Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
0f1e8187
Commit
0f1e8187
authored
Nov 05, 2023
by
Jing Zhang
Browse files
Merge remote-tracking branch 'origin/develop' into simple_gemm_dl
parents
e5863fd6
b0568b72
Changes
152
Hide whitespace changes
Inline
Side-by-side
Showing
12 changed files
with
634 additions
and
281 deletions
+634
-281
profiler/include/profiler/profile_contraction_utils.hpp
profiler/include/profiler/profile_contraction_utils.hpp
+12
-2
profiler/include/profiler/profile_conv_tensor_rearrange_impl.hpp
...r/include/profiler/profile_conv_tensor_rearrange_impl.hpp
+26
-5
profiler/include/profiler/profile_gemm_impl.hpp
profiler/include/profiler/profile_gemm_impl.hpp
+2
-2
profiler/src/profile_contraction_bilinear.cpp
profiler/src/profile_contraction_bilinear.cpp
+134
-91
profiler/src/profile_contraction_scale.cpp
profiler/src/profile_contraction_scale.cpp
+133
-88
profiler/src/profile_conv_tensor_rearrange.cpp
profiler/src/profile_conv_tensor_rearrange.cpp
+126
-7
script/redis-cli.conf
script/redis-cli.conf
+10
-0
script/sccache_wrapper.sh
script/sccache_wrapper.sh
+56
-0
test/contraction/test_contraction.cpp
test/contraction/test_contraction.cpp
+96
-55
test/contraction/test_contraction_interface.cpp
test/contraction/test_contraction_interface.cpp
+5
-5
test/conv_tensor_rearrange/test_conv_tensor_rearrange.cpp
test/conv_tensor_rearrange/test_conv_tensor_rearrange.cpp
+26
-20
test/conv_tensor_rearrange/test_conv_tensor_rearrange_interface.cpp
...tensor_rearrange/test_conv_tensor_rearrange_interface.cpp
+8
-6
No files found.
profiler/include/profiler/profile_contraction_utils.hpp
View file @
0f1e8187
...
...
@@ -23,8 +23,18 @@ enum struct ContractionMatrixLayout
enum
struct
ContractionDataType
{
F32_F32_F32_F32
,
// 0
F64_F64_F64_F64
,
// 1
F32_F32_F32_F32
,
// 0
F64_F64_F64_F64
,
// 1
F16_F16_F16_F16
,
// 2
BF16_BF16_BF16_BF16
,
// 3
};
enum
struct
ContractionComputeDataType
{
F32
=
0
,
F64
,
F16
,
BF16
,
};
inline
void
collect_index_params
(
char
*
argv
[],
...
...
profiler/include/profiler/profile_conv_tensor_rearrange_impl.hpp
View file @
0f1e8187
...
...
@@ -93,6 +93,26 @@ static auto make_ref_op()
}
}
template
<
typename
InputLayout
>
static
auto
create_gemm_desc
(
const
ck
::
index_t
G
,
const
ck
::
index_t
NDoHoWo
,
const
ck
::
index_t
CZYX
)
{
using
namespace
ck
::
tensor_layout
::
convolution
;
if
constexpr
(
std
::
is_same_v
<
InputLayout
,
GNWC
>
||
std
::
is_same_v
<
InputLayout
,
GNHWC
>
||
std
::
is_same_v
<
InputLayout
,
GNDHWC
>
)
{
return
HostTensorDescriptor
({
G
,
NDoHoWo
,
CZYX
});
}
else
if
constexpr
(
std
::
is_same_v
<
InputLayout
,
NWGC
>
||
std
::
is_same_v
<
InputLayout
,
NHWGC
>
||
std
::
is_same_v
<
InputLayout
,
NDHWGC
>
)
{
return
HostTensorDescriptor
({
G
,
NDoHoWo
,
CZYX
},
{
CZYX
,
CZYX
*
G
,
1
});
}
else
{
throw
std
::
runtime_error
(
"Unsupported layout!"
);
}
}
template
<
index_t
NDimSpatial
,
typename
InputLayout
,
typename
InputDataType
,
...
...
@@ -116,13 +136,13 @@ bool profile_conv_tensor_rearrange_impl(int do_verification,
const
auto
image_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InputLayout
>
(
conv_param
);
const
auto
gemm_desc
=
HostTensorDescriptor
({
NDoHoWo
,
CZYX
}
);
const
auto
gemm_desc
=
create_gemm_desc
<
InputLayout
>
(
conv_param
.
G_
,
NDoHoWo
,
CZYX
);
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
image_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
2
>
gemm_m_k_strides
{};
std
::
array
<
ck
::
index_t
,
3
>
gemm_
g_
m_k_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
...
...
@@ -134,7 +154,7 @@ bool profile_conv_tensor_rearrange_impl(int do_verification,
copy
(
conv_param
.
filter_spatial_lengths_
,
filter_spatial_lengths
);
copy
(
conv_param
.
output_spatial_lengths_
,
output_spatial_lengths
);
copy
(
image_desc
.
GetStrides
(),
image_g_n_c_wis_strides
);
copy
(
gemm_desc
.
GetStrides
(),
gemm_m_k_strides
);
copy
(
gemm_desc
.
GetStrides
(),
gemm_
g_
m_k_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
...
...
@@ -212,13 +232,14 @@ bool profile_conv_tensor_rearrange_impl(int do_verification,
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InputDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutputDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
image_g_n_c_wis_strides
,
gemm_m_k_strides
,
gemm_
g_
m_k_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
...
...
@@ -234,7 +255,7 @@ bool profile_conv_tensor_rearrange_impl(int do_verification,
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
num_btype
=
NDoHoWo
*
CZYX
*
(
sizeof
(
OutputDataType
)
+
sizeof
(
InputDataType
));
conv_param
.
G_
*
NDoHoWo
*
CZYX
*
(
sizeof
(
OutputDataType
)
+
sizeof
(
InputDataType
));
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
...
...
profiler/include/profiler/profile_gemm_impl.hpp
View file @
0f1e8187
...
...
@@ -75,8 +75,8 @@ int profile_gemm_impl(int do_verification,
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
0.1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.
0
5
,
0.
0
5
});
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
...
...
profiler/src/profile_contraction_bilinear.cpp
View file @
0f1e8187
...
...
@@ -17,8 +17,9 @@
static
void
print_helper_msg
()
{
std
::
cout
<<
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
<<
"arg2: data type (0: fp32; 1: f64)
\n
"
<<
"arg3: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
<<
"arg2: data type (0: fp32; 1: f64; 2: f16; 3: bf16)
\n
"
<<
"arg3: compute data type (0: fp32; 1: f64; 2: f16; 3: bf16)
\n
"
<<
"arg4: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
\n
"
<<
" 1: A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
\n
"
...
...
@@ -26,40 +27,42 @@ static void print_helper_msg()
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
\n
"
<<
" 3: A[k0, k1, m0, m1] * B[n0, n1, k0, k1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1])
\n
"
<<
"arg
4
: verification (0: no; 1: yes)
\n
"
<<
"arg
5
: initialization (0: no init; 1: integer value; 2: decimal "
<<
"arg
5
: verification (0: no; 1: yes)
\n
"
<<
"arg
6
: initialization (0: no init; 1: integer value; 2: decimal "
<<
"value)
\n
"
<<
"arg6: print tensor value (0: no; 1: yes)
\n
"
<<
"arg7: time kernel (0: no, 1: yes)
\n
"
<<
"arg8 and arg9: alpha and beta
\n
"
<<
"arg10 to 15: M0, M1, N0, N1, K0, K1
\n
"
<<
"arg16 to 31: Strides for A, B, D and E (skip for default)
\n
"
<<
"arg7: print tensor value (0: no; 1: yes)
\n
"
<<
"arg8: time kernel (0: no, 1: yes)
\n
"
<<
"arg9: alpha
\n
"
<<
"arg10: beta
\n
"
<<
"arg11 to 16: M0, M1, N0, N1, K0, K1
\n
"
<<
"arg17 to 32: Strides for A, B, D and E (skip for default)
\n
"
<<
std
::
endl
;
}
int
profile_contraction_bilinear
(
int
argc
,
char
*
argv
[])
{
const
bool
default_strides
=
argc
==
1
6
;
const
bool
default_strides
=
argc
==
1
7
;
if
(
argc
!=
3
2
&&
argc
!=
1
6
)
if
(
argc
!=
3
3
&&
argc
!=
1
7
)
{
print_helper_msg
();
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
ContractionDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
ContractionMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
ck
::
index_t
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
float
alpha
=
std
::
stof
(
argv
[
8
]);
const
float
beta
=
std
::
stof
(
argv
[
9
]);
const
auto
compute_data_type
=
static_cast
<
ContractionComputeDataType
>
(
std
::
stoi
(
argv
[
3
]));
const
auto
layout
=
static_cast
<
ContractionMatrixLayout
>
(
std
::
stoi
(
argv
[
4
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
5
]);
const
ck
::
index_t
init_method
=
std
::
stoi
(
argv
[
6
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
7
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
8
]);
const
float
alpha
=
std
::
stof
(
argv
[
9
]);
const
float
beta
=
std
::
stof
(
argv
[
10
]);
std
::
vector
<
ck
::
index_t
>
M
;
std
::
vector
<
ck
::
index_t
>
N
;
std
::
vector
<
ck
::
index_t
>
K
;
const
ck
::
index_t
dims_arg_num
=
1
0
;
const
ck
::
index_t
dims_arg_num
=
1
1
;
collect_index_params
(
argv
,
M
,
dims_arg_num
,
2
);
collect_index_params
(
argv
,
N
,
dims_arg_num
+
2
,
2
);
collect_index_params
(
argv
,
K
,
dims_arg_num
+
4
,
2
);
...
...
@@ -76,90 +79,130 @@ int profile_contraction_bilinear(int argc, char* argv[])
collect_index_params
(
argv
,
StridesD
,
dims_arg_num
+
18
,
4
);
}
using
F32
=
float
;
using
F64
=
double
;
auto
profile
=
[
&
](
auto
a_layout
,
auto
b_layout
,
auto
cde_layout
,
auto
type
)
{
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
CDELayout
=
decltype
(
cde_layout
);
using
DataType
=
decltype
(
type
);
if
(
default_strides
)
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
F64
=
double
;
auto
profile
=
[
&
](
auto
a_layout
,
auto
b_layout
,
auto
cde_layout
,
auto
type
,
auto
compute_type
)
{
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
CDELayout
=
decltype
(
cde_layout
);
using
DataType
=
decltype
(
type
);
using
ComputeDataType
=
decltype
(
compute_type
);
if
(
default_strides
)
{
assign_default_strides
(
a_layout
,
StridesA
,
{
M
[
0
],
M
[
1
],
K
[
0
],
K
[
1
]});
assign_default_strides
(
b_layout
,
StridesB
,
{
N
[
0
],
N
[
1
],
K
[
0
],
K
[
1
]});
assign_default_strides
(
cde_layout
,
StridesE
,
{
M
[
0
],
M
[
1
],
N
[
0
],
N
[
1
]});
assign_default_strides
(
cde_layout
,
StridesD
,
{
M
[
0
],
M
[
1
],
N
[
0
],
N
[
1
]});
}
bool
pass
=
ck
::
profiler
::
profile_contraction_impl
<
ALayout
,
BLayout
,
CDELayout
,
DataType
,
ComputeDataType
,
ck
::
Tuple
<
DataType
>
,
Bilinear
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Bilinear
{
alpha
,
beta
},
M
,
N
,
K
,
StridesA
,
StridesB
,
StridesE
,
StridesD
);
return
pass
;
};
auto
run_profile_for_datatype
=
[
&
](
auto
type
,
auto
compute_type
)
{
if
(
layout
==
ContractionMatrixLayout
::
MK_KN_MN_MN
)
{
assign_default_strides
(
a_layout
,
StridesA
,
{
M
[
0
],
M
[
1
],
K
[
0
],
K
[
1
]});
assign_default_strides
(
b_layout
,
StridesB
,
{
K
[
0
],
K
[
1
],
N
[
0
],
N
[
1
]});
assign_default_strides
(
cde_layout
,
StridesE
,
{
M
[
0
],
M
[
1
],
N
[
0
],
N
[
1
]});
assign_default_strides
(
cde_layout
,
StridesD
,
{
M
[
0
],
M
[
1
],
N
[
0
],
N
[
1
]});
return
profile
(
Row
{},
Row
{},
Row
{},
type
,
compute_type
);
}
bool
pass
=
ck
::
profiler
::
profile_contraction_impl
<
ALayout
,
BLayout
,
CDELayout
,
DataType
,
ck
::
Tuple
<
DataType
>
,
Bilinear
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Bilinear
{
alpha
,
beta
},
M
,
N
,
K
,
StridesA
,
StridesB
,
StridesE
,
StridesD
);
return
pass
;
else
if
(
layout
==
ContractionMatrixLayout
::
MK_NK_MN_MN
)
{
return
profile
(
Row
{},
Col
{},
Row
{},
type
,
compute_type
);
}
else
if
(
layout
==
ContractionMatrixLayout
::
KM_KN_MN_MN
)
{
return
profile
(
Col
{},
Row
{},
Row
{},
type
,
compute_type
);
}
else
if
(
layout
==
ContractionMatrixLayout
::
KM_NK_MN_MN
)
{
return
profile
(
Col
{},
Col
{},
Row
{},
type
,
compute_type
);
}
return
false
;
};
if
(
data_type
==
ContractionDataType
::
F32_F32_F32_F32
&&
layout
==
ContractionMatrixLayout
::
MK_KN_MN_MN
)
{
return
profile
(
Row
{},
Row
{},
Row
{},
F32
{});
}
else
if
(
data_type
==
ContractionDataType
::
F32_F32_F32_F32
&&
layout
==
ContractionMatrixLayout
::
MK_NK_MN_MN
)
if
(
data_type
==
ContractionDataType
::
F32_F32_F32_F32
)
{
return
profile
(
Row
{},
Col
{},
Row
{},
F32
{});
}
else
if
(
data_type
==
ContractionDataType
::
F32_F32_F32_F32
&&
layout
==
ContractionMatrixLayout
::
KM_KN_MN_MN
)
{
return
profile
(
Col
{},
Row
{},
Row
{},
F32
{});
}
else
if
(
data_type
==
ContractionDataType
::
F32_F32_F32_F32
&&
layout
==
ContractionMatrixLayout
::
KM_NK_MN_MN
)
{
return
profile
(
Col
{},
Col
{},
Row
{},
F32
{});
}
else
if
(
data_type
==
ContractionDataType
::
F64_F64_F64_F64
&&
layout
==
ContractionMatrixLayout
::
MK_KN_MN_MN
)
{
return
profile
(
Row
{},
Row
{},
Row
{},
F64
{});
}
else
if
(
data_type
==
ContractionDataType
::
F64_F64_F64_F64
&&
layout
==
ContractionMatrixLayout
::
MK_NK_MN_MN
)
{
return
profile
(
Row
{},
Col
{},
Row
{},
F64
{});
if
(
compute_data_type
==
ContractionComputeDataType
::
F32
)
{
return
run_profile_for_datatype
(
F32
{},
F32
{});
}
else
if
(
compute_data_type
==
ContractionComputeDataType
::
F16
)
{
return
run_profile_for_datatype
(
F32
{},
F16
{});
}
else
if
(
compute_data_type
==
ContractionComputeDataType
::
BF16
)
{
return
run_profile_for_datatype
(
F32
{},
BF16
{});
}
else
{
std
::
cout
<<
"Incorrect combination of data type and compute data type."
<<
std
::
endl
;
return
1
;
}
}
else
if
(
data_type
==
ContractionDataType
::
F64_F64_F64_F64
&&
layout
==
ContractionMatrixLayout
::
KM_KN_MN_MN
)
else
if
(
data_type
==
ContractionDataType
::
F64_F64_F64_F64
)
{
return
profile
(
Col
{},
Row
{},
Row
{},
F64
{});
if
(
compute_data_type
==
ContractionComputeDataType
::
F64
)
{
return
run_profile_for_datatype
(
F64
{},
F64
{});
}
else
if
(
compute_data_type
==
ContractionComputeDataType
::
F32
)
{
return
run_profile_for_datatype
(
F64
{},
F32
{});
}
else
{
std
::
cout
<<
"Incorrect combination of data type and compute data type."
<<
std
::
endl
;
return
1
;
}
}
else
if
(
data_type
==
ContractionDataType
::
F64_F64_F64_F64
&&
layout
==
ContractionMatrixLayout
::
KM_NK_MN_MN
)
else
if
(
data_type
==
ContractionDataType
::
F16_F16_F16_F16
)
{
return
profile
(
Col
{},
Col
{},
Row
{},
F64
{});
if
(
compute_data_type
==
ContractionComputeDataType
::
F32
)
{
return
run_profile_for_datatype
(
F16
{},
F32
{});
}
else
{
std
::
cout
<<
"Incorrect combination of data type and compute data type."
<<
std
::
endl
;
return
1
;
}
}
else
else
if
(
data_type
==
ContractionDataType
::
BF16_BF16_BF16_BF16
)
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
if
(
compute_data_type
==
ContractionComputeDataType
::
F32
)
{
return
run_profile_for_datatype
(
BF16
{},
F32
{});
}
else
{
std
::
cout
<<
"Incorrect combination of data type and compute data type."
<<
std
::
endl
;
return
1
;
}
}
return
1
;
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_contraction_bilinear
);
profiler/src/profile_contraction_scale.cpp
View file @
0f1e8187
...
...
@@ -17,8 +17,9 @@
static
void
print_helper_msg
()
{
std
::
cout
<<
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
<<
"arg2: data type (0: fp32; 1: f64)
\n
"
<<
"arg3: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
<<
"arg2: data type (0: fp32; 1: f64; 2: f16; 3: bf16)
\n
"
<<
"arg3: compute data type (0: fp32; 1: f64; 2: f16; 3: bf16)
\n
"
<<
"arg4: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
\n
"
<<
" 1: A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
\n
"
...
...
@@ -26,39 +27,40 @@ static void print_helper_msg()
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1];
\n
"
<<
" 3: A[k0, k1, m0, m1] * B[n0, n1, k0, k1] + "
"D[m0, m1, n0, n1] = E[m0, m1, n0, n1])
\n
"
<<
"arg
4
: verification (0: no; 1: yes)
\n
"
<<
"arg
5
: initialization (0: no init; 1: integer value; 2: decimal "
<<
"arg
5
: verification (0: no; 1: yes)
\n
"
<<
"arg
6
: initialization (0: no init; 1: integer value; 2: decimal "
<<
"value)
\n
"
<<
"arg
6
: print tensor value (0: no; 1: yes)
\n
"
<<
"arg
7
: time kernel (0: no, 1: yes)
\n
"
<<
"arg
8
: alpha
\n
"
<<
"arg
9
to 1
4
: M0, M1, N0, N1, K0, K1
\n
"
<<
"arg1
5
to 3
0
: Strides for A, B, D and E (skip for default)
\n
"
<<
"arg
7
: print tensor value (0: no; 1: yes)
\n
"
<<
"arg
8
: time kernel (0: no, 1: yes)
\n
"
<<
"arg
9
: alpha
\n
"
<<
"arg
10
to 1
5
: M0, M1, N0, N1, K0, K1
\n
"
<<
"arg1
6
to 3
1
: Strides for A, B, D and E (skip for default)
\n
"
<<
std
::
endl
;
}
int
profile_contraction_scale
(
int
argc
,
char
*
argv
[])
{
const
bool
default_strides
=
argc
==
1
5
;
const
bool
default_strides
=
argc
==
1
6
;
if
(
argc
!=
3
1
&&
argc
!=
1
5
)
if
(
argc
!=
3
2
&&
argc
!=
1
6
)
{
print_helper_msg
();
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
ContractionDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
ContractionMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
ck
::
index_t
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
float
alpha
=
std
::
stof
(
argv
[
8
]);
const
auto
compute_data_type
=
static_cast
<
ContractionComputeDataType
>
(
std
::
stoi
(
argv
[
3
]));
const
auto
layout
=
static_cast
<
ContractionMatrixLayout
>
(
std
::
stoi
(
argv
[
4
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
5
]);
const
ck
::
index_t
init_method
=
std
::
stoi
(
argv
[
6
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
7
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
8
]);
const
float
alpha
=
std
::
stof
(
argv
[
9
]);
std
::
vector
<
ck
::
index_t
>
M
;
std
::
vector
<
ck
::
index_t
>
N
;
std
::
vector
<
ck
::
index_t
>
K
;
const
ck
::
index_t
dims_arg_num
=
9
;
const
ck
::
index_t
dims_arg_num
=
10
;
collect_index_params
(
argv
,
M
,
dims_arg_num
,
2
);
collect_index_params
(
argv
,
N
,
dims_arg_num
+
2
,
2
);
collect_index_params
(
argv
,
K
,
dims_arg_num
+
4
,
2
);
...
...
@@ -75,88 +77,131 @@ int profile_contraction_scale(int argc, char* argv[])
collect_index_params
(
argv
,
StridesD
,
dims_arg_num
+
18
,
4
);
}
using
F32
=
float
;
using
F64
=
double
;
auto
profile
=
[
&
](
auto
a_layout
,
auto
b_layout
,
auto
cde_layout
,
auto
type
)
{
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
CDELayout
=
decltype
(
cde_layout
);
using
DataType
=
decltype
(
type
);
if
(
default_strides
)
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
F64
=
double
;
auto
profile
=
[
&
](
auto
a_layout
,
auto
b_layout
,
auto
cde_layout
,
auto
type
,
auto
compute_type
)
{
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
CDELayout
=
decltype
(
cde_layout
);
using
DataType
=
decltype
(
type
);
using
ComputeDataType
=
decltype
(
compute_type
);
if
(
default_strides
)
{
assign_default_strides
(
a_layout
,
StridesA
,
{
M
[
0
],
M
[
1
],
K
[
0
],
K
[
1
]});
assign_default_strides
(
b_layout
,
StridesB
,
{
N
[
0
],
N
[
1
],
K
[
0
],
K
[
1
]});
assign_default_strides
(
cde_layout
,
StridesE
,
{
M
[
0
],
M
[
1
],
N
[
0
],
N
[
1
]});
assign_default_strides
(
cde_layout
,
StridesD
,
{
M
[
0
],
M
[
1
],
N
[
0
],
N
[
1
]});
}
bool
pass
=
ck
::
profiler
::
profile_contraction_impl
<
ALayout
,
BLayout
,
CDELayout
,
DataType
,
ComputeDataType
,
ck
::
Tuple
<>
,
Scale
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Scale
{
alpha
},
M
,
N
,
K
,
StridesA
,
StridesB
,
StridesE
,
StridesD
);
return
pass
;
};
auto
run_profile_for_datatype
=
[
&
](
auto
type
,
auto
compute_type
)
{
if
(
layout
==
ContractionMatrixLayout
::
MK_KN_MN_MN
)
{
assign_default_strides
(
a_layout
,
StridesA
,
{
M
[
0
],
M
[
1
],
K
[
0
],
K
[
1
]});
assign_default_strides
(
b_layout
,
StridesB
,
{
K
[
0
],
K
[
1
],
N
[
0
],
N
[
1
]});
assign_default_strides
(
cde_layout
,
StridesE
,
{
M
[
0
],
M
[
1
],
N
[
0
],
N
[
1
]});
assign_default_strides
(
cde_layout
,
StridesD
,
{
M
[
0
],
M
[
1
],
N
[
0
],
N
[
1
]});
return
profile
(
Row
{},
Row
{},
Row
{},
type
,
compute_type
);
}
bool
pass
=
ck
::
profiler
::
profile_contraction_impl
<
ALayout
,
BLayout
,
CDELayout
,
DataType
,
ck
::
Tuple
<>
,
Scale
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Scale
{
alpha
},
M
,
N
,
K
,
StridesA
,
StridesB
,
StridesE
,
StridesD
);
return
pass
;
else
if
(
layout
==
ContractionMatrixLayout
::
MK_NK_MN_MN
)
{
return
profile
(
Row
{},
Col
{},
Row
{},
type
,
compute_type
);
}
else
if
(
layout
==
ContractionMatrixLayout
::
KM_KN_MN_MN
)
{
return
profile
(
Col
{},
Row
{},
Row
{},
type
,
compute_type
);
}
else
if
(
layout
==
ContractionMatrixLayout
::
KM_NK_MN_MN
)
{
return
profile
(
Col
{},
Col
{},
Row
{},
type
,
compute_type
);
}
return
false
;
};
if
(
data_type
==
ContractionDataType
::
F32_F32_F32_F32
&&
layout
==
ContractionMatrixLayout
::
MK_KN_MN_MN
)
{
return
profile
(
Row
{},
Row
{},
Row
{},
F32
{});
}
else
if
(
data_type
==
ContractionDataType
::
F32_F32_F32_F32
&&
layout
==
ContractionMatrixLayout
::
MK_NK_MN_MN
)
{
return
profile
(
Row
{},
Col
{},
Row
{},
F32
{});
}
else
if
(
data_type
==
ContractionDataType
::
F32_F32_F32_F32
&&
layout
==
ContractionMatrixLayout
::
KM_KN_MN_MN
)
if
(
data_type
==
ContractionDataType
::
F32_F32_F32_F32
)
{
return
profile
(
Col
{},
Row
{},
Row
{},
F32
{});
}
else
if
(
data_type
==
ContractionDataType
::
F32_F32_F32_F32
&&
layout
==
ContractionMatrixLayout
::
KM_NK_MN_MN
)
{
return
profile
(
Col
{},
Col
{},
Row
{},
F32
{});
}
else
if
(
data_type
==
ContractionDataType
::
F64_F64_F64_F64
&&
layout
==
ContractionMatrixLayout
::
MK_KN_MN_MN
)
{
return
profile
(
Row
{},
Row
{},
Row
{},
F64
{});
}
else
if
(
data_type
==
ContractionDataType
::
F64_F64_F64_F64
&&
layout
==
ContractionMatrixLayout
::
MK_NK_MN_MN
)
{
return
profile
(
Row
{},
Col
{},
Row
{},
F64
{});
if
(
compute_data_type
==
ContractionComputeDataType
::
F32
)
{
return
run_profile_for_datatype
(
F32
{},
F32
{});
}
else
if
(
compute_data_type
==
ContractionComputeDataType
::
F16
)
{
return
run_profile_for_datatype
(
F32
{},
F16
{});
}
else
if
(
compute_data_type
==
ContractionComputeDataType
::
BF16
)
{
return
run_profile_for_datatype
(
F32
{},
BF16
{});
}
else
{
std
::
cout
<<
"Incorrect combination of data type and compute data type."
<<
std
::
endl
;
return
1
;
}
}
else
if
(
data_type
==
ContractionDataType
::
F64_F64_F64_F64
&&
layout
==
ContractionMatrixLayout
::
KM_KN_MN_MN
)
else
if
(
data_type
==
ContractionDataType
::
F64_F64_F64_F64
)
{
return
profile
(
Col
{},
Row
{},
Row
{},
F64
{});
if
(
compute_data_type
==
ContractionComputeDataType
::
F64
)
{
return
run_profile_for_datatype
(
F64
{},
F64
{});
}
else
if
(
compute_data_type
==
ContractionComputeDataType
::
F32
)
{
return
run_profile_for_datatype
(
F64
{},
F32
{});
}
else
{
std
::
cout
<<
"Incorrect combination of data type and compute data type."
<<
std
::
endl
;
return
1
;
}
}
else
if
(
data_type
==
ContractionDataType
::
F64_F64_F64_F64
&&
layout
==
ContractionMatrixLayout
::
KM_NK_MN_MN
)
else
if
(
data_type
==
ContractionDataType
::
F16_F16_F16_F16
)
{
return
profile
(
Col
{},
Col
{},
Row
{},
F64
{});
if
(
compute_data_type
==
ContractionComputeDataType
::
F32
)
{
return
run_profile_for_datatype
(
F16
{},
F32
{});
}
else
{
std
::
cout
<<
"Incorrect combination of data type and compute data type."
<<
std
::
endl
;
return
1
;
}
}
else
else
if
(
data_type
==
ContractionDataType
::
BF16_BF16_BF16_BF16
)
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
if
(
compute_data_type
==
ContractionComputeDataType
::
F32
)
{
return
run_profile_for_datatype
(
BF16
{},
F32
{});
}
else
{
std
::
cout
<<
"Incorrect combination of data type and compute data type."
<<
std
::
endl
;
return
1
;
}
}
return
1
;
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_contraction_scale
);
profiler/src/profile_conv_tensor_rearrange.cpp
View file @
0f1e8187
...
...
@@ -19,7 +19,8 @@ enum struct RearrangeOp
enum
struct
ConvLayout
{
NHWC
,
// 0
GNHWC
,
// 0
NHWGC
,
// 1
};
enum
struct
DataType
...
...
@@ -42,7 +43,8 @@ static void print_helper_msg()
<<
" 1: Input fp16, Weight fp16, Output fp16
\n
"
<<
" 2: Input bf16, Weight bf16, Output bf16
\n
"
<<
" 3: Input int8, Weight int8, Output int8)
\n
"
<<
"arg3: tensor layout (0: Input[N, Hi, Wi, C], Output[N * Ho * Wo, Y * X * C])
\n
"
<<
"arg3: tensor layout (0: Input[G, N, Hi, Wi, C], Output[G * N * Ho * Wo, Y * X * C],
\n
"
<<
" 1: Input[N, Hi, Wi, G, C], Output[N * Ho * Wo * G, Y * X * C])
\n
"
<<
"arg4: verification (0: no, 1: yes)
\n
"
<<
"arg5: initialization (0: no init, 1: integer value, 2: decimal value)
\n
"
<<
"arg6: print tensor value (0: no; 1: yes)
\n
"
...
...
@@ -114,11 +116,9 @@ int profile_conv_tensor_rearrange(int argc, char* argv[])
return
pass
?
0
:
1
;
};
// Image To Column
if
(
rearrange_op
==
RearrangeOp
::
ImageToColumn
)
{
// NHWC
if
(
layout
==
ConvLayout
::
NHWC
)
if
(
layout
==
ConvLayout
::
GNHWC
)
{
if
(
num_dim_spatial
==
1
)
{
...
...
@@ -178,11 +178,70 @@ int profile_conv_tensor_rearrange(int argc, char* argv[])
}
}
}
else
if
(
layout
==
ConvLayout
::
NHWGC
)
{
if
(
num_dim_spatial
==
1
)
{
if
(
data_type
==
DataType
::
F32_F32
)
{
return
profile
(
I1
,
NWGC
{},
F32
{},
F32
{},
ImageToColumn
{});
}
else
if
(
data_type
==
DataType
::
F16_F16
)
{
return
profile
(
I1
,
NWGC
{},
F16
{},
F16
{},
ImageToColumn
{});
}
else
if
(
data_type
==
DataType
::
BF16_BF16
)
{
return
profile
(
I1
,
NWGC
{},
BF16
{},
BF16
{},
ImageToColumn
{});
}
else
if
(
data_type
==
DataType
::
INT8_INT8
)
{
return
profile
(
I1
,
NWGC
{},
INT8
{},
INT8
{},
ImageToColumn
{});
}
}
else
if
(
num_dim_spatial
==
2
)
{
if
(
data_type
==
DataType
::
F32_F32
)
{
return
profile
(
I2
,
NHWGC
{},
F32
{},
F32
{},
ImageToColumn
{});
}
else
if
(
data_type
==
DataType
::
F16_F16
)
{
return
profile
(
I2
,
NHWGC
{},
F16
{},
F16
{},
ImageToColumn
{});
}
else
if
(
data_type
==
DataType
::
BF16_BF16
)
{
return
profile
(
I2
,
NHWGC
{},
BF16
{},
BF16
{},
ImageToColumn
{});
}
else
if
(
data_type
==
DataType
::
INT8_INT8
)
{
return
profile
(
I2
,
NHWGC
{},
INT8
{},
INT8
{},
ImageToColumn
{});
}
}
else
if
(
num_dim_spatial
==
3
)
{
if
(
data_type
==
DataType
::
F32_F32
)
{
return
profile
(
I3
,
NDHWGC
{},
F32
{},
F32
{},
ImageToColumn
{});
}
else
if
(
data_type
==
DataType
::
F16_F16
)
{
return
profile
(
I3
,
NDHWGC
{},
F16
{},
F16
{},
ImageToColumn
{});
}
else
if
(
data_type
==
DataType
::
BF16_BF16
)
{
return
profile
(
I3
,
NDHWGC
{},
BF16
{},
BF16
{},
ImageToColumn
{});
}
else
if
(
data_type
==
DataType
::
INT8_INT8
)
{
return
profile
(
I3
,
NDHWGC
{},
INT8
{},
INT8
{},
ImageToColumn
{});
}
}
}
}
else
if
(
rearrange_op
==
RearrangeOp
::
ColumnToImage
)
{
// NHWC
if
(
layout
==
ConvLayout
::
NHWC
)
if
(
layout
==
ConvLayout
::
GNHWC
)
{
if
(
num_dim_spatial
==
1
)
{
...
...
@@ -242,6 +301,66 @@ int profile_conv_tensor_rearrange(int argc, char* argv[])
}
}
}
else
if
(
layout
==
ConvLayout
::
NHWGC
)
{
if
(
num_dim_spatial
==
1
)
{
if
(
data_type
==
DataType
::
F32_F32
)
{
return
profile
(
I1
,
NWGC
{},
F32
{},
F32
{},
ColumnToImage
{});
}
else
if
(
data_type
==
DataType
::
F16_F16
)
{
return
profile
(
I1
,
NWGC
{},
F16
{},
F16
{},
ColumnToImage
{});
}
else
if
(
data_type
==
DataType
::
BF16_BF16
)
{
return
profile
(
I1
,
NWGC
{},
BF16
{},
BF16
{},
ColumnToImage
{});
}
else
if
(
data_type
==
DataType
::
INT8_INT8
)
{
return
profile
(
I1
,
NWGC
{},
INT8
{},
INT8
{},
ColumnToImage
{});
}
}
else
if
(
num_dim_spatial
==
2
)
{
if
(
data_type
==
DataType
::
F32_F32
)
{
return
profile
(
I2
,
NHWGC
{},
F32
{},
F32
{},
ColumnToImage
{});
}
else
if
(
data_type
==
DataType
::
F16_F16
)
{
return
profile
(
I2
,
NHWGC
{},
F16
{},
F16
{},
ColumnToImage
{});
}
else
if
(
data_type
==
DataType
::
BF16_BF16
)
{
return
profile
(
I2
,
NHWGC
{},
BF16
{},
BF16
{},
ColumnToImage
{});
}
else
if
(
data_type
==
DataType
::
INT8_INT8
)
{
return
profile
(
I2
,
NHWGC
{},
INT8
{},
INT8
{},
ColumnToImage
{});
}
}
else
if
(
num_dim_spatial
==
3
)
{
if
(
data_type
==
DataType
::
F32_F32
)
{
return
profile
(
I3
,
NDHWGC
{},
F32
{},
F32
{},
ColumnToImage
{});
}
else
if
(
data_type
==
DataType
::
F16_F16
)
{
return
profile
(
I3
,
NDHWGC
{},
F16
{},
F16
{},
ColumnToImage
{});
}
else
if
(
data_type
==
DataType
::
BF16_BF16
)
{
return
profile
(
I3
,
NDHWGC
{},
BF16
{},
BF16
{},
ColumnToImage
{});
}
else
if
(
data_type
==
DataType
::
INT8_INT8
)
{
return
profile
(
I3
,
NDHWGC
{},
INT8
{},
INT8
{},
ColumnToImage
{});
}
}
}
}
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
...
...
script/redis-cli.conf
0 → 100644
View file @
0f1e8187
fips
=
no
setuid
=
root
setgid
=
root
pid
= /
var
/
run
/
stunnel
.
pid
debug
=
7
options
=
NO_SSLv2
options
=
NO_SSLv3
[
redis
-
cli
]
client
=
yes
accept
=
127
.
0
.
0
.
1
:
6379
script/sccache_wrapper.sh
0 → 100755
View file @
0f1e8187
#!/bin/bash
set
-e
COMPILERS_HASH_DIR
=
${
COMPILERS_HASH_DIR
:-
"/tmp/.sccache"
}
SCCACHE_EXTRAFILES
=
${
SCCACHE_EXTRAFILES
:-
"
${
COMPILERS_HASH_DIR
}
/rocm_compilers_hash_file"
}
SCCACHE_BIN
=
${
SCCACHE_BIN
:-
"
${
SCCACHE_INSTALL_LOCATION
}
/sccache"
}
ENFORCE_REDIS
=
"false"
while
[
"
$1
"
!=
""
]
;
do
case
$1
in
--enforce_redis
)
shift
;
ENFORCE_REDIS
=
"true"
;;
--no-hipcc
)
shift
;;
*
)
break
;;
esac
done
setup_rocm_compilers_hash_file
()
{
mkdir
-p
"
$COMPILERS_HASH_DIR
"
HIPCC_MD5
=
"
$(
md5sum
"
${
ROCM_PATH
}
/bin/hipcc"
)
"
pushd
"
${
ROCM_PATH
}
/amdgcn/bitcode"
DEVICELIBS_BITCODES_MD5
=
"
$(
find
.
-type
f
-exec
md5sum
{}
\;
|
sort
|
md5sum
)
"
popd
HIPCC_HASH_VALUE
=
"
${
HIPCC_MD5
%% *
}
"
DEVICELIBS_BITCODES_HASH_VALUE
=
"
${
DEVICELIBS_BITCODES_MD5
%% *
}
"
# MD5 checksums of clang and clang-offload-bundler cannot be used since they will keep changing
# if the ROCM_PATH changes, ie; for every mainline build.
# This is because ROCM_PATH gets encoded into the clang/clang-offload-bundler binaries as part
# of RPATH.
# The versions themselves contain the commit hash of the compiler repo at the time of building.
# Hence, this should be a viable alternative to using the binary checksum itself.
CLANG_VERSION
=
"
$(
"
${
ROCM_PATH
}
/llvm/bin/clang"
--version
|
head
-n
1
)
"
CLANG_OFFLOAD_BUNDLER_VERSION
=
"
$(
"
${
ROCM_PATH
}
/llvm/bin/clang-offload-bundler"
--version
|
head
-n
1
)
"
printf
'%s: %s\n'
'clang version'
"
${
CLANG_VERSION
}
"
|
tee
-a
"
$SCCACHE_EXTRAFILES
"
printf
'%s: %s\n'
'clang-offload-bundler version'
"
${
CLANG_OFFLOAD_BUNDLER_VERSION
}
"
|
tee
-a
"
$SCCACHE_EXTRAFILES
"
printf
'%s: %s\n'
'hipcc md5sum'
"
${
HIPCC_HASH_VALUE
}
"
|
tee
-a
"
$SCCACHE_EXTRAFILES
"
printf
'%s: %s\n'
'devicelibs bitcode md5sum'
"
${
DEVICELIBS_BITCODES_HASH_VALUE
}
"
|
tee
-a
"
$SCCACHE_EXTRAFILES
"
echo
"sccache-wrapper: compilers hash file set up at
${
SCCACHE_EXTRAFILES
}
"
cat
"
$SCCACHE_EXTRAFILES
"
}
if
[
"
${
ENFORCE_REDIS
}
"
==
"true"
]
;
then
if
[
-z
"
${
SCCACHE_REDIS
}
"
]
;
then
echo
"SCCACHE_REDIS not set. Not wrapping compilers with sccache."
exit
10
else
response
=
$(
redis-cli
-u
${
SCCACHE_REDIS
}
ping
)
||
true
if
[
"
${
response
}
"
!=
"PONG"
]
;
then
echo
"Redis server unreachable. Not wrapping compilers with sccache."
exit
20
fi
fi
fi
setup_rocm_compilers_hash_file
$SCCACHE_BIN
--version
$SCCACHE_BIN
--start-server
test/contraction/test_contraction.cpp
View file @
0f1e8187
...
...
@@ -10,9 +10,12 @@
#include <gtest/gtest.h>
#include "profiler/profile_contraction_impl.hpp"
#include "profiler/profile_contraction_utils.hpp"
using
F32
=
float
;
using
F64
=
double
;
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
F64
=
double
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
...
...
@@ -20,49 +23,49 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
struct
MemoryParam
s
struct
Dimension
s
{
std
::
vector
<
ck
::
index_t
>
M
;
std
::
vector
<
ck
::
index_t
>
N
;
std
::
vector
<
ck
::
index_t
>
K
;
std
::
vector
<
ck
::
index_t
>
StridesA
;
std
::
vector
<
ck
::
index_t
>
StridesB
;
std
::
vector
<
ck
::
index_t
>
StridesC
;
std
::
vector
<
ck
::
index_t
>
StridesD
;
};
template
<
typename
Tuple
>
class
TestContraction
:
public
::
testing
::
Test
{
protected:
using
ALayout
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
BLayout
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
CDLayout
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
DataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
DTupleDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
CDElementOp
=
std
::
tuple_element_t
<
5
,
Tuple
>
;
std
::
vector
<
MemoryParams
>
list_of_memory_params
=
{{{
32
,
32
},
{
32
,
32
},
{
32
,
32
},
{
32768
,
1024
,
32
,
1
},
{
32768
,
1024
,
32
,
1
},
{
32768
,
1024
,
32
,
1
},
{
32768
,
1024
,
32
,
1
}},
{{
16
,
16
},
{
32
,
32
},
{
16
,
16
},
{
4096
,
256
,
16
,
1
},
{
16
,
1
,
8192
,
256
},
{
16384
,
1024
,
32
,
1
},
{
16384
,
1024
,
32
,
1
}}};
std
::
vector
<
ck
::
index_t
>
init_methods
=
{
0
,
1
,
2
};
using
ALayout
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
BLayout
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
CDLayout
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
DataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
DTupleDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
ComputeDataType
=
std
::
tuple_element_t
<
5
,
Tuple
>
;
using
CDElementOp
=
std
::
tuple_element_t
<
6
,
Tuple
>
;
std
::
vector
<
Dimensions
>
dimension_list
=
{{{
32
,
32
},
{
32
,
32
},
{
32
,
32
}},
{{
16
,
16
},
{
32
,
32
},
{
16
,
16
}}};
std
::
vector
<
ck
::
index_t
>
init_methods
=
{
1
,
2
};
std
::
unique_ptr
<
CDElementOp
>
p_cd_element_op
;
void
Run
()
{
for
(
auto
&
memory
_params
:
list_of_memory_params
)
for
(
auto
&
dimension
_params
:
dimension_list
)
{
std
::
vector
<
ck
::
index_t
>
StridesA
;
std
::
vector
<
ck
::
index_t
>
StridesB
;
std
::
vector
<
ck
::
index_t
>
StridesC
;
std
::
vector
<
ck
::
index_t
>
StridesD
;
const
auto
&
M
=
dimension_params
.
M
;
const
auto
&
N
=
dimension_params
.
N
;
const
auto
&
K
=
dimension_params
.
K
;
assign_default_strides
(
ALayout
{},
StridesA
,
{
M
[
0
],
M
[
1
],
K
[
0
],
K
[
1
]});
assign_default_strides
(
BLayout
{},
StridesB
,
{
N
[
0
],
N
[
1
],
K
[
0
],
K
[
1
]});
assign_default_strides
(
CDLayout
{},
StridesC
,
{
M
[
0
],
M
[
1
],
N
[
0
],
N
[
1
]});
assign_default_strides
(
CDLayout
{},
StridesD
,
{
M
[
0
],
M
[
1
],
N
[
0
],
N
[
1
]});
for
(
const
ck
::
index_t
init_method
:
init_methods
)
{
bool
pass
=
...
...
@@ -70,19 +73,20 @@ class TestContraction : public ::testing::Test
BLayout
,
CDLayout
,
DataType
,
ComputeDataType
,
DTupleDataType
,
CDElementOp
>
(
true
/*do_verification*/
,
init_method
,
false
/*do_logs*/
,
false
/*time_kernel*/
,
*
p_cd_element_op
,
memory
_params
.
M
,
memory
_params
.
N
,
memory
_params
.
K
,
memory_params
.
StridesA
,
memory_params
.
StridesB
,
memory_params
.
StridesC
,
memory_params
.
StridesD
);
dimension
_params
.
M
,
dimension
_params
.
N
,
dimension
_params
.
K
,
StridesA
,
StridesB
,
StridesC
,
StridesD
);
EXPECT_TRUE
(
pass
);
}
}
...
...
@@ -99,24 +103,18 @@ class TestContractionBilinear : public TestContraction<Tuple>
{
};
#define ALL_LAYOUT_COMBINATIONS(dt, tuple_dt, compute_dt, op) \
std::tuple<Row, Row, Row, dt, tuple_dt, compute_dt, op>, \
std::tuple<Row, Col, Row, dt, tuple_dt, compute_dt, op>, \
std::tuple<Col, Row, Row, dt, tuple_dt, compute_dt, op>, \
std::tuple<Col, Col, Row, dt, tuple_dt, compute_dt, op>
using
BilinearKernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
Row
,
Row
,
Row
,
F32
,
ck
::
Tuple
<
F32
>
,
Bilinear
>
,
std
::
tuple
<
Row
,
Col
,
Row
,
F32
,
ck
::
Tuple
<
F32
>
,
Bilinear
>
,
std
::
tuple
<
Col
,
Row
,
Row
,
F32
,
ck
::
Tuple
<
F32
>
,
Bilinear
>
,
std
::
tuple
<
Col
,
Col
,
Row
,
F32
,
ck
::
Tuple
<
F32
>
,
Bilinear
>
,
std
::
tuple
<
Row
,
Row
,
Row
,
F64
,
ck
::
Tuple
<
F32
>
,
Bilinear
>
,
std
::
tuple
<
Row
,
Col
,
Row
,
F64
,
ck
::
Tuple
<
F32
>
,
Bilinear
>
,
std
::
tuple
<
Col
,
Row
,
Row
,
F64
,
ck
::
Tuple
<
F32
>
,
Bilinear
>
,
std
::
tuple
<
Col
,
Col
,
Row
,
F64
,
ck
::
Tuple
<
F32
>
,
Bilinear
>>
;
using
ScaleKernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
Row
,
Row
,
Row
,
F32
,
ck
::
Tuple
<>
,
Scale
>
,
std
::
tuple
<
Row
,
Col
,
Row
,
F32
,
ck
::
Tuple
<>
,
Scale
>
,
std
::
tuple
<
Col
,
Row
,
Row
,
F32
,
ck
::
Tuple
<>
,
Scale
>
,
std
::
tuple
<
Col
,
Col
,
Row
,
F32
,
ck
::
Tuple
<>
,
Scale
>
,
std
::
tuple
<
Row
,
Row
,
Row
,
F64
,
ck
::
Tuple
<>
,
Scale
>
,
std
::
tuple
<
Row
,
Col
,
Row
,
F64
,
ck
::
Tuple
<>
,
Scale
>
,
std
::
tuple
<
Col
,
Row
,
Row
,
F64
,
ck
::
Tuple
<>
,
Scale
>
,
std
::
tuple
<
Col
,
Col
,
Row
,
F64
,
ck
::
Tuple
<>
,
Scale
>>
;
::
testing
::
Types
<
ALL_LAYOUT_COMBINATIONS
(
F32
,
ck
::
Tuple
<
F32
>
,
F32
,
Bilinear
),
ALL_LAYOUT_COMBINATIONS
(
F64
,
ck
::
Tuple
<
F64
>
,
F64
,
Bilinear
)
>
;
using
ScaleKernelTypes
=
::
testing
::
Types
<
ALL_LAYOUT_COMBINATIONS
(
F32
,
ck
::
Tuple
<>
,
F32
,
Scale
),
ALL_LAYOUT_COMBINATIONS
(
F64
,
ck
::
Tuple
<>
,
F64
,
Scale
)
>
;
TYPED_TEST_SUITE
(
TestContractionBilinear
,
BilinearKernelTypes
);
TYPED_TEST_SUITE
(
TestContractionScale
,
ScaleKernelTypes
);
...
...
@@ -136,3 +134,46 @@ TYPED_TEST(TestContractionScale, scale)
this
->
p_cd_element_op
=
std
::
make_unique
<
Scale
>
(
0.5
f
);
this
->
Run
();
}
template
<
typename
Tuple
>
class
TestContractionScaleMixedPrecision
:
public
TestContraction
<
Tuple
>
{
};
template
<
typename
Tuple
>
class
TestContractionBilinearMixedPrecision
:
public
TestContraction
<
Tuple
>
{
};
using
BilinearKernelTypesMixedPrecision
=
::
testing
::
Types
<
ALL_LAYOUT_COMBINATIONS
(
F32
,
ck
::
Tuple
<
F32
>
,
F16
,
Bilinear
),
ALL_LAYOUT_COMBINATIONS
(
F32
,
ck
::
Tuple
<
F32
>
,
BF16
,
Bilinear
),
ALL_LAYOUT_COMBINATIONS
(
F64
,
ck
::
Tuple
<
F64
>
,
F32
,
Bilinear
),
ALL_LAYOUT_COMBINATIONS
(
F16
,
ck
::
Tuple
<
F16
>
,
F32
,
Bilinear
),
ALL_LAYOUT_COMBINATIONS
(
BF16
,
ck
::
Tuple
<
BF16
>
,
F32
,
Bilinear
)
>
;
using
ScaleKernelTypesMixedPrecision
=
::
testing
::
Types
<
ALL_LAYOUT_COMBINATIONS
(
F32
,
ck
::
Tuple
<>
,
F16
,
Scale
),
ALL_LAYOUT_COMBINATIONS
(
F32
,
ck
::
Tuple
<>
,
BF16
,
Scale
),
ALL_LAYOUT_COMBINATIONS
(
F64
,
ck
::
Tuple
<>
,
F32
,
Scale
),
ALL_LAYOUT_COMBINATIONS
(
F16
,
ck
::
Tuple
<>
,
F32
,
Scale
),
ALL_LAYOUT_COMBINATIONS
(
BF16
,
ck
::
Tuple
<>
,
F32
,
Scale
)
>
;
TYPED_TEST_SUITE
(
TestContractionBilinearMixedPrecision
,
BilinearKernelTypesMixedPrecision
);
TYPED_TEST_SUITE
(
TestContractionScaleMixedPrecision
,
ScaleKernelTypesMixedPrecision
);
TYPED_TEST
(
TestContractionBilinearMixedPrecision
,
bilinear
)
{
this
->
p_cd_element_op
=
std
::
make_unique
<
Bilinear
>
(
1.
f
,
1.
f
);
this
->
Run
();
this
->
p_cd_element_op
=
std
::
make_unique
<
Bilinear
>
(
-
0.5
f
,
0.5
f
);
this
->
Run
();
}
TYPED_TEST
(
TestContractionScaleMixedPrecision
,
scale
)
{
this
->
p_cd_element_op
=
std
::
make_unique
<
Scale
>
(
1.
f
);
this
->
Run
();
this
->
p_cd_element_op
=
std
::
make_unique
<
Scale
>
(
0.5
f
);
this
->
Run
();
}
test/contraction/test_contraction_interface.cpp
View file @
0f1e8187
...
...
@@ -34,11 +34,11 @@ class ContractionInstanceWrapper
static
constexpr
ck
::
index_t
NumDim
=
2
;
// clang-format off
using
ContractionDeviceInstance
=
ck
::
tensor_operation
::
device
::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData|
A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type|
Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | |
Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle
<
NumDim
,
NumDim
,
NumDim
,
F32
,
F32
,
F32
,
F32
,
ck
::
Tuple
<
F32
>
,
F32
,
Pass
,
Pass
,
Bilinear
,
GemmSpec
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
ABlockTransferSrcVectorDim
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
BBlockTransferSrcVectorDim
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
CDEBlockTransferScalarPerVector
>
;
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
Compute|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
Data|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
Type|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|
DeviceContractionMultipleD_Xdl_CShuffle
<
NumDim
,
NumDim
,
NumDim
,
F32
,
F32
,
F32
,
F32
,
ck
::
Tuple
<
F32
>
,
F32
,
Pass
,
Pass
,
Bilinear
,
GemmSpec
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
ABlockTransferSrcVectorDim
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
BBlockTransferSrcVectorDim
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
CDEBlockTransferScalarPerVector
,
F32
>
;
// clang-format on
bool
isSupported
(
std
::
vector
<
ck
::
index_t
>&
ADims
,
...
...
test/conv_tensor_rearrange/test_conv_tensor_rearrange.cpp
View file @
0f1e8187
...
...
@@ -45,14 +45,20 @@ class TestConvTensorRearrange : public ::testing::Test
using
namespace
ck
::
tensor_layout
::
convolution
;
using
namespace
ck
::
conv_tensor_rearrange_op
;
using
KernelTypes1d
=
::
testing
::
Types
<
std
::
tuple
<
GNWC
,
ImageToColumn
>
,
std
::
tuple
<
GNWC
,
ColumnToImage
>>
;
using
KernelTypes1d
=
::
testing
::
Types
<
std
::
tuple
<
GNWC
,
ImageToColumn
>
,
std
::
tuple
<
GNWC
,
ColumnToImage
>
,
std
::
tuple
<
NWGC
,
ImageToColumn
>
,
std
::
tuple
<
NWGC
,
ColumnToImage
>>
;
using
KernelTypes2d
=
::
testing
::
Types
<
std
::
tuple
<
GNHWC
,
ImageToColumn
>
,
std
::
tuple
<
GNHWC
,
ColumnToImage
>>
;
using
KernelTypes2d
=
::
testing
::
Types
<
std
::
tuple
<
GNHWC
,
ImageToColumn
>
,
std
::
tuple
<
GNHWC
,
ColumnToImage
>
,
std
::
tuple
<
NHWGC
,
ImageToColumn
>
,
std
::
tuple
<
NHWGC
,
ColumnToImage
>>
;
using
KernelTypes3d
=
::
testing
::
Types
<
std
::
tuple
<
GNDHWC
,
ImageToColumn
>
,
std
::
tuple
<
GNDHWC
,
ColumnToImage
>>
;
using
KernelTypes3d
=
::
testing
::
Types
<
std
::
tuple
<
GNDHWC
,
ImageToColumn
>
,
std
::
tuple
<
GNDHWC
,
ColumnToImage
>
,
std
::
tuple
<
NDHWGC
,
ImageToColumn
>
,
std
::
tuple
<
NDHWGC
,
ColumnToImage
>>
;
template
<
typename
Tuple
>
class
TestConvTensorRearrange1d
:
public
TestConvTensorRearrange
<
Tuple
>
...
...
@@ -77,16 +83,16 @@ TYPED_TEST(TestConvTensorRearrange1d, Test1D)
{
this
->
conv_params
.
clear
();
this
->
conv_params
.
push_back
({
1
,
1
,
4
,
1
,
192
,
{
3
},
{
28
},
{
1
},
{
1
},
{
1
},
{
1
}});
this
->
conv_params
.
push_back
({
1
,
1
,
64
,
1
,
64
,
{
3
},
{
14
},
{
1
},
{
1
},
{
1
},
{
1
}});
this
->
conv_params
.
push_back
({
1
,
1
,
64
,
1
,
64
,
{
1
},
{
7
},
{
3
},
{
1
},
{
0
},
{
0
}});
this
->
conv_params
.
push_back
({
1
,
1
,
64
,
1
,
64
,
{
1
},
{
3
},
{
1
},
{
1
},
{
0
},
{
0
}});
this
->
conv_params
.
push_back
({
1
,
2
,
4
,
1
,
192
,
{
3
},
{
28
},
{
1
},
{
1
},
{
1
},
{
1
}});
this
->
conv_params
.
push_back
({
1
,
2
,
64
,
1
,
64
,
{
3
},
{
14
},
{
1
},
{
1
},
{
1
},
{
1
}});
this
->
conv_params
.
push_back
({
1
,
2
,
64
,
1
,
64
,
{
1
},
{
7
},
{
3
},
{
1
},
{
0
},
{
0
}});
this
->
conv_params
.
push_back
({
1
,
2
,
64
,
1
,
64
,
{
1
},
{
3
},
{
1
},
{
1
},
{
0
},
{
0
}});
// ScalarPerVector should be 1
this
->
conv_params
.
push_back
({
1
,
1
,
4
,
1
,
1
,
{
3
},
{
28
},
{
1
},
{
1
},
{
1
},
{
1
}});
this
->
conv_params
.
push_back
({
1
,
2
,
4
,
1
,
1
,
{
3
},
{
28
},
{
1
},
{
1
},
{
1
},
{
1
}});
// stride != 1
this
->
conv_params
.
push_back
({
1
,
1
,
1
,
1
,
4
,
{
3
},
{
28
},
{
2
},
{
1
},
{
1
},
{
1
}});
this
->
conv_params
.
push_back
({
1
,
2
,
1
,
1
,
4
,
{
3
},
{
28
},
{
2
},
{
1
},
{
1
},
{
1
}});
// dilation != 1
this
->
conv_params
.
push_back
({
1
,
1
,
1
,
1
,
4
,
{
3
},
{
28
},
{
1
},
{
2
},
{
1
},
{
1
}});
this
->
conv_params
.
push_back
({
1
,
2
,
1
,
1
,
4
,
{
3
},
{
28
},
{
1
},
{
2
},
{
1
},
{
1
}});
#ifdef CK_ENABLE_FP32
this
->
template
Run
<
1
,
float
,
float
>();
#endif
...
...
@@ -106,13 +112,13 @@ TYPED_TEST(TestConvTensorRearrange2d, Test2D)
this
->
conv_params
.
clear
();
this
->
conv_params
.
push_back
(
{
2
,
1
,
4
,
1
,
192
,
{
3
,
3
},
{
28
,
28
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}});
{
2
,
2
,
4
,
1
,
192
,
{
3
,
3
},
{
28
,
28
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}});
this
->
conv_params
.
push_back
(
{
2
,
1
,
64
,
1
,
64
,
{
3
,
3
},
{
14
,
14
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}});
{
2
,
2
,
64
,
1
,
64
,
{
3
,
3
},
{
14
,
14
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}});
this
->
conv_params
.
push_back
({
2
,
1
,
64
,
1
,
64
,
{
1
,
1
},
{
7
,
7
},
{
3
,
3
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}});
this
->
conv_params
.
push_back
({
2
,
1
,
64
,
1
,
64
,
{
1
,
1
},
{
3
,
3
},
{
1
,
1
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}});
this
->
conv_params
.
push_back
(
{
2
,
1
,
64
,
1
,
64
,
{
3
,
3
},
{
28
,
28
},
{
2
,
2
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
}});
{
2
,
2
,
64
,
1
,
64
,
{
3
,
3
},
{
28
,
28
},
{
2
,
2
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
}});
#ifdef CK_ENABLE_FP32
this
->
template
Run
<
2
,
float
,
float
>();
#endif
...
...
@@ -131,13 +137,13 @@ TYPED_TEST(TestConvTensorRearrange3d, Test3D)
{
this
->
conv_params
.
clear
();
this
->
conv_params
.
push_back
(
{
3
,
1
,
16
,
1
,
64
,
{
1
,
1
,
1
},
{
7
,
7
,
7
},
{
2
,
2
,
2
},
{
3
,
3
,
3
},
{
0
,
0
,
0
},
{
0
,
0
,
0
}});
{
3
,
2
,
16
,
1
,
64
,
{
1
,
1
,
1
},
{
7
,
7
,
7
},
{
2
,
2
,
2
},
{
3
,
3
,
3
},
{
0
,
0
,
0
},
{
0
,
0
,
0
}});
this
->
conv_params
.
push_back
(
{
3
,
1
,
2
,
1
,
64
,
{
3
,
3
,
3
},
{
14
,
14
,
3
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}});
{
3
,
2
,
2
,
1
,
64
,
{
3
,
3
,
3
},
{
14
,
14
,
3
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}});
this
->
conv_params
.
push_back
(
{
3
,
1
,
32
,
1
,
64
,
{
1
,
1
,
1
},
{
3
,
3
,
3
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
},
{
0
,
0
,
0
}});
{
3
,
2
,
32
,
1
,
64
,
{
1
,
1
,
1
},
{
3
,
3
,
3
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
},
{
0
,
0
,
0
}});
this
->
conv_params
.
push_back
(
{
3
,
1
,
64
,
1
,
64
,
{
3
,
3
,
3
},
{
14
,
14
,
14
},
{
2
,
2
,
2
},
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}});
{
3
,
2
,
64
,
1
,
64
,
{
3
,
3
,
3
},
{
14
,
14
,
14
},
{
2
,
2
,
2
},
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}});
#ifdef CK_ENABLE_FP32
this
->
template
Run
<
3
,
float
,
float
>();
#endif
...
...
test/conv_tensor_rearrange/test_conv_tensor_rearrange_interface.cpp
View file @
0f1e8187
...
...
@@ -53,7 +53,7 @@ class TestConvTensorRearrangeInterface : public ::testing::Test
template
<
typename
ConvTensorRearrangeOp
>
bool
Run
()
{
const
auto
G
=
conv_param
.
G_
;
const
auto
N
=
conv_param
.
N_
;
const
auto
C
=
conv_param
.
C_
;
const
auto
FakeC
=
...
...
@@ -71,13 +71,13 @@ class TestConvTensorRearrangeInterface : public ::testing::Test
const
auto
image_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
ImLayout
>
(
conv_param
);
const
auto
gemm_desc
=
HostTensorDescriptor
({
NDoHoWo
,
CZYX
});
const
auto
gemm_desc
=
HostTensorDescriptor
({
G
,
NDoHoWo
,
CZYX
});
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
input_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
2
>
output_m_k_strides
{};
std
::
array
<
ck
::
index_t
,
3
>
output_
g_
m_k_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
...
...
@@ -89,7 +89,7 @@ class TestConvTensorRearrangeInterface : public ::testing::Test
copy
(
conv_param
.
filter_spatial_lengths_
,
filter_spatial_lengths
);
copy
(
conv_param
.
output_spatial_lengths_
,
output_spatial_lengths
);
copy
(
image_desc
.
GetStrides
(),
input_g_n_c_wis_strides
);
copy
(
gemm_desc
.
GetStrides
(),
output_m_k_strides
);
copy
(
gemm_desc
.
GetStrides
(),
output_
g_
m_k_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
...
...
@@ -100,13 +100,14 @@ class TestConvTensorRearrangeInterface : public ::testing::Test
auto
img2col
=
DeviceImgToColInstance
{};
auto
argument
=
img2col
.
MakeArgument
(
nullptr
,
nullptr
,
G
,
N
,
IsCPacked
?
C
:
FakeC
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
input_g_n_c_wis_strides
,
output_m_k_strides
,
output_
g_
m_k_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
...
...
@@ -119,13 +120,14 @@ class TestConvTensorRearrangeInterface : public ::testing::Test
auto
col2img
=
DeviceColToimgInstance
{};
auto
argument
=
col2img
.
MakeArgument
(
nullptr
,
nullptr
,
G
,
N
,
IsCPacked
?
C
:
FakeC
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
input_g_n_c_wis_strides
,
output_m_k_strides
,
output_
g_
m_k_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
...
...
Prev
1
…
4
5
6
7
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment