typename BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1,
typename BBlockTransferSrcVectorTensorContiguousDimOrder,
typename BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector>
struct DeviceConvNdBwdDataNwcKxcNwk_Dl
: public DeviceConvBwdData<
NDimSpatial,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::NWC,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::NDHWC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::KXC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::KZYXC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::NWK,
ck::tensor_layout::convolution::NHWK,
ck::tensor_layout::convolution::NDHWK>>,
InDataType,
WeiDataType,
OutDataType,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation>
{
using DeviceOp = DeviceConvNdBwdDataNwcKxcNwk_Dl;
using ADataType = OutDataType;
using BDataType = WeiDataType;
using CDataType = InDataType;
// TODO make A/B datatype different
using ABDataType = InDataType;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
static constexpr auto I7 = Number<7>{};
template <ck::index_t NDim, typename ck::enable_if<NDim == 1, bool>::type = false>
static auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
std::vector<ck::index_t> tildes)
{
using namespace ck;
index_t i_xtilde = tildes[0];
const index_t Wi = input_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[0];
const index_t X = filter_spatial_lengths[0];
const index_t InLeftPadW = input_left_pads[0];
const index_t InRightPadW = input_right_pads[0];
const index_t ConvStrideW = conv_filter_strides[0];
const index_t ConvDilationW = conv_filter_dilations[0];
const auto K0 = K / K1;
const auto in_n_wi_c_grid_desc = make_naive_tensor_descriptor_packed(make_tuple(N, Wi, C));
if constexpr(ConvBackwardDataSpecialization ==
ConvolutionBackwardDataSpecialization::Filter1x1Stride1Pad0)
{
// A: output tensor
const auto out_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(N * Wo, K)),
make_tuple(make_pass_through_transform(N * Wo),
make_unmerge_transform(make_tuple(K0, K1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}));
// B: weight tensor
const auto wei_gemmk0_gemmn_gemmk1_grid_desc =
transform_tensor_descriptor(make_naive_tensor_descriptor_packed(make_tuple(K, C)),
make_tuple(make_unmerge_transform(make_tuple(K0, K1)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// C: input tensor
const auto in_n_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(I1, Wo), make_tuple(I1, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
const auto in_gemmm_gemmn_grid_desc = transform_tensor_descriptor(
in_n_x_wo_c_grid_desc,
make_tuple(make_freeze_transform(I0),
make_merge_transform(make_tuple(N, Wo)),
make_pass_through_transform(C)),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}, Sequence<3>{}),
make_tuple(Sequence<>{}, Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
in_gemmm_gemmn_grid_desc);
}
else
{
const auto out_n_wo_k_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Wo, K));
const auto wei_k_x_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, X, C));
const auto GcdStrideDilationW = math::gcd(ConvStrideW, ConvDilationW);
const auto XTilde = ConvStrideW / GcdStrideDilationW;
const auto XDot = math::integer_divide_ceil(X, XTilde);
const auto WTilde =
Wo + math::integer_divide_ceil(ConvDilationW * (X - I1), ConvStrideW);
// only work on HTilde and WTilde that contribute to non-padding area of input tensor
const auto IWTildeSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadW - ConvDilationW * (XTilde - I1)), ConvStrideW);
const auto IWTildeSliceEnd = math::min(
WTilde, math::integer_divide_ceil(InLeftPadW + Wi - I1, ConvStrideW) + I1);
const auto WTildeSlice = IWTildeSliceEnd - IWTildeSliceBegin;
// GemmK is different for each GEMM
const auto XDotSlice = math::integer_divide_ceil(X - i_xtilde, XTilde);
// A: output tensor
const auto out_n_wop_k_grid_desc = transform_tensor_descriptor(
out_n_wo_k_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Wo, I0, I0),
make_pass_through_transform(K)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto out_n_xdot_wtilde_k_grid_desc = transform_tensor_descriptor(
out_n_wop_k_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(XDot, WTilde),
make_tuple(-ConvDilationW / GcdStrideDilationW, I1)),
make_pass_through_transform(K)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
const auto out_n_xdotslice_wtildeslice_k0_k1_grid_desc = transform_tensor_descriptor(
out_n_xdot_wtilde_k_grid_desc,
make_tuple(make_pass_through_transform(N),
make_slice_transform(XDot, I0, XDotSlice),
make_slice_transform(WTilde, IWTildeSliceBegin, WTildeSlice),
make_unmerge_transform(make_tuple(K0, K1))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3, 4>{}));
const auto out_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_n_xdotslice_wtildeslice_k0_k1_grid_desc,
make_tuple(make_merge_transform(make_tuple(XDotSlice, K0)),
make_merge_transform(make_tuple(N, WTildeSlice)),
make_pass_through_transform(K1)),
make_tuple(Sequence<1, 3>{}, Sequence<0, 2>{}, Sequence<4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
// B weight tensor
const auto wei_k_xdot_xtilde_c_grid_desc = transform_tensor_descriptor(
wei_k_x_c_grid_desc,
make_tuple(make_pass_through_transform(K),
make_embed_transform(make_tuple(XDot, XTilde),
make_tuple(ConvStrideW / GcdStrideDilationW, I1)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
const auto wei_k0_k1_xdotslice_c_grid_desc = transform_tensor_descriptor(
wei_k_xdot_xtilde_c_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(K0, K1)),
make_slice_transform(XDot, I0, XDotSlice),
make_freeze_transform(i_xtilde),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2>{}, Sequence<>{}, Sequence<3>{}));
const auto wei_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
wei_k0_k1_xdotslice_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(XDotSlice, K0)),
make_pass_through_transform(C),
make_pass_through_transform(K1)),
make_tuple(Sequence<2, 0>{}, Sequence<3>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
// C: input tensor
const auto in_n_wip_c_grid_desc = transform_tensor_descriptor(
in_n_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_n_xtilde_wtilde_c_grid_desc = transform_tensor_descriptor(
in_n_wip_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(XTilde, WTilde),
make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
const auto in_n_wtildeslice_c_grid_desc = transform_tensor_descriptor(
in_n_xtilde_wtilde_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_freeze_transform(i_xtilde),
make_slice_transform(WTilde, IWTildeSliceBegin, WTildeSlice),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<>{}, Sequence<1>{}, Sequence<2>{}));
const auto in_gemmm_gemmn_grid_desc = transform_tensor_descriptor(
in_n_wtildeslice_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, WTildeSlice)),
make_pass_through_transform(C)),
make_tuple(Sequence<0, 1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
in_gemmm_gemmn_grid_desc);
}
} // function end
template <ck::index_t NDim, typename ck::enable_if<NDim == 2, bool>::type = false>
static auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
std::vector<ck::index_t> tildes)
{
using namespace ck;
index_t i_ytilde = tildes[0];
index_t i_xtilde = tildes[1];
const index_t Hi = input_spatial_lengths[0];
const index_t Wi = input_spatial_lengths[1];
const index_t Ho = output_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[1];
const index_t Y = filter_spatial_lengths[0];
const index_t X = filter_spatial_lengths[1];
const index_t InLeftPadH = input_left_pads[0];
const index_t InLeftPadW = input_left_pads[1];
const index_t InRightPadH = input_right_pads[0];
const index_t InRightPadW = input_right_pads[1];
const index_t ConvStrideH = conv_filter_strides[0];
const index_t ConvStrideW = conv_filter_strides[1];
const index_t ConvDilationH = conv_filter_dilations[0];
const index_t ConvDilationW = conv_filter_dilations[1];
const auto K0 = K / K1;
const auto out_n_ho_wo_k_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Ho, Wo, K));
const auto wei_k_y_x_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, Y, X, C));
const auto in_n_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Hi, Wi, C));
if constexpr(ConvBackwardDataSpecialization ==
ConvolutionBackwardDataSpecialization::Filter1x1Stride1Pad0)
{
// A: output tensor
const auto out_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(N * Ho * Wo, K)),
make_tuple(make_pass_through_transform(N * Ho * Wo),
make_unmerge_transform(make_tuple(K0, K1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}));
// B: weight tensor
const auto wei_gemmk0_gemmn_gemmk1_grid_desc =
transform_tensor_descriptor(make_naive_tensor_descriptor_packed(make_tuple(K, C)),
make_tuple(make_unmerge_transform(make_tuple(K0, K1)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// C: input tensor
const auto in_n_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(I1, Ho), make_tuple(I1, ConvStrideH)),
make_embed_transform(make_tuple(I1, Wo), make_tuple(I1, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_gemmm_gemmn_grid_desc = transform_tensor_descriptor(
in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_freeze_transform(I0),
make_freeze_transform(I0),
make_merge_transform(make_tuple(N, Ho, Wo)),
make_pass_through_transform(C)),
make_tuple(Sequence<1>{}, Sequence<3>{}, Sequence<0, 2, 4>{}, Sequence<5>{}),
make_tuple(Sequence<>{}, Sequence<>{}, Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
in_gemmm_gemmn_grid_desc);
}
else
{
const auto GcdStrideDilationH = math::gcd(ConvStrideH, ConvDilationH);
const auto GcdStrideDilationW = math::gcd(ConvStrideW, ConvDilationW);
const auto YTilde = ConvStrideH / GcdStrideDilationH;
const auto XTilde = ConvStrideW / GcdStrideDilationW;
const auto YDot = math::integer_divide_ceil(Y, YTilde);
const auto XDot = math::integer_divide_ceil(X, XTilde);
const auto HTilde =
Ho + math::integer_divide_ceil(ConvDilationH * (Y - I1), ConvStrideH);
const auto WTilde =
Wo + math::integer_divide_ceil(ConvDilationW * (X - I1), ConvStrideW);
// only work on HTilde and WTilde that contribute to non-padding area of input tensor
const auto IHTildeSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadH - ConvDilationH * (YTilde - I1)), ConvStrideH);
const auto IWTildeSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadW - ConvDilationW * (XTilde - I1)), ConvStrideW);
const auto IHTildeSliceEnd = math::min(
HTilde, math::integer_divide_ceil(InLeftPadH + Hi - I1, ConvStrideH) + I1);
const auto IWTildeSliceEnd = math::min(
WTilde, math::integer_divide_ceil(InLeftPadW + Wi - I1, ConvStrideW) + I1);
const auto HTildeSlice = IHTildeSliceEnd - IHTildeSliceBegin;
const auto WTildeSlice = IWTildeSliceEnd - IWTildeSliceBegin;
// GemmK is different for each GEMM
const auto YDotSlice = math::integer_divide_ceil(Y - i_ytilde, YTilde);
const auto XDotSlice = math::integer_divide_ceil(X - i_xtilde, XTilde);
// A: output tensor
const auto out_n_hop_wop_k_grid_desc = transform_tensor_descriptor(
out_n_ho_wo_k_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Ho, I0, I0),
make_pad_transform(Wo, I0, I0),
make_pass_through_transform(K)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto out_n_ydot_htilde_xdot_wtilde_k_grid_desc = transform_tensor_descriptor(
out_n_hop_wop_k_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(YDot, HTilde),
make_tuple(-ConvDilationH / GcdStrideDilationH, I1)),
make_embed_transform(make_tuple(XDot, WTilde),
make_tuple(-ConvDilationW / GcdStrideDilationW, I1)),
make_pass_through_transform(K)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto out_n_ydotslice_htildeslice_xdotslice_wtildeslice_k0_k1_grid_desc =
transform_tensor_descriptor(
out_n_ydot_htilde_xdot_wtilde_k_grid_desc,
make_tuple(make_pass_through_transform(N),
make_slice_transform(YDot, I0, YDotSlice),
make_slice_transform(HTilde, IHTildeSliceBegin, HTildeSlice),
make_slice_transform(XDot, I0, XDotSlice),
make_slice_transform(WTilde, IWTildeSliceBegin, WTildeSlice),
make_unmerge_transform(make_tuple(K0, K1))),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{}),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5, 6>{}));
const auto out_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_n_ydotslice_htildeslice_xdotslice_wtildeslice_k0_k1_grid_desc,
make_tuple(make_merge_transform(make_tuple(YDotSlice, XDotSlice, K0)),
make_merge_transform(make_tuple(N, HTildeSlice, WTildeSlice)),
make_pass_through_transform(K1)),
make_tuple(Sequence<1, 3, 5>{}, Sequence<0, 2, 4>{}, Sequence<6>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
// B weight tensor
const auto wei_k_ydot_ytilde_xdot_xtilde_c_grid_desc = transform_tensor_descriptor(
wei_k_y_x_c_grid_desc,
make_tuple(make_pass_through_transform(K),
make_embed_transform(make_tuple(YDot, YTilde),
make_tuple(ConvStrideH / GcdStrideDilationH, I1)),
make_embed_transform(make_tuple(XDot, XTilde),
make_tuple(ConvStrideW / GcdStrideDilationW, I1)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto wei_k0_k1_ydotslice_xdotslice_c_grid_desc =
transform_tensor_descriptor(wei_k_ydot_ytilde_xdot_xtilde_c_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(K0, K1)),
make_slice_transform(YDot, I0, YDotSlice),
make_slice_transform(XDot, I0, XDotSlice),
make_freeze_transform(i_ytilde),
make_freeze_transform(i_xtilde),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<3>{},
Sequence<2>{},
Sequence<4>{},
Sequence<5>{}),
make_tuple(Sequence<0, 1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<>{},
Sequence<>{},
Sequence<4>{}));
const auto wei_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
wei_k0_k1_ydotslice_xdotslice_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(YDotSlice, XDotSlice, K0)),
make_pass_through_transform(C),
make_pass_through_transform(K1)),
make_tuple(Sequence<2, 3, 0>{}, Sequence<4>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
// C: input tensor
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_ytilde_htilde_xtilde_wtilde_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(YTilde, HTilde),
make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(XTilde, WTilde),
make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_n_htildeslice_wtildeslice_c_grid_desc = transform_tensor_descriptor(
in_n_ytilde_htilde_xtilde_wtilde_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_freeze_transform(i_ytilde),
make_slice_transform(HTilde, IHTildeSliceBegin, HTildeSlice),
make_freeze_transform(i_xtilde),
make_slice_transform(WTilde, IWTildeSliceBegin, WTildeSlice),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{}),
make_tuple(Sequence<0>{},
Sequence<>{},
Sequence<1>{},
Sequence<>{},
Sequence<2>{},
Sequence<3>{}));
const auto in_gemmm_gemmn_grid_desc = transform_tensor_descriptor(
in_n_htildeslice_wtildeslice_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, HTildeSlice, WTildeSlice)),
make_pass_through_transform(C)),
make_tuple(Sequence<0, 1, 2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
in_gemmm_gemmn_grid_desc);
}
} // function end
template <ck::index_t NDim, typename ck::enable_if<NDim == 3, bool>::type = false>
static auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
std::vector<ck::index_t> tildes)
{
using namespace ck;
const index_t i_ztilde = tildes[0];
const index_t i_ytilde = tildes[1];
const index_t i_xtilde = tildes[2];
const index_t Di = input_spatial_lengths[0];
const index_t Hi = input_spatial_lengths[1];
const index_t Wi = input_spatial_lengths[2];
const index_t Do = output_spatial_lengths[0];
const index_t Ho = output_spatial_lengths[1];
const index_t Wo = output_spatial_lengths[2];
const index_t Z = filter_spatial_lengths[0];
const index_t Y = filter_spatial_lengths[1];
const index_t X = filter_spatial_lengths[2];
const index_t InLeftPadD = input_left_pads[0];
const index_t InLeftPadH = input_left_pads[1];
const index_t InLeftPadW = input_left_pads[2];
const index_t InRightPadD = input_right_pads[0];
const index_t InRightPadH = input_right_pads[1];
const index_t InRightPadW = input_right_pads[2];
const index_t ConvStrideD = conv_filter_strides[0];
const index_t ConvStrideH = conv_filter_strides[1];
const index_t ConvStrideW = conv_filter_strides[2];
const index_t ConvDilationD = conv_filter_dilations[0];
const index_t ConvDilationH = conv_filter_dilations[1];
const index_t ConvDilationW = conv_filter_dilations[2];
const auto K0 = K / K1;
const auto out_n_do_ho_wo_k_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Do, Ho, Wo, K));
const auto wei_k_z_y_x_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, Z, Y, X, C));
const auto in_n_di_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Di, Hi, Wi, C));
if constexpr(ConvBackwardDataSpecialization ==
ConvolutionBackwardDataSpecialization::Filter1x1Stride1Pad0)
{
// A: output tensor
const auto out_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(N * Do * Ho * Wo, K)),
make_tuple(make_pass_through_transform(N * Do * Ho * Wo),
make_unmerge_transform(make_tuple(K0, K1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}));
// B: weight tensor
const auto wei_gemmk0_gemmn_gemmk1_grid_desc =
transform_tensor_descriptor(make_naive_tensor_descriptor_packed(make_tuple(K, C)),
make_tuple(make_unmerge_transform(make_tuple(K0, K1)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// C: input tensor
const auto in_n_z_do_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_di_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(I1, Do), make_tuple(I1, ConvStrideD)),
make_embed_transform(make_tuple(I1, Ho), make_tuple(I1, ConvStrideH)),
make_embed_transform(make_tuple(I1, Wo), make_tuple(I1, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{},
Sequence<1, 2>{},
Sequence<3, 4>{},
Sequence<5, 6>{},
Sequence<7>{}));
const auto in_gemmm_gemmn_grid_desc = transform_tensor_descriptor(
in_n_z_do_y_ho_x_wo_c_grid_desc,
make_tuple(make_freeze_transform(I0),
make_freeze_transform(I0),
make_freeze_transform(I0),
make_merge_transform(make_tuple(N, Do, Ho, Wo)),
make_pass_through_transform(C)),
make_tuple(Sequence<1>{},
Sequence<3>{},
Sequence<5>{},
Sequence<0, 2, 4, 6>{},
Sequence<7>{}),
make_tuple(Sequence<>{}, Sequence<>{}, Sequence<>{}, Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
in_gemmm_gemmn_grid_desc);
}
else
{
const auto GcdStrideDilationD = math::gcd(ConvStrideD, ConvDilationD);
const auto GcdStrideDilationH = math::gcd(ConvStrideH, ConvDilationH);
const auto GcdStrideDilationW = math::gcd(ConvStrideW, ConvDilationW);
const auto ZTilde = ConvStrideD / GcdStrideDilationD;
const auto YTilde = ConvStrideH / GcdStrideDilationH;
const auto XTilde = ConvStrideW / GcdStrideDilationW;
const auto ZDot = math::integer_divide_ceil(Z, ZTilde);
const auto YDot = math::integer_divide_ceil(Y, YTilde);
const auto XDot = math::integer_divide_ceil(X, XTilde);
const auto DTilde =
Do + math::integer_divide_ceil(ConvDilationD * (Z - I1), ConvStrideD);
const auto HTilde =
Ho + math::integer_divide_ceil(ConvDilationH * (Y - I1), ConvStrideH);
const auto WTilde =
Wo + math::integer_divide_ceil(ConvDilationW * (X - I1), ConvStrideW);
// only work on HTilde and WTilde that contribute to non-padding area of input tensor
const auto IDTildeSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadD - ConvDilationD * (ZTilde - I1)), ConvStrideD);
const auto IHTildeSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadH - ConvDilationH * (YTilde - I1)), ConvStrideH);
const auto IWTildeSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadW - ConvDilationW * (XTilde - I1)), ConvStrideW);
const auto IDTildeSliceEnd = math::min(
DTilde, math::integer_divide_ceil(InLeftPadD + Di - I1, ConvStrideD) + I1);
const auto IHTildeSliceEnd = math::min(
HTilde, math::integer_divide_ceil(InLeftPadH + Hi - I1, ConvStrideH) + I1);
const auto IWTildeSliceEnd = math::min(
WTilde, math::integer_divide_ceil(InLeftPadW + Wi - I1, ConvStrideW) + I1);
const auto DTildeSlice = IDTildeSliceEnd - IDTildeSliceBegin;
const auto HTildeSlice = IHTildeSliceEnd - IHTildeSliceBegin;
const auto WTildeSlice = IWTildeSliceEnd - IWTildeSliceBegin;
// GemmK is different for each GEMM
const auto ZDotSlice = math::integer_divide_ceil(Z - i_ztilde, ZTilde);
const auto YDotSlice = math::integer_divide_ceil(Y - i_ytilde, YTilde);
const auto XDotSlice = math::integer_divide_ceil(X - i_xtilde, XTilde);
// A: output tensor
const auto out_n_dop_hop_wop_k_grid_desc = transform_tensor_descriptor(
out_n_do_ho_wo_k_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Do, I0, I0),
make_pad_transform(Ho, I0, I0),
make_pad_transform(Wo, I0, I0),
make_pass_through_transform(K)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto out_n_zdot_dtilde_ydot_htilde_xdot_wtilde_k_grid_desc =
transform_tensor_descriptor(
out_n_dop_hop_wop_k_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(ZDot, DTilde),
make_tuple(-ConvDilationD / GcdStrideDilationD, I1)),
make_embed_transform(make_tuple(YDot, HTilde),
make_tuple(-ConvDilationH / GcdStrideDilationH, I1)),
make_embed_transform(make_tuple(XDot, WTilde),
make_tuple(-ConvDilationW / GcdStrideDilationW, I1)),
make_pass_through_transform(K)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{},
Sequence<1, 2>{},
Sequence<3, 4>{},
Sequence<5, 6>{},
Sequence<7>{}));
const auto
out_n_zdotslice_dtildeslice_ydotslice_htildeslice_xdotslice_wtildeslice_k0_k1_grid_desc =
transform_tensor_descriptor(
out_n_zdot_dtilde_ydot_htilde_xdot_wtilde_k_grid_desc,
make_tuple(make_pass_through_transform(N),
make_slice_transform(ZDot, I0, ZDotSlice),
make_slice_transform(DTilde, IDTildeSliceBegin, DTildeSlice),
make_slice_transform(YDot, I0, YDotSlice),
make_slice_transform(HTilde, IHTildeSliceBegin, HTildeSlice),
make_slice_transform(XDot, I0, XDotSlice),
make_slice_transform(WTilde, IWTildeSliceBegin, WTildeSlice),
make_unmerge_transform(make_tuple(K0, K1))),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{},
Sequence<6>{},
Sequence<7>{}),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{},
Sequence<6>{},
Sequence<7, 8>{}));
const auto out_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_n_zdotslice_dtildeslice_ydotslice_htildeslice_xdotslice_wtildeslice_k0_k1_grid_desc,
make_tuple(
make_merge_transform(make_tuple(ZDotSlice, YDotSlice, XDotSlice, K0)),
make_merge_transform(make_tuple(N, DTildeSlice, HTildeSlice, WTildeSlice)),
make_pass_through_transform(K1)),
make_tuple(Sequence<1, 3, 5, 7>{}, Sequence<0, 2, 4, 6>{}, Sequence<8>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
// B weight tensor
const auto wei_k_zdot_ztilde_ydot_ytilde_xdot_xtilde_c_grid_desc =
transform_tensor_descriptor(
wei_k_z_y_x_c_grid_desc,
make_tuple(
make_pass_through_transform(K),
make_embed_transform(make_tuple(ZDot, ZTilde),
make_tuple(ConvStrideD / GcdStrideDilationD, I1)),
make_embed_transform(make_tuple(YDot, YTilde),
make_tuple(ConvStrideH / GcdStrideDilationH, I1)),
make_embed_transform(make_tuple(XDot, XTilde),
make_tuple(ConvStrideW / GcdStrideDilationW, I1)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{},
Sequence<1, 2>{},
Sequence<3, 4>{},
Sequence<5, 6>{},
Sequence<7>{}));
const auto wei_k0_k1_zdotslice_ydotslice_xdotslice_c_grid_desc =
transform_tensor_descriptor(wei_k_zdot_ztilde_ydot_ytilde_xdot_xtilde_c_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(K0, K1)),
make_slice_transform(ZDot, I0, ZDotSlice),
make_slice_transform(YDot, I0, YDotSlice),
make_slice_transform(XDot, I0, XDotSlice),
make_freeze_transform(i_ztilde),
make_freeze_transform(i_ytilde),
make_freeze_transform(i_xtilde),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<3>{},
Sequence<5>{},
Sequence<2>{},
Sequence<4>{},
Sequence<6>{},
Sequence<7>{}),
make_tuple(Sequence<0, 1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<>{},
Sequence<>{},
Sequence<>{},
Sequence<5>{}));
const auto wei_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
wei_k0_k1_zdotslice_ydotslice_xdotslice_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(ZDotSlice, YDotSlice, XDotSlice, K0)),
make_pass_through_transform(C),
make_pass_through_transform(K1)),
make_tuple(Sequence<2, 3, 4, 0>{}, Sequence<5>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
// C: input tensor
const auto in_n_dip_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_di_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Di, InLeftPadD, InRightPadD),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_n_ztilde_dtilde_ytilde_htilde_xtilde_wtilde_c_grid_desc =
transform_tensor_descriptor(
in_n_dip_hip_wip_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(ZTilde, DTilde),
make_tuple(ConvDilationD, ConvStrideD)),
make_embed_transform(make_tuple(YTilde, HTilde),
make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(XTilde, WTilde),
make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{},
Sequence<1, 2>{},
Sequence<3, 4>{},
Sequence<5, 6>{},
Sequence<7>{}));
const auto in_n_dtildeslice_htildeslice_wtildeslice_c_grid_desc =
transform_tensor_descriptor(
in_n_ztilde_dtilde_ytilde_htilde_xtilde_wtilde_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_freeze_transform(i_ztilde),
make_slice_transform(DTilde, IDTildeSliceBegin, DTildeSlice),
make_freeze_transform(i_ytilde),
make_slice_transform(HTilde, IHTildeSliceBegin, HTildeSlice),
make_freeze_transform(i_xtilde),
make_slice_transform(WTilde, IWTildeSliceBegin, WTildeSlice),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{},
Sequence<6>{},
Sequence<7>{}),
make_tuple(Sequence<0>{},
Sequence<>{},
Sequence<1>{},
Sequence<>{},
Sequence<2>{},
Sequence<>{},
Sequence<3>{},
Sequence<4>{}));
const auto in_gemmm_gemmn_grid_desc = transform_tensor_descriptor(
in_n_dtildeslice_htildeslice_wtildeslice_c_grid_desc,
make_tuple(
make_merge_transform(make_tuple(N, DTildeSlice, HTildeSlice, WTildeSlice)),
make_pass_through_transform(C)),
make_tuple(Sequence<0, 1, 2, 3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
in_gemmm_gemmn_grid_desc);
}
} // function end
template <ck::index_t NDim, typename ck::enable_if<NDim == 1, bool>::type = false>
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<1>(
1, 1, 1, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {0});
}
template <ck::index_t NDim, typename ck::enable_if<NDim == 2, bool>::type = false>
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<2>(
1, 1, 1, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {0, 0});
}
template <ck::index_t NDim, typename ck::enable_if<NDim == 3, bool>::type = false>
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<3>(1,
1,
1,
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{0, 0, 0});
}
using ABCGridDescs = decltype(GetABCGridDesc<NDimSpatial>());
using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I0])>;
using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I1])>;
using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>;
// GridwiseGemm
using GridwiseGemm =
GridwiseGemmDl_km_kn_mn_v1r3<BlockSize,
ADataType,
AccDataType,
CDataType,
InMemoryDataOperationEnum::Set,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
MPerBlock,
NPerBlock,
K0PerBlock,
K1,
M1PerThread,
N1PerThread,
KPerThread,
M1N1ThreadClusterM1Xs,
M1N1ThreadClusterN1Xs,
ABlockTransferThreadSliceLengths_K0_M0_M1_K1,
ABlockTransferThreadClusterLengths_K0_M0_M1_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1,
ABlockTransferSrcVectorTensorContiguousDimOrder,
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1,
BBlockTransferThreadSliceLengths_K0_N0_N1_K1,
BBlockTransferThreadClusterLengths_K0_N0_N1_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1,
BBlockTransferSrcVectorTensorContiguousDimOrder,
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector>;
using AGridDesc_K0_M0_M1_K1 =
decltype(GridwiseGemm::MakeAGridDescriptor_K0_M0_M1_K1(AGridDesc_K0_M_K1{}));
using BGridDesc_K0_N0_N1_K1 =
decltype(GridwiseGemm::MakeBGridDescriptor_K0_N0_N1_K1(BGridDesc_K0_N_K1{}));
using CGridDesc_M0_M10_M11_N0_N10_N11 =
decltype(GridwiseGemm::MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(CGridDesc_M_N{}));
using DefaultBlock2CTileMap =
decltype(GridwiseGemm::MakeDefaultBlock2CTileMap(CGridDesc_M_N{}));
// Argument
struct Argument : public BaseArgument
{
Argument(InDataType* p_in_grid,
const WeiDataType* p_wei_grid,
const OutDataType* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
: p_a_grid_{p_out_grid},
p_b_grid_{p_wei_grid},
p_c_grid_{p_in_grid},
a_element_op_{out_element_op},
b_element_op_{wei_element_op},
c_element_op_{in_element_op},
Conv_N_{N},
Conv_K_{K},
Conv_C_{C},
input_spatial_lengths_{input_spatial_lengths},
filter_spatial_lengths_{filter_spatial_lengths},
output_spatial_lengths_{output_spatial_lengths},
conv_filter_strides_{conv_filter_strides},
conv_filter_dilations_{conv_filter_dilations},
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads}
{
CreateABCDesc<NDimSpatial>();
}
template <ck::index_t NDim, typename ck::enable_if<NDim == 1, bool>::type = false>
void CreateABCDesc()
{
const index_t ConvStrideW = conv_filter_strides_[0];
const index_t ConvDilationW = conv_filter_dilations_[0];
const auto GcdStrideDilationW = math::gcd(ConvStrideW, ConvDilationW);
const auto XTilde = ConvStrideW / GcdStrideDilationW;
const index_t X = filter_spatial_lengths_[0];
for(index_t i_xtilde = 0; i_xtilde < XTilde; ++i_xtilde)
{
// check slice is valid
const auto XDotSlice = math::integer_divide_ceil(X - i_xtilde, XTilde);
if(XDotSlice <= 0)
{
continue;
}
const auto descs =
DeviceOp::MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<NDimSpatial>(
Conv_N_,
Conv_K_,
Conv_C_,
input_spatial_lengths_,
filter_spatial_lengths_,
output_spatial_lengths_,
conv_filter_strides_,
conv_filter_dilations_,
input_left_pads_,
input_right_pads_,
{i_xtilde});
a_grid_desc_k0_m_k1_container_.push_back(descs[I0]);
b_grid_desc_k0_n_k1_container_.push_back(descs[I1]);
c_grid_desc_m_n_container_.push_back(descs[I2]);
if(GridwiseGemm::CheckValidity(descs[I0], descs[I1], descs[I2]))
{
a_grid_desc_k0_m0_m1_k1_container_.push_back(
GridwiseGemm::MakeAGridDescriptor_K0_M0_M1_K1(descs[I0]));
b_grid_desc_k0_n0_n1_k1_container_.push_back(
GridwiseGemm::MakeBGridDescriptor_K0_N0_N1_K1(descs[I1]));
c_grid_desc_m0_m10_m11_n0_n10_n11_container_.push_back(
GridwiseGemm::MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(descs[I2]));
block_2_ctile_map_container_.push_back(
GridwiseGemm::MakeDefaultBlock2CTileMap(descs[I2]));
}
}
}
template <ck::index_t NDim, typename ck::enable_if<NDim == 2, bool>::type = false>
void CreateABCDesc()
{
const index_t ConvStrideH = conv_filter_strides_[0];
const index_t ConvStrideW = conv_filter_strides_[1];
const index_t ConvDilationH = conv_filter_dilations_[0];
const index_t ConvDilationW = conv_filter_dilations_[1];
const auto GcdStrideDilationH = math::gcd(ConvStrideH, ConvDilationH);
const auto GcdStrideDilationW = math::gcd(ConvStrideW, ConvDilationW);
const auto YTilde = ConvStrideH / GcdStrideDilationH;
const auto XTilde = ConvStrideW / GcdStrideDilationW;
const index_t Y = filter_spatial_lengths_[0];
const index_t X = filter_spatial_lengths_[1];
for(index_t i_ytilde = 0; i_ytilde < YTilde; ++i_ytilde)
{
for(index_t i_xtilde = 0; i_xtilde < XTilde; ++i_xtilde)
{
// check slice is valid
const auto YDotSlice = math::integer_divide_ceil(Y - i_ytilde, YTilde);
const auto XDotSlice = math::integer_divide_ceil(X - i_xtilde, XTilde);
if(YDotSlice * XDotSlice <= 0)
{
continue;
}
const auto descs =
DeviceOp::MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<NDimSpatial>(
Conv_N_,
Conv_K_,
Conv_C_,
input_spatial_lengths_,
filter_spatial_lengths_,
output_spatial_lengths_,
conv_filter_strides_,
conv_filter_dilations_,
input_left_pads_,
input_right_pads_,
{i_ytilde, i_xtilde});
a_grid_desc_k0_m_k1_container_.push_back(descs[I0]);
b_grid_desc_k0_n_k1_container_.push_back(descs[I1]);
c_grid_desc_m_n_container_.push_back(descs[I2]);
if(GridwiseGemm::CheckValidity(descs[I0], descs[I1], descs[I2]))
{
a_grid_desc_k0_m0_m1_k1_container_.push_back(
GridwiseGemm::MakeAGridDescriptor_K0_M0_M1_K1(descs[I0]));
b_grid_desc_k0_n0_n1_k1_container_.push_back(
GridwiseGemm::MakeBGridDescriptor_K0_N0_N1_K1(descs[I1]));
c_grid_desc_m0_m10_m11_n0_n10_n11_container_.push_back(
GridwiseGemm::MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(descs[I2]));
block_2_ctile_map_container_.push_back(
GridwiseGemm::MakeDefaultBlock2CTileMap(descs[I2]));
}
}
}
}
template <ck::index_t NDim, typename ck::enable_if<NDim == 3, bool>::type = false>
void CreateABCDesc()
{
const index_t ConvStrideD = conv_filter_strides_[0];
const index_t ConvStrideH = conv_filter_strides_[1];
const index_t ConvStrideW = conv_filter_strides_[2];
const index_t ConvDilationD = conv_filter_dilations_[0];
const index_t ConvDilationH = conv_filter_dilations_[1];
const index_t ConvDilationW = conv_filter_dilations_[2];
const auto GcdStrideDilationD = math::gcd(ConvStrideD, ConvDilationD);
const auto GcdStrideDilationH = math::gcd(ConvStrideH, ConvDilationH);
const auto GcdStrideDilationW = math::gcd(ConvStrideW, ConvDilationW);
const auto ZTilde = ConvStrideD / GcdStrideDilationD;
const auto YTilde = ConvStrideH / GcdStrideDilationH;
const auto XTilde = ConvStrideW / GcdStrideDilationW;
const index_t Z = filter_spatial_lengths_[0];
const index_t Y = filter_spatial_lengths_[1];
const index_t X = filter_spatial_lengths_[2];
for(index_t i_ztilde = 0; i_ztilde < ZTilde; ++i_ztilde)
{
for(index_t i_ytilde = 0; i_ytilde < YTilde; ++i_ytilde)
{
for(index_t i_xtilde = 0; i_xtilde < XTilde; ++i_xtilde)
{
// check slice is valid
const auto ZDotSlice = math::integer_divide_ceil(Z - i_ztilde, ZTilde);
const auto YDotSlice = math::integer_divide_ceil(Y - i_ytilde, YTilde);
const auto XDotSlice = math::integer_divide_ceil(X - i_xtilde, XTilde);
if(ZDotSlice * YDotSlice * XDotSlice <= 0)
{
continue;
}
const auto descs =
DeviceOp::MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<NDimSpatial>(
Conv_N_,
Conv_K_,
Conv_C_,
input_spatial_lengths_,
filter_spatial_lengths_,
output_spatial_lengths_,
conv_filter_strides_,
conv_filter_dilations_,
input_left_pads_,
input_right_pads_,
{i_ztilde, i_ytilde, i_xtilde});
a_grid_desc_k0_m_k1_container_.push_back(descs[I0]);
b_grid_desc_k0_n_k1_container_.push_back(descs[I1]);
c_grid_desc_m_n_container_.push_back(descs[I2]);
if(GridwiseGemm::CheckValidity(descs[I0], descs[I1], descs[I2]))
{
a_grid_desc_k0_m0_m1_k1_container_.push_back(
GridwiseGemm::MakeAGridDescriptor_K0_M0_M1_K1(descs[I0]));
b_grid_desc_k0_n0_n1_k1_container_.push_back(
GridwiseGemm::MakeBGridDescriptor_K0_N0_N1_K1(descs[I1]));
c_grid_desc_m0_m10_m11_n0_n10_n11_container_.push_back(
GridwiseGemm::MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(descs[I2]));
block_2_ctile_map_container_.push_back(
GridwiseGemm::MakeDefaultBlock2CTileMap(descs[I2]));
}
}
}
}
}
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
std::vector<AGridDesc_K0_M_K1> a_grid_desc_k0_m_k1_container_;
std::vector<BGridDesc_K0_N_K1> b_grid_desc_k0_n_k1_container_;
std::vector<CGridDesc_M_N> c_grid_desc_m_n_container_;
std::vector<AGridDesc_K0_M0_M1_K1> a_grid_desc_k0_m0_m1_k1_container_;
std::vector<BGridDesc_K0_N0_N1_K1> b_grid_desc_k0_n0_n1_k1_container_;
std::vector<CGridDesc_M0_M10_M11_N0_N10_N11> c_grid_desc_m0_m10_m11_n0_n10_n11_container_;
std::vector<DefaultBlock2CTileMap> block_2_ctile_map_container_;
// element-wise op
OutElementwiseOperation a_element_op_;
WeiElementwiseOperation b_element_op_;
InElementwiseOperation c_element_op_;
// for checking IsSupportedArgument()
index_t Conv_N_;
index_t Conv_K_;
index_t Conv_C_;
std::vector<ck::index_t> input_spatial_lengths_;
std::vector<ck::index_t> filter_spatial_lengths_;
std::vector<ck::index_t> output_spatial_lengths_;
std::vector<ck::index_t> conv_filter_strides_;
std::vector<ck::index_t> conv_filter_dilations_;
std::vector<ck::index_t> input_left_pads_;
std::vector<ck::index_t> input_right_pads_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
float ave_time = 0;
for(size_t i = 0; i < arg.a_grid_desc_k0_m_k1_container_.size(); i++)
{
{
std::cout << "arg.a_grid_desc_k0_m_k1_container_{"
<< arg.a_grid_desc_k0_m_k1_container_[i].GetLength(I0) << ", "
<< arg.a_grid_desc_k0_m_k1_container_[i].GetLength(I1) << ", "
<< arg.a_grid_desc_k0_m_k1_container_[i].GetLength(I2) << "}"
<< std::endl;
std::cout << "arg.b_grid_desc_k0_n_k1_container_{"
<< arg.b_grid_desc_k0_n_k1_container_[i].GetLength(I0) << ", "
<< arg.b_grid_desc_k0_n_k1_container_[i].GetLength(I1) << ", "
<< arg.b_grid_desc_k0_n_k1_container_[i].GetLength(I2) << "}"
<< std::endl;
std::cout << "arg.c_grid_desc_m_n_container_{ "
<< arg.c_grid_desc_m_n_container_[i].GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_container_[i].GetLength(I1) << "}"
<< std::endl;
std::cout << "arg.c_grid_desc_m0_m10_m11_n0_n10_n11_container_( "
<< arg.c_grid_desc_m0_m10_m11_n0_n10_n11_container_[i].GetLength(I0)
<< ", "
<< arg.c_grid_desc_m0_m10_m11_n0_n10_n11_container_[i].GetLength(I1)
<< ", "
<< arg.c_grid_desc_m0_m10_m11_n0_n10_n11_container_[i].GetLength(I2)
<< ", "
<< arg.c_grid_desc_m0_m10_m11_n0_n10_n11_container_[i].GetLength(I3)
<< ", "
<< arg.c_grid_desc_m0_m10_m11_n0_n10_n11_container_[i].GetLength(I4)
<< ", "
<< arg.c_grid_desc_m0_m10_m11_n0_n10_n11_container_[i].GetLength(I5)
<< " ) " << std::endl;
}
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_container_[i],
arg.b_grid_desc_k0_n_k1_container_[i],
arg.c_grid_desc_m_n_container_[i]))
{
throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v3r1 has invalid setting");
}
const index_t grid_size = arg.block_2_ctile_map_container_[i].CalculateGridSize(
arg.c_grid_desc_m_n_container_[i]);
auto launch_kernel = [&](auto has_main_k_block_loop,
auto has_double_tail_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
constexpr bool has_double_loop = has_double_tail_k_block_loop;
const auto kernel = kernel_gemm_dl_v1r3<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M0_M1_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N0_N1_K1>,
remove_reference_t<DeviceOp::CGridDesc_M0_M10_M11_N0_N10_N11>,
remove_reference_t<DeviceOp::DefaultBlock2CTileMap>,
has_main_loop,
has_double_loop>;
ave_time +=
launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_k0_m0_m1_k1_container_[i],
arg.b_grid_desc_k0_n0_n1_k1_container_[i],
arg.c_grid_desc_m0_m10_m11_n0_n10_n11_container_[i],
arg.block_2_ctile_map_container_[i]);
};
const auto K0 = arg.a_grid_desc_k0_m0_m1_k1_container_[i].GetLength(I0);
const bool has_main_k_block_loop = GridwiseGemm::CalculateHasMainKBlockLoop(K0);
const bool has_double_tail_k_block_loop =
GridwiseGemm::CalculateHasDoubleTailKBlockLoop(K0);
if(has_main_k_block_loop && has_double_tail_k_block_loop)
{
launch_kernel(integral_constant<bool, true>{}, integral_constant<bool, true>{});
}
else if(has_main_k_block_loop && !has_double_tail_k_block_loop)
{
launch_kernel(integral_constant<bool, true>{},
integral_constant<bool, false>{});
}
else if(!has_main_k_block_loop && has_double_tail_k_block_loop)
{
launch_kernel(integral_constant<bool, false>{},
integral_constant<bool, true>{});
}
else
{
launch_kernel(integral_constant<bool, false>{},
integral_constant<bool, false>{});
}
}
return ave_time;
}
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
// check device
if(!(ck::get_device_name() == "gfx906" || ck::get_device_name() == "gfx1030"))
{
return false;
}
if constexpr(ConvBackwardDataSpecialization ==
ConvolutionBackwardDataSpecialization::Filter1x1Stride1Pad0)
{
// check if it's 1x1, stride=1 pad = 0 conv
for(int i = 0; i < NDimSpatial; i++)
{
if(!(arg.filter_spatial_lengths_[i] == 1 && arg.conv_filter_strides_[i] == 1 &&
arg.input_left_pads_[i] == 0 && arg.input_right_pads_[i] == 0))
{
return false;
}
}
}
// matrix A
{
auto srcVectorLengths = ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1{};
if(srcVectorLengths[I1] != 1 || srcVectorLengths[I2] != 1)
{
return false;
}
if(K1 % srcVectorLengths[I3] != 0 || K0PerBlock % srcVectorLengths[I0] != 0)
{
return false;
}
const index_t K = arg.Conv_K_;
if(K % (srcVectorLengths[I0] * srcVectorLengths[I3]) != 0)
{
return false;
}
}
// matrix B
{
auto srcLoadLenghts = BBlockTransferThreadSliceLengths_K0_N0_N1_K1{};
auto srcVectorLengths = BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1{};
if(srcVectorLengths[I0] != 1 || srcVectorLengths[I3] != 1)
{
return false;
}
if(srcLoadLenghts[I1] % srcVectorLengths[I1] != 0 ||
srcLoadLenghts[I2] % srcVectorLengths[I2] != 0)
{
return false;
}
const index_t C = arg.Conv_K_;
if(C % (srcVectorLengths[I1] * srcVectorLengths[I2]) != 0)
{
return false;
}
}
// vector store C matrix into global memory
if(!(arg.Conv_C_ % CThreadTransferDstScalarPerVector == 0))
{
std::cout << "Not surpport,because: arg.Conv_C_ % CThreadTransferDstScalarPerVector = "
<< arg.Conv_C_ % CThreadTransferDstScalarPerVector << std::endl;
return false;
}
// Gridwise GEMM size
for(std::size_t i = 0; i < arg.a_grid_desc_k0_m_k1_container_.size(); i++)
{
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_container_[i],
arg.b_grid_desc_k0_n_k1_container_[i],
arg.c_grid_desc_m_n_container_[i]))
{
return false;
}
}
return true;
}
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(InDataType* p_in_grid,
const WeiDataType* p_wei_grid,
const OutDataType* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
{
return Argument{p_in_grid,
p_wei_grid,
p_out_grid,
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
std::unique_ptr<BaseArgument>
MakeArgumentPointer(void* p_in_grid,
const void* p_wei_grid,
const void* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op) override
{
return std::make_unique<Argument>(static_cast<InDataType*>(p_in_grid),
static_cast<const WeiDataType*>(p_wei_grid),
static_cast<const OutDataType*>(p_out_grid),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
}
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceConvNdBwdDataNwcKxcNwk_Dl"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock
<< ">";
if constexpr(ConvBackwardDataSpecialization ==
ConvolutionBackwardDataSpecialization::Filter1x1Stride1Pad0){
str<< " Filter1x1Stride1Pad0";
}
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -116,6 +116,10 @@ __global__ void ...@@ -116,6 +116,10 @@ __global__ void
ignore = batch_count; ignore = batch_count;
ignore = block_2_ctile_map; ignore = block_2_ctile_map;
ignore = compute_ptr_offset_of_batch; ignore = compute_ptr_offset_of_batch;
compute_ptr_offset_of_batch.GetAPtrOffset(0);
compute_ptr_offset_of_batch.GetBPtrOffset(0);
compute_ptr_offset_of_batch.GetCPtrOffset(0);
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__)) #endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
} }
......
...@@ -22,6 +22,7 @@ ...@@ -22,6 +22,7 @@
#include "ck/host_utility/device_prop.hpp" #include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp" #include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/io.hpp" #include "ck/host_utility/io.hpp"
#include "ck/library/utility/numeric.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -410,10 +411,9 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle ...@@ -410,10 +411,9 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
{ {
const index_t N = r_g_n_wos_lengths[1]; const index_t N = r_g_n_wos_lengths[1];
const index_t NHoWo = N * std::accumulate(r_g_n_wos_lengths.begin() + 2, const index_t NHoWo =
r_g_n_wos_lengths.begin() + 2 + NDimSpatial, N * ck::accumulate_n<index_t>(
index_t{1}, r_g_n_wos_lengths.begin() + 2, NDimSpatial, 1, std::multiplies<>());
std::multiplies<index_t>());
const auto r_grid_desc_mraw = make_naive_tensor_descriptor_packed(make_tuple(NHoWo)); const auto r_grid_desc_mraw = make_naive_tensor_descriptor_packed(make_tuple(NHoWo));
...@@ -435,10 +435,9 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle ...@@ -435,10 +435,9 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
const index_t WoStride = r_g_n_wos_strides[NDimSpatial + 2]; const index_t WoStride = r_g_n_wos_strides[NDimSpatial + 2];
const index_t NHoWo = N * std::accumulate(r_g_n_wos_lengths.begin() + 2, const index_t NHoWo =
r_g_n_wos_lengths.begin() + 2 + NDimSpatial, N * ck::accumulate_n<index_t>(
index_t{1}, r_g_n_wos_lengths.begin() + 2, NDimSpatial, 1, std::multiplies<>());
std::multiplies<index_t>());
const auto r_grid_desc_mraw = const auto r_grid_desc_mraw =
make_naive_tensor_descriptor(make_tuple(NHoWo), make_tuple(WoStride)); make_naive_tensor_descriptor(make_tuple(NHoWo), make_tuple(WoStride));
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment