Commit 0f1e8187 authored by Jing Zhang's avatar Jing Zhang
Browse files

Merge remote-tracking branch 'origin/develop' into simple_gemm_dl

parents e5863fd6 b0568b72
......@@ -17,15 +17,18 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/conv_tensor_rearrange_op.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/host_utility/io.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// Image to column for input layout NDHWC:
// input : image converted to the gemm problem [N * Do * Ho * Wo, Z * Y * X * C]
// output : image [N, Di, Hi, Wi, C]
// Column to Image:
// input : gemm form [G, N * Do * Ho * Wo, Z * Y * X * C]
// output : input image [G, N, Di, Hi, Wi, C]
// input : gemm form [N * Do * Ho * Wo, G, Z * Y * X * C]
// output : input image [N, Di, Hi, Wi, G, C]
template <index_t NDimSpatial,
typename ImageLayout,
typename InputDataType,
......@@ -43,6 +46,14 @@ struct DeviceColumnToImageImpl
OutputDataType,
conv_tensor_rearrange_op::ColumnToImage>
{
static constexpr bool is_NSpatialGC =
std::is_same_v<ImageLayout, tensor_layout::convolution::NWGC> ||
std::is_same_v<ImageLayout, tensor_layout::convolution::NHWGC> ||
std::is_same_v<ImageLayout, tensor_layout::convolution::NDHWGC>;
static constexpr bool is_GNSpatialC =
std::is_same_v<ImageLayout, tensor_layout::convolution::GNWC> ||
std::is_same_v<ImageLayout, tensor_layout::convolution::GNHWC> ||
std::is_same_v<ImageLayout, tensor_layout::convolution::GNDHWC>;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
......@@ -90,7 +101,7 @@ struct DeviceColumnToImageImpl
const std::array<index_t, NDimSpatial>& filter_spatial_lengths,
const std::array<index_t, NDimSpatial>& output_spatial_lengths,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, 2>& gemm_m_k_strides,
const std::array<index_t, 3>& gemm_g_m_k_strides,
const std::array<index_t, NDimSpatial>& independent_filters,
const std::array<index_t, NDimSpatial>& effs)
{
......@@ -100,23 +111,23 @@ struct DeviceColumnToImageImpl
C * ck::accumulate_n<index_t>(
filter_spatial_lengths.begin(), NDimSpatial, 1, std::multiplies<>());
const index_t NStride = DoHoWo * gemm_m_k_strides[I0] * gemm_m_k_strides[I1];
const index_t NStride = DoHoWo * gemm_g_m_k_strides[I1] * gemm_g_m_k_strides[I2];
// Calculate the appropriate stride for each set of independent filters
// in each dimension
const index_t WStride =
math::integer_divide_ceil(effs[XIdx], conv_filter_strides[XIdx]) * gemm_m_k_strides[I0];
const index_t WStride = math::integer_divide_ceil(effs[XIdx], conv_filter_strides[XIdx]) *
gemm_g_m_k_strides[I1];
const index_t HStride = math::integer_divide_ceil(effs[YIdx], conv_filter_strides[YIdx]) *
output_spatial_lengths[XIdx] * gemm_m_k_strides[I0];
output_spatial_lengths[XIdx] * gemm_g_m_k_strides[I1];
const index_t DStride = math::integer_divide_ceil(effs[ZIdx], conv_filter_strides[ZIdx]) *
output_spatial_lengths[YIdx] * output_spatial_lengths[XIdx] *
gemm_m_k_strides[I0];
gemm_g_m_k_strides[I1];
// Create descriptor for independent filters in each dimension and
// then merge them into column form
if constexpr(NDimSpatial == 1)
{
const auto desc_gemm_form =
make_naive_tensor_descriptor(make_tuple(N, independent_filters[XIdx], CZYX),
make_tuple(NStride, WStride, gemm_m_k_strides[I1]));
make_tuple(NStride, WStride, gemm_g_m_k_strides[I2]));
const auto desc_gemm_form_merged_filters = transform_tensor_descriptor(
desc_gemm_form,
make_tuple(make_merge_transform(make_tuple(N, independent_filters[XIdx])),
......@@ -130,7 +141,7 @@ struct DeviceColumnToImageImpl
{
const auto desc_gemm_form = make_naive_tensor_descriptor(
make_tuple(N, independent_filters[YIdx], independent_filters[XIdx], CZYX),
make_tuple(NStride, HStride, WStride, gemm_m_k_strides[I1]));
make_tuple(NStride, HStride, WStride, gemm_g_m_k_strides[I2]));
const auto desc_gemm_form_merged_filters = transform_tensor_descriptor(
desc_gemm_form,
make_tuple(make_merge_transform(
......@@ -149,7 +160,7 @@ struct DeviceColumnToImageImpl
independent_filters[YIdx],
independent_filters[XIdx],
CZYX),
make_tuple(NStride, DStride, HStride, WStride, gemm_m_k_strides[I1]));
make_tuple(NStride, DStride, HStride, WStride, gemm_g_m_k_strides[I2]));
const auto desc_gemm_form_merged_filters = transform_tensor_descriptor(
desc_gemm_form,
make_tuple(make_merge_transform(make_tuple(N,
......@@ -252,34 +263,38 @@ struct DeviceColumnToImageImpl
decltype(BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, KPerBlock, InputGridDesc>(
InputGridDesc{}))>;
using GridwiseTensorRearrangeKernel = GridwiseTensorRearrange<InputGridDesc,
InputDataType,
OutputGridDesc,
OutputDataType,
BlockSize,
MPerBlock,
KPerBlock,
ThreadClusterLengths,
ScalarPerVector,
InMemoryDataOperationEnum::Add,
Block2ETileMap>;
using GridwiseTensorRearrangeKernel =
GridwiseTensorRearrange<InputGridDesc,
InputDataType,
OutputGridDesc,
OutputDataType,
BlockSize,
MPerBlock,
KPerBlock,
ThreadClusterLengths,
ScalarPerVector,
InMemoryDataOperationEnum::Add,
Block2ETileMap,
ComputePtrOffsetOfStridedBatch<I0>>;
struct Argument : public BaseArgument
{
Argument(const void* p_in, // input image
void* p_out, // output image
const ck::index_t G,
const ck::index_t N,
const ck::index_t C,
const std::array<index_t, NDimSpatial>& input_spatial_lengths,
const std::array<index_t, NDimSpatial>& filter_spatial_lengths,
const std::array<index_t, NDimSpatial>& output_spatial_lengths,
const std::array<index_t, NDimSpatial + 3>& image_g_n_c_wis_strides,
const std::array<index_t, 2>& gemm_m_k_strides,
const std::array<index_t, 3>& gemm_g_m_k_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
: C_(C),
: G_(G),
C_(C),
X_(filter_spatial_lengths[NDimSpatial - I1]),
p_in_{static_cast<const InputDataType*>(p_in)},
p_out_{static_cast<OutputDataType*>(p_out)},
......@@ -289,6 +304,9 @@ struct DeviceColumnToImageImpl
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads}
{
compute_ptr_offset_of_batch_.BatchStrideA_ = gemm_g_m_k_strides[I0];
compute_ptr_offset_of_batch_.BatchStrideC_ = image_g_n_c_wis_strides[I0];
const index_t x_eff =
(filter_spatial_lengths[XIdx] - 1) * conv_filter_dilations[XIdx] + 1;
const index_t y_eff =
......@@ -354,7 +372,7 @@ struct DeviceColumnToImageImpl
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
gemm_m_k_strides,
gemm_g_m_k_strides,
independent_filters,
effs);
const auto out_grid_desc_m_k =
......@@ -387,10 +405,9 @@ struct DeviceColumnToImageImpl
// Memory offsets to next set of independent filters,
// move to independent filters in each dimension
const index_t in_offset =
x_idx * gemm_m_k_strides[0] +
y_idx * gemm_m_k_strides[0] * output_spatial_lengths[XIdx] +
z_idx * gemm_m_k_strides[0] * output_spatial_lengths[YIdx] *
output_spatial_lengths[XIdx];
(x_idx + y_idx * output_spatial_lengths[XIdx] +
z_idx * output_spatial_lengths[YIdx] * output_spatial_lengths[XIdx]) *
gemm_g_m_k_strides[I1];
// Move to independent filters in appropriate dimensions
const index_t out_offset =
x_offset_with_pad * image_g_n_c_wis_strides[spatial_offset + XIdx] +
......@@ -417,6 +434,7 @@ struct DeviceColumnToImageImpl
}
}
const ck::index_t G_;
const ck::index_t C_;
const ck::index_t X_;
......@@ -434,6 +452,8 @@ struct DeviceColumnToImageImpl
std::vector<const InputDataType*> p_in_container_;
std::vector<OutputDataType*> p_out_container_;
ComputePtrOffsetOfStridedBatch<I0> compute_ptr_offset_of_batch_;
};
struct Invoker : public BaseInvoker
......@@ -451,6 +471,7 @@ struct DeviceColumnToImageImpl
OutputGridDesc,
OutputDataType,
Block2ETileMap,
ComputePtrOffsetOfStridedBatch<I0>,
GridwiseTensorRearrangeKernel>;
// Execute each set of independent filters
......@@ -460,7 +481,7 @@ struct DeviceColumnToImageImpl
BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, KPerBlock, InputGridDesc>(
arg.out_grid_desc_m_k_container_[i]);
const index_t grid_size =
block_2_tile_map.CalculateGridSize(arg.in_grid_desc_m_k_container_[i]);
block_2_tile_map.CalculateGridSize(arg.in_grid_desc_m_k_container_[i]) * arg.G_;
elapsed_time += launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
......@@ -470,7 +491,9 @@ struct DeviceColumnToImageImpl
arg.p_in_container_[i],
arg.out_grid_desc_m_k_container_[i],
arg.p_out_container_[i],
block_2_tile_map);
arg.G_,
block_2_tile_map,
arg.compute_ptr_offset_of_batch_);
}
return elapsed_time;
}
......@@ -485,8 +508,7 @@ struct DeviceColumnToImageImpl
bool IsSupportedArgument(const Argument& arg)
{
using namespace tensor_layout::convolution;
if constexpr(!(std::is_same_v<ImageLayout, GNWC> || std::is_same_v<ImageLayout, GNHWC> ||
std::is_same_v<ImageLayout, GNDHWC>))
if constexpr(!(is_NSpatialGC || is_GNSpatialC))
{
return false;
}
......@@ -534,13 +556,14 @@ struct DeviceColumnToImageImpl
static auto MakeArgument(const void* p_in, // input image
void* p_out, // output image
const ck::index_t G,
const ck::index_t N,
const ck::index_t C,
const std::array<index_t, NDimSpatial>& input_spatial_lengths,
const std::array<index_t, NDimSpatial>& filter_spatial_lengths,
const std::array<index_t, NDimSpatial>& output_spatial_lengths,
const std::array<index_t, NDimSpatial + 3>& image_g_n_c_wis_strides,
const std::array<index_t, 2>& gemm_m_k_strides,
const std::array<index_t, 3>& gemm_g_m_k_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
......@@ -548,13 +571,14 @@ struct DeviceColumnToImageImpl
{
return Argument{static_cast<const InputDataType*>(p_in),
static_cast<OutputDataType*>(p_out),
G,
N,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
image_g_n_c_wis_strides,
gemm_m_k_strides,
gemm_g_m_k_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
......@@ -566,13 +590,14 @@ struct DeviceColumnToImageImpl
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in, // input image
void* p_out, // output image
const ck::index_t G,
const ck::index_t N,
const ck::index_t C,
const std::array<index_t, NDimSpatial>& input_spatial_lengths,
const std::array<index_t, NDimSpatial>& filter_spatial_lengths,
const std::array<index_t, NDimSpatial>& output_spatial_lengths,
const std::array<index_t, NDimSpatial + 3>& image_g_n_c_wis_strides,
const std::array<index_t, 2>& gemm_m_k_strides,
const std::array<index_t, 3>& gemm_g_m_k_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
......@@ -580,13 +605,14 @@ struct DeviceColumnToImageImpl
{
return std::make_unique<Argument>(static_cast<const InputDataType*>(p_in),
static_cast<OutputDataType*>(p_out),
G,
N,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
image_g_n_c_wis_strides,
gemm_m_k_strides,
gemm_g_m_k_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
......
......@@ -145,7 +145,8 @@ template <index_t NumDimM,
index_t CShuffleNXdlPerWavePerShuffle,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched = make_default_loop_scheduler()>
typename ComputeDataType = ADataType,
LoopScheduler LoopSched = make_default_loop_scheduler()>
struct DeviceContractionMultipleD_Xdl_CShuffle
: public DeviceContractionMultipleD<NumDimM,
NumDimN,
......@@ -156,7 +157,8 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>
CDEElementwiseOperation,
ComputeDataType>
{
using DeviceOp = DeviceContractionMultipleD_Xdl_CShuffle;
......@@ -310,8 +312,6 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({{}}, {{}}))>;
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N({}, {}));
using ComputeDataType = ADataType;
// GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle<
ADataType, // TODO: distinguish A/B datatype
......
......@@ -184,7 +184,8 @@ struct DeviceGemmXdl : public DeviceGemm<ALayout,
return false;
}
}
else if(ck::get_device_name() == "gfx90a" || ck::get_device_name() == "gfx940")
else if(ck::get_device_name() == "gfx90a" || ck::get_device_name() == "gfx940" ||
ck::get_device_name() == "gfx941" || ck::get_device_name() == "gfx942")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, float> ||
is_same_v<AccDataType, int32_t> || is_same_v<AccDataType, double>))
......
......@@ -15,15 +15,18 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/conv_tensor_rearrange_op.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/host_utility/io.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// Image to column for input layout NDHWC:
// input : input image [N, Di, Hi, Wi, C]
// output : gemm form [N * Do * Ho * Wo, Z * Y * X * C]
// Image to column:
// input : input image [G, N, Di, Hi, Wi, C]
// output : gemm form [G * N * Do * Ho * Wo, Z * Y * X * C]
// input : input image [N, Di, Hi, Wi, G, C]
// output : gemm form [N * Do * Ho * Wo * G, Z * Y * X * C]
template <index_t NDimSpatial,
typename ImageLayout,
typename InputDataType,
......@@ -41,6 +44,14 @@ struct DeviceImageToColumnImpl
OutputDataType,
conv_tensor_rearrange_op::ImageToColumn>
{
static constexpr bool is_NSpatialGC =
std::is_same_v<ImageLayout, tensor_layout::convolution::NWGC> ||
std::is_same_v<ImageLayout, tensor_layout::convolution::NHWGC> ||
std::is_same_v<ImageLayout, tensor_layout::convolution::NDHWGC>;
static constexpr bool is_GNSpatialC =
std::is_same_v<ImageLayout, tensor_layout::convolution::GNWC> ||
std::is_same_v<ImageLayout, tensor_layout::convolution::GNHWC> ||
std::is_same_v<ImageLayout, tensor_layout::convolution::GNDHWC>;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
......@@ -109,7 +120,7 @@ struct DeviceImageToColumnImpl
const ck::index_t C,
const std::array<index_t, NDimSpatial>& filter_spatial_lengths,
const std::array<index_t, NDimSpatial>& output_spatial_lengths,
const std::array<index_t, 2>& gemm_m_k_strides)
const std::array<index_t, 3>& gemm_g_m_k_strides)
{
const index_t NDoHoWo =
N * ck::accumulate_n<index_t>(
......@@ -117,11 +128,10 @@ struct DeviceImageToColumnImpl
const index_t CZYX =
C * ck::accumulate_n<index_t>(
filter_spatial_lengths.begin(), NDimSpatial, 1, std::multiplies<>());
const auto desc_mraw_kraw = make_naive_tensor_descriptor(
make_tuple(NDoHoWo, CZYX), make_tuple(gemm_m_k_strides[I0], gemm_m_k_strides[I1]));
const auto desc_m_k = matrix_padder.PadADescriptor_M_K(desc_mraw_kraw);
return desc_m_k;
const auto desc_mraw_kraw = make_naive_tensor_descriptor(
make_tuple(NDoHoWo, CZYX), make_tuple(gemm_g_m_k_strides[I1], gemm_g_m_k_strides[I2]));
return matrix_padder.PadADescriptor_M_K(desc_mraw_kraw);
}
using InputGridDesc =
......@@ -132,34 +142,38 @@ struct DeviceImageToColumnImpl
decltype(BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, KPerBlock, OutputGridDesc>(
OutputGridDesc{}))>;
using GridwiseTensorRearrangeKernel = GridwiseTensorRearrange<InputGridDesc,
InputDataType,
OutputGridDesc,
OutputDataType,
BlockSize,
MPerBlock,
KPerBlock,
ThreadClusterLengths,
ScalarPerVector,
InMemoryDataOperationEnum::Set,
Block2ETileMap>;
using GridwiseTensorRearrangeKernel =
GridwiseTensorRearrange<InputGridDesc,
InputDataType,
OutputGridDesc,
OutputDataType,
BlockSize,
MPerBlock,
KPerBlock,
ThreadClusterLengths,
ScalarPerVector,
InMemoryDataOperationEnum::Set,
Block2ETileMap,
ComputePtrOffsetOfStridedBatch<I0>>;
struct Argument : public BaseArgument
{
Argument(const void* p_in, // input image
void* p_out, // gemm form
const ck::index_t G,
const ck::index_t N,
const ck::index_t C,
const std::array<index_t, NDimSpatial>& input_spatial_lengths,
const std::array<index_t, NDimSpatial>& filter_spatial_lengths,
const std::array<index_t, NDimSpatial>& output_spatial_lengths,
const std::array<index_t, NDimSpatial + 3>& image_g_n_c_wis_strides,
const std::array<index_t, 2>& gemm_m_k_strides,
const std::array<index_t, 3>& gemm_g_m_k_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads)
: C_(C),
: G_(G),
C_(C),
X_(filter_spatial_lengths[NDimSpatial - I1]),
p_in_{static_cast<const InputDataType*>(p_in)},
p_out_{static_cast<OutputDataType*>(p_out)},
......@@ -176,14 +190,16 @@ struct DeviceImageToColumnImpl
filter_spatial_lengths,
output_spatial_lengths,
image_g_n_c_wis_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
out_grid_desc_m_k_ = MakeOutDescriptor_M_K(
N, C, filter_spatial_lengths, output_spatial_lengths, gemm_m_k_strides);
N, C, filter_spatial_lengths, output_spatial_lengths, gemm_g_m_k_strides);
compute_ptr_offset_of_batch_.BatchStrideA_ = image_g_n_c_wis_strides[I0];
compute_ptr_offset_of_batch_.BatchStrideC_ = gemm_g_m_k_strides[I0];
}
void Print() const
......@@ -192,6 +208,7 @@ struct DeviceImageToColumnImpl
std::cout << out_grid_desc_m_k_ << std::endl;
}
const ck::index_t G_;
const ck::index_t C_;
const ck::index_t X_;
......@@ -206,6 +223,8 @@ struct DeviceImageToColumnImpl
InputGridDesc in_grid_desc_m_k_;
OutputGridDesc out_grid_desc_m_k_;
ComputePtrOffsetOfStridedBatch<I0> compute_ptr_offset_of_batch_;
};
struct Invoker : public BaseInvoker
......@@ -220,12 +239,14 @@ struct DeviceImageToColumnImpl
const auto block_2_tile_map =
BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, KPerBlock, OutputGridDesc>(
arg.out_grid_desc_m_k_);
const index_t grid_size = block_2_tile_map.CalculateGridSize(arg.out_grid_desc_m_k_);
const auto kernel = kernel_tensor_rearrange<InputGridDesc,
const index_t grid_size =
block_2_tile_map.CalculateGridSize(arg.out_grid_desc_m_k_) * arg.G_;
const auto kernel = kernel_tensor_rearrange<InputGridDesc,
InputDataType,
OutputGridDesc,
OutputDataType,
Block2ETileMap,
ComputePtrOffsetOfStridedBatch<I0>,
GridwiseTensorRearrangeKernel>;
float elapsed_time = launch_and_time_kernel(stream_config,
......@@ -237,7 +258,9 @@ struct DeviceImageToColumnImpl
arg.p_in_,
arg.out_grid_desc_m_k_,
arg.p_out_,
block_2_tile_map);
arg.G_,
block_2_tile_map,
arg.compute_ptr_offset_of_batch_);
return elapsed_time;
}
......@@ -250,9 +273,7 @@ struct DeviceImageToColumnImpl
bool IsSupportedArgument(const Argument& arg)
{
using namespace tensor_layout::convolution;
if constexpr(!(std::is_same_v<ImageLayout, GNWC> || std::is_same_v<ImageLayout, GNHWC> ||
std::is_same_v<ImageLayout, GNDHWC>))
if constexpr(!(is_NSpatialGC || is_GNSpatialC))
{
return false;
}
......@@ -295,13 +316,14 @@ struct DeviceImageToColumnImpl
static auto MakeArgument(const void* p_in, // input image
void* p_out, // gemm form
const ck::index_t G,
const ck::index_t N,
const ck::index_t C,
const std::array<index_t, NDimSpatial>& input_spatial_lengths,
const std::array<index_t, NDimSpatial>& filter_spatial_lengths,
const std::array<index_t, NDimSpatial>& output_spatial_lengths,
const std::array<index_t, NDimSpatial + 3>& image_g_n_c_wis_strides,
const std::array<index_t, 2>& gemm_m_k_strides,
const std::array<index_t, 3>& gemm_g_m_k_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
......@@ -309,13 +331,14 @@ struct DeviceImageToColumnImpl
{
return Argument{static_cast<const InputDataType*>(p_in),
static_cast<OutputDataType*>(p_out),
G,
N,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
image_g_n_c_wis_strides,
gemm_m_k_strides,
gemm_g_m_k_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
......@@ -327,13 +350,14 @@ struct DeviceImageToColumnImpl
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in, // input image
void* p_out, // gemm form
const ck::index_t G,
const ck::index_t N,
const ck::index_t C,
const std::array<index_t, NDimSpatial>& input_spatial_lengths,
const std::array<index_t, NDimSpatial>& filter_spatial_lengths,
const std::array<index_t, NDimSpatial>& output_spatial_lengths,
const std::array<index_t, NDimSpatial + 3>& image_g_n_c_wis_strides,
const std::array<index_t, 2>& gemm_m_k_strides,
const std::array<index_t, 3>& gemm_g_m_k_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
......@@ -341,13 +365,14 @@ struct DeviceImageToColumnImpl
{
return std::make_unique<Argument>(static_cast<const InputDataType*>(p_in),
static_cast<OutputDataType*>(p_out),
G,
N,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
image_g_n_c_wis_strides,
gemm_m_k_strides,
gemm_g_m_k_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
......
......@@ -186,6 +186,25 @@ struct Bilinear
y = type_convert<half_t>(alpha_ * x0 + beta_ * ck::type_convert<float>(x1));
};
template <>
__host__ __device__ constexpr void
operator()<bhalf_t, bhalf_t, bhalf_t>(bhalf_t& y, const bhalf_t& x0, const bhalf_t& x1) const
{
const float x0_tmp = type_convert<float>(x0);
const float x1_tmp = type_convert<float>(x1);
const float y_tmp = alpha_ * x0_tmp + beta_ * x1_tmp;
y = type_convert<bhalf_t>(y_tmp);
};
template <>
__host__ __device__ constexpr void
operator()<bhalf_t, float, bhalf_t>(bhalf_t& y, const float& x0, const bhalf_t& x1) const
{
const float x1_tmp = ck::type_convert<float>(x1);
const float y_tmp = alpha_ * x0 + beta_ * x1_tmp;
y = y_tmp;
};
template <>
__host__ __device__ constexpr void operator()<std::int8_t, std::int32_t, std::int8_t>(
std::int8_t& y, const std::int32_t& x0, const std::int8_t& x1) const
......
......@@ -33,6 +33,12 @@ struct PassThrough
y = type_convert<float>(x);
}
template <>
__host__ __device__ void operator()<double, float>(double& y, const float& x) const
{
y = type_convert<double>(x);
}
template <>
__host__ __device__ void operator()<float, float>(float& y, const float& x) const
{
......@@ -69,6 +75,12 @@ struct PassThrough
y = type_convert<bhalf_t>(x);
}
template <>
__host__ __device__ void operator()<float, bhalf_t>(float& y, const bhalf_t& x) const
{
y = type_convert<float>(x);
}
template <>
__host__ __device__ void operator()<bhalf_t, half_t>(bhalf_t& y, const half_t& x) const
{
......@@ -225,6 +237,20 @@ struct Scale
template <typename Y, typename X>
__host__ __device__ void operator()(Y& y, const X& x) const;
template <>
__host__ __device__ void operator()<half_t, half_t>(half_t& y, const half_t& x) const
{
y = ck::type_convert<half_t>(scale_) * x;
};
template <>
__host__ __device__ void operator()<bhalf_t, bhalf_t>(bhalf_t& y, const bhalf_t& x) const
{
const float x_tmp = ck::type_convert<float>(x);
const float y_tmp = scale_ * x_tmp;
y = ck::type_convert<bhalf_t>(y_tmp);
};
template <>
__host__ __device__ void operator()<float, float>(float& y, const float& x) const
{
......
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment