Commit 0df62d59 authored by ltqin's avatar ltqin
Browse files

add add new algorithm from v4r4r2

parent 627d8ef3
#ifndef CK_GRIDWISE_GEMM_XDLOPS_V2R4_HPP
#define CK_GRIDWISE_GEMM_XDLOPS_V2R4_HPP
#include "common_header.hpp"
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "blockwise_tensor_slice_transfer.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "threadwise_tensor_slice_set.hpp"
namespace ck {
#if CK_EXPERIMENTAL_PASS_TENSOR_DESCRIPTOR_BY_VALUE
template <typename GridwiseGemm,
typename FloatAB,
typename FloatC,
typename AK0MK1GridDesc,
typename BK0NK1GridDesc,
typename CM0N0M1N1M2M3M4N2GridDesc,
typename CBlockClusterAdaptor>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_xdlops_v2r4(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
const AK0MK1GridDesc a_k0_m_k1_grid_desc,
const BK0NK1GridDesc b_k0_n_k1_grid_desc,
const CM0N0M1N1M2M3M4N2GridDesc c_m0_m1_m2_n_grid_desc,
const CBlockClusterAdaptor c_block_cluster_adaptor)
{
constexpr index_t shared_block_size =
GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(FloatAB);
__shared__ FloatAB p_shared_block[shared_block_size];
GridwiseGemm::Run(p_a_grid,
p_b_grid,
p_c_grid,
p_shared_block,
a_k0_m_k1_grid_desc,
b_k0_n_k1_grid_desc,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_block_cluster_adaptor);
}
#elif CK_EXPERIMENTAL_PASS_TENSOR_DESCRIPTOR_BY_VOID_POINTER
template <typename GridwiseGemm,
typename FloatAB,
typename FloatC,
typename AK0MK1GridDesc,
typename BK0NK1GridDesc,
typename CM0N0M1N1M2M3M4N2GridDesc,
typename CBlockClusterAdaptor>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_xdlops_v2r4(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
const void CONSTANT* p_a_k0_m_k1_grid_desc,
const void CONSTANT* p_b_k0_n_k1_grid_desc,
const void CONSTANT* p_c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
const void CONSTANT* p_c_block_cluster_adaptor)
{
constexpr index_t shared_block_size =
GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(FloatAB);
const auto a_k0_m_k1_grid_desc = *reinterpret_cast<const AK0MK1GridDesc*>(
cast_pointer_to_generic_address_space(p_a_k0_m_k1_grid_desc));
const auto b_k0_n_k1_grid_desc = *reinterpret_cast<const BK0NK1GridDesc*>(
cast_pointer_to_generic_address_space(p_b_k0_n_k1_grid_desc));
const auto c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc =
*reinterpret_cast<const CM0N0M1N1M2M3M4N2GridDesc*>(
cast_pointer_to_generic_address_space(p_c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc));
const auto c_block_cluster_adaptor = *reinterpret_cast<const CBlockClusterAdaptor*>(
cast_pointer_to_generic_address_space(p_c_block_cluster_adaptor));
__shared__ FloatAB p_shared_block[shared_block_size];
GridwiseGemm::Run(p_a_grid,
p_b_grid,
p_c_grid,
p_shared_block,
a_k0_m_k1_grid_desc,
b_k0_n_k1_grid_desc,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_block_cluster_adaptor);
}
#endif
template <index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename FloatC,
InMemoryDataOperationEnum_t CGlobalMemoryDataOperation,
typename AK0MK1GridDesc,
typename BK0NK1GridDesc,
typename CMNGridDesc,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t K1Value,
index_t MRepeat,
index_t NRepeat,
typename ABlockTransferThreadSliceLengths_K0_M_K1,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_K1,
bool AThreadTransferSrcResetCoordinateAfterRun,
typename BBlockTransferThreadSliceLengths_K0_N_K1,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_K1,
bool BThreadTransferSrcResetCoordinateAfterRun,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector,
typename AGridStepHacks,
typename BGridStepHacks,
typename CGridStepHacks,
typename AGridMoveSliceWindowStepHacks,
typename BGridMoveSliceWindowStepHacks,
bool CAccessOrderMRepeatNRepeat>
struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r4
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
// K1 should be Number<...>
static constexpr auto K1 = Number<K1Value>{};
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto a_k0_m_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
// B matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto b_k0_n_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size =
math::integer_least_multiple(a_k0_m_k1_block_desc.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size =
math::integer_least_multiple(b_k0_n_k1_block_desc.GetElementSpaceSize(), max_lds_align);
return (a_block_space_size + b_block_space_size) * sizeof(FloatAB);
}
__host__ __device__ static constexpr bool
CheckValidity(const AK0MK1GridDesc& a_k0_m_k1_grid_desc,
const BK0NK1GridDesc& b_k0_n_k1_grid_desc,
const CMNGridDesc& c_m_n_grid_desc)
{
// TODO: turn on this
static_assert(is_known_at_compile_time<remove_cv_t<decltype(K1)>>::value,
"wrong! K1 need to be known at compile-time");
const auto M = a_k0_m_k1_grid_desc.GetLength(I1);
const auto N = b_k0_n_k1_grid_desc.GetLength(I1);
const auto K0 = a_k0_m_k1_grid_desc.GetLength(I0);
static_assert((MPerBlock % (MPerXDL * MRepeat) == 0) &&
(NPerBlock % (NRepeat * NPerXDL)) == 0,
"Invalid tuning param!");
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return (M == c_m_n_grid_desc.GetLength(I0) && N == c_m_n_grid_desc.GetLength(I1) &&
K0 == b_k0_n_k1_grid_desc.GetLength(I0) &&
K1 == a_k0_m_k1_grid_desc.GetLength(I2) &&
K1 == b_k0_n_k1_grid_desc.GetLength(I2)) &&
(M % MPerBlock == 0 && N % NPerBlock == 0 && K0 % KPerBlock == 0);
}
__host__ __device__ static constexpr index_t
CalculateGridSize(const CMNGridDesc& c_m_n_grid_desc)
{
const auto M = c_m_n_grid_desc.GetLength(I0);
const auto N = c_m_n_grid_desc.GetLength(I1);
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock);
return grid_size;
}
__host__ __device__ static constexpr auto
MakeCM0N0M1N1M2M3M4N2GridDescriptor(const CMNGridDesc& c_m_n_grid_desc)
{
constexpr auto max_lds_align = K1;
constexpr auto a_k0_m_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
constexpr auto b_k0_n_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
using BlockwiseGemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
FloatAB,
decltype(a_k0_m_k1_block_desc),
decltype(b_k0_n_k1_block_desc),
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
K1>;
return BlockwiseGemm::MakeCM0N0M1N1M2M3M4N2GridDescriptor(c_m_n_grid_desc);
}
__host__ __device__ static constexpr auto
MakeCBlockClusterAdaptor(const CMNGridDesc& c_m_n_grid_desc)
{
const auto M = c_m_n_grid_desc.GetLength(I0);
const auto N = c_m_n_grid_desc.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
#if 1
const auto c_blockid_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(make_tuple(make_merge_transform(make_tuple(M0, N0))),
make_tuple(Sequence<0, 1>{}),
make_tuple(Sequence<0>{}));
#elif 1
const auto c_blockid_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(make_tuple(make_merge_transform(make_tuple(N0, M0))),
make_tuple(Sequence<1, 0>{}),
make_tuple(Sequence<0>{}));
#endif
return c_blockid_to_m0_n0_block_cluster_adaptor;
}
using CM0N0M1N1M2M3M4N2GridDesc = decltype(MakeCM0N0M1N1M2M3M4N2GridDescriptor(CMNGridDesc{}));
using CBlockClusterAdaptor = decltype(MakeCBlockClusterAdaptor(CMNGridDesc{}));
__device__ static void Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
FloatAB* __restrict__ p_shared_block,
const AK0MK1GridDesc& a_k0_m_k1_grid_desc,
const BK0NK1GridDesc& b_k0_n_k1_grid_desc,
const CM0N0M1N1M2M3M4N2GridDesc& c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
const CBlockClusterAdaptor& c_block_cluster_adaptor)
{
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum_t::Global>(
p_a_grid, a_k0_m_k1_grid_desc.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum_t::Global>(
p_b_grid, b_k0_n_k1_grid_desc.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum_t::Global>(
p_c_grid, c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc.GetElementSpaceSize());
const auto K0 = a_k0_m_k1_grid_desc.GetLength(I0);
// divide block work by [M, N]
const auto block_work_idx =
c_block_cluster_adaptor.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * NPerBlock);
// lds max alignment
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto a_k0_m_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
// B matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto b_k0_n_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
// A matrix blockwise copy
auto a_blockwise_copy =
BlockwiseTensorSliceTransfer_v4<BlockSize,
InMemoryDataOperationEnum_t::Set,
Sequence<KPerBlock, MPerBlock, K1>,
ABlockTransferThreadSliceLengths_K0_M_K1,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
decltype(a_k0_m_k1_grid_desc),
decltype(a_k0_m_k1_block_desc),
ABlockTransferSrcAccessOrder,
Sequence<1, 0, 2>,
ABlockTransferSrcVectorDim,
2,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
1,
1,
AThreadTransferSrcResetCoordinateAfterRun,
true>(a_k0_m_k1_grid_desc,
make_multi_index(0, m_block_data_idx_on_grid, 0),
a_k0_m_k1_block_desc,
make_multi_index(0, 0, 0));
// B matrix blockwise copy
auto b_blockwise_copy =
BlockwiseTensorSliceTransfer_v4<BlockSize,
InMemoryDataOperationEnum_t::Set,
Sequence<KPerBlock, NPerBlock, K1>,
BBlockTransferThreadSliceLengths_K0_N_K1,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
decltype(b_k0_n_k1_grid_desc),
decltype(b_k0_n_k1_block_desc),
BBlockTransferSrcAccessOrder,
Sequence<1, 0, 2>,
BBlockTransferSrcVectorDim,
2,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true>(b_k0_n_k1_grid_desc,
make_multi_index(0, n_block_data_idx_on_grid, 0),
b_k0_n_k1_block_desc,
make_multi_index(0, 0, 0));
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[KPerBlock, MPerBlock] is in LDS
// b_mtx[KPerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
const auto blockwise_gemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
FloatAB,
decltype(a_k0_m_k1_block_desc),
decltype(b_k0_n_k1_block_desc),
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
K1>{};
constexpr auto c_mr_nr_blk_desc =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{}, Number<NRepeat>{}));
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc =
blockwise_gemm.GetCM0N0M1N1M2M3M4N2ThreadDescriptor();
constexpr auto CBlkSize = c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc.GetElementSpaceSize();
StaticBuffer<AddressSpaceEnum_t::Vgpr,
vector_type<FloatAcc, CBlkSize>,
c_mr_nr_blk_desc.GetElementSpaceSize(),
true>
c_thread_buf;
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size =
math::integer_least_multiple(a_k0_m_k1_block_desc.GetElementSpaceSize(), max_lds_align);
FloatAB* p_a_block = p_shared_block;
FloatAB* p_b_block = p_shared_block + a_block_space_size;
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(KPerBlock, 0, 0);
// hack to control index calculation when iterating over A and B matrix for threadwise copy
constexpr auto a_k0_m_k1_grid_step_hacks = AGridStepHacks{};
constexpr auto b_k0_n_k1_grid_step_hacks = BGridStepHacks{};
// hack to control index calculation when move slice window for A and B matrix for
// threadwise copy
constexpr auto a_k0_m_k1_grid_move_slice_window_step_hack = AGridMoveSliceWindowStepHacks{};
constexpr auto b_k0_n_k1_grid_move_slice_window_step_hack = BGridMoveSliceWindowStepHacks{};
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum_t::Lds>(
p_a_block, a_k0_m_k1_block_desc.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum_t::Lds>(
p_b_block, b_k0_n_k1_block_desc.GetElementSpaceSize());
// preload data into LDS
{
a_blockwise_copy.RunRead(a_k0_m_k1_grid_desc, a_grid_buf, a_k0_m_k1_grid_step_hacks);
b_blockwise_copy.RunRead(b_k0_n_k1_grid_desc, b_grid_buf, b_k0_n_k1_grid_step_hacks);
a_blockwise_copy.RunWrite(a_k0_m_k1_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_k0_n_k1_block_desc, b_block_buf);
}
// main body
index_t k_block_data_begin = 0;
do
{
a_blockwise_copy.MoveSrcSliceWindow(a_k0_m_k1_grid_desc,
a_block_slice_copy_step,
a_k0_m_k1_grid_move_slice_window_step_hack);
b_blockwise_copy.MoveSrcSliceWindow(b_k0_n_k1_grid_desc,
b_block_slice_copy_step,
b_k0_n_k1_grid_move_slice_window_step_hack);
a_blockwise_copy.RunRead(a_k0_m_k1_grid_desc, a_grid_buf, a_k0_m_k1_grid_step_hacks);
block_sync_lds();
b_blockwise_copy.RunRead(b_k0_n_k1_grid_desc, b_grid_buf, b_k0_n_k1_grid_step_hacks);
blockwise_gemm.Run(a_block_buf, b_block_buf, c_thread_buf);
block_sync_lds();
a_blockwise_copy.RunWrite(a_k0_m_k1_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_k0_n_k1_block_desc, b_block_buf);
k_block_data_begin += KPerBlock;
} while(k_block_data_begin < (K0 - KPerBlock));
// tail
{
block_sync_lds();
blockwise_gemm.Run(a_block_buf, b_block_buf, c_thread_buf);
}
// output: register to global memory
{
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc =
blockwise_gemm.GetCM0N0M1N1M2M3M4N2BlockDescriptor();
constexpr auto M2 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I4);
constexpr auto M3 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I5);
constexpr auto M4 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I6);
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_grid =
m_block_data_idx_on_grid + c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_grid =
n_block_data_idx_on_grid + c_thread_mtx_on_block[I1];
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_grid_tensor_step_hacks = CGridStepHacks{};
auto c_thread_copy =
ThreadwiseTensorSliceTransfer_v1r3<FloatC,
FloatC,
decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc),
decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc),
Sequence<I1, I1, I1, I1, M2, I1, M4, I1>,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector,
CGlobalMemoryDataOperation,
1,
true>{
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
make_multi_index(0,
0,
0,
0,
m_thread_data_on_grid / (M3 * M4),
m_thread_data_on_grid % (M3 * M4) / M4,
m_thread_data_on_grid % M4,
n_thread_data_on_grid)};
auto init_copy = [&](auto c_thread_idx_) {
constexpr auto blk_off = c_mr_nr_blk_desc.CalculateOffset(c_thread_idx_);
c_thread_copy.Run(c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0),
c_thread_buf[Number<blk_off>{}].template AsType<FloatAcc>(),
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_grid_buf,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_tensor_step_hacks);
return c_thread_idx_;
};
auto mrepeat_plus_copy = [&](auto c_thread_idx_) {
constexpr auto mrepeat_step_plus = make_multi_index(1, 0, 0, 0, 0, 0, 0, 0);
c_thread_copy.MoveDstSliceWindow(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
mrepeat_step_plus);
constexpr auto blk_off = c_mr_nr_blk_desc.CalculateOffset(c_thread_idx_);
c_thread_copy.Run(c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0),
c_thread_buf[Number<blk_off>{}].template AsType<FloatAcc>(),
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_grid_buf,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_tensor_step_hacks);
};
auto nrepeat_plus_copy = [&](auto c_thread_idx_) {
constexpr auto nrepeat_step_plus = make_multi_index(0, 1, 0, 0, 0, 0, 0, 0);
c_thread_copy.MoveDstSliceWindow(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
nrepeat_step_plus);
constexpr auto blk_off = c_mr_nr_blk_desc.CalculateOffset(c_thread_idx_);
c_thread_copy.Run(c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0),
c_thread_buf[Number<blk_off>{}].template AsType<FloatAcc>(),
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_grid_buf,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_tensor_step_hacks);
};
auto mrepeat_minus_copy = [&](auto c_thread_idx_) {
constexpr auto mrepeat_step_plus = make_multi_index(-1, 0, 0, 0, 0, 0, 0, 0);
c_thread_copy.MoveDstSliceWindow(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
mrepeat_step_plus);
constexpr auto blk_off = c_mr_nr_blk_desc.CalculateOffset(c_thread_idx_);
c_thread_copy.Run(c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0),
c_thread_buf[Number<blk_off>{}].template AsType<FloatAcc>(),
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_grid_buf,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_tensor_step_hacks);
};
auto nrepeat_minus_copy = [&](auto c_thread_idx_) {
constexpr auto nrepeat_step_minus = make_multi_index(0, -1, 0, 0, 0, 0, 0, 0);
c_thread_copy.MoveDstSliceWindow(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
nrepeat_step_minus);
constexpr auto blk_off = c_mr_nr_blk_desc.CalculateOffset(c_thread_idx_);
c_thread_copy.Run(c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0),
c_thread_buf[Number<blk_off>{}].template AsType<FloatAcc>(),
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_grid_buf,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_tensor_step_hacks);
};
static_assert((MRepeat == 4 && NRepeat == 4) or (MRepeat == 4 && NRepeat == 2) or
(MRepeat == 2 && NRepeat == 4) or (MRepeat == 2 && NRepeat == 2) or
(MRepeat == 2 && NRepeat == 1) or (MRepeat == 1 && NRepeat == 2) or
(MRepeat == 1 && NRepeat == 1),
"wrong");
if constexpr(MRepeat == 4 && NRepeat == 4)
{
init_copy(make_tuple(I0, I0));
if constexpr(CAccessOrderMRepeatNRepeat)
{
nrepeat_plus_copy(make_tuple(I0, I1));
nrepeat_plus_copy(make_tuple(I0, I2));
nrepeat_plus_copy(make_tuple(I0, I3));
mrepeat_plus_copy(make_tuple(I1, I3));
nrepeat_minus_copy(make_tuple(I1, I2));
nrepeat_minus_copy(make_tuple(I1, I1));
nrepeat_minus_copy(make_tuple(I1, I0));
mrepeat_plus_copy(make_tuple(I2, I0));
nrepeat_plus_copy(make_tuple(I2, I1));
nrepeat_plus_copy(make_tuple(I2, I2));
nrepeat_plus_copy(make_tuple(I2, I3));
mrepeat_plus_copy(make_tuple(I3, I3));
nrepeat_minus_copy(make_tuple(I3, I2));
nrepeat_minus_copy(make_tuple(I3, I1));
nrepeat_minus_copy(make_tuple(I3, I0));
}
else
{
mrepeat_plus_copy(make_tuple(I1, I0));
mrepeat_plus_copy(make_tuple(I2, I0));
mrepeat_plus_copy(make_tuple(I3, I0));
nrepeat_plus_copy(make_tuple(I3, I1));
mrepeat_minus_copy(make_tuple(I2, I1));
mrepeat_minus_copy(make_tuple(I1, I1));
mrepeat_minus_copy(make_tuple(I0, I1));
nrepeat_plus_copy(make_tuple(I0, I2));
mrepeat_plus_copy(make_tuple(I1, I2));
mrepeat_plus_copy(make_tuple(I2, I2));
mrepeat_plus_copy(make_tuple(I3, I2));
nrepeat_plus_copy(make_tuple(I3, I3));
mrepeat_minus_copy(make_tuple(I2, I3));
mrepeat_minus_copy(make_tuple(I1, I3));
mrepeat_minus_copy(make_tuple(I0, I3));
}
}
else if constexpr(MRepeat == 4 && NRepeat == 2)
{
init_copy(make_tuple(I0, I0));
if constexpr(CAccessOrderMRepeatNRepeat)
{
nrepeat_plus_copy(make_tuple(I0, I1));
mrepeat_plus_copy(make_tuple(I1, I1));
nrepeat_minus_copy(make_tuple(I1, I0));
mrepeat_plus_copy(make_tuple(I2, I0));
nrepeat_plus_copy(make_tuple(I2, I1));
mrepeat_plus_copy(make_tuple(I3, I1));
nrepeat_minus_copy(make_tuple(I3, I0));
}
else
{
mrepeat_plus_copy(make_tuple(I1, I0));
mrepeat_plus_copy(make_tuple(I2, I0));
mrepeat_plus_copy(make_tuple(I3, I0));
nrepeat_plus_copy(make_tuple(I3, I1));
mrepeat_minus_copy(make_tuple(I2, I1));
mrepeat_minus_copy(make_tuple(I1, I1));
mrepeat_minus_copy(make_tuple(I0, I1));
}
}
else if constexpr(MRepeat == 2 && NRepeat == 4)
{
init_copy(make_tuple(I0, I0));
if constexpr(CAccessOrderMRepeatNRepeat)
{
nrepeat_plus_copy(make_tuple(I0, I1));
nrepeat_plus_copy(make_tuple(I0, I2));
nrepeat_plus_copy(make_tuple(I0, I3));
mrepeat_plus_copy(make_tuple(I1, I3));
nrepeat_minus_copy(make_tuple(I1, I2));
nrepeat_minus_copy(make_tuple(I1, I1));
nrepeat_minus_copy(make_tuple(I1, I0));
}
else
{
mrepeat_plus_copy(make_tuple(I1, I0));
nrepeat_plus_copy(make_tuple(I1, I1));
mrepeat_minus_copy(make_tuple(I0, I1));
nrepeat_plus_copy(make_tuple(I0, I2));
mrepeat_plus_copy(make_tuple(I1, I2));
nrepeat_plus_copy(make_tuple(I1, I3));
mrepeat_minus_copy(make_tuple(I0, I3));
}
}
else if constexpr(MRepeat == 2 && NRepeat == 2)
{
init_copy(make_tuple(I0, I0));
if constexpr(CAccessOrderMRepeatNRepeat)
{
nrepeat_plus_copy(make_tuple(I0, I1));
mrepeat_plus_copy(make_tuple(I1, I1));
nrepeat_minus_copy(make_tuple(I1, I0));
}
else
{
mrepeat_plus_copy(make_tuple(I1, I0));
nrepeat_plus_copy(make_tuple(I1, I1));
mrepeat_minus_copy(make_tuple(I0, I1));
}
}
else if constexpr(MRepeat == 2 && NRepeat == 1)
{
init_copy(make_tuple(I0, I0));
mrepeat_plus_copy(make_tuple(I1, I0));
}
else if constexpr(MRepeat == 1 && NRepeat == 2)
{
init_copy(make_tuple(I0, I0));
nrepeat_plus_copy(make_tuple(I0, I1));
}
else if constexpr(MRepeat == 1 && NRepeat == 1)
{
init_copy(make_tuple(I0, I0));
}
}
}
}; // namespace ck
} // namespace ck
#endif
#include <unistd.h>
#include "device.hpp"
#include "host_tensor.hpp"
#include "transform_backward_weight_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw.hpp"
#include "driver_gemm_xdlops_v2r4.hpp"
template <typename TInWei,
typename TAcc,
typename TOut,
typename InLengths,
typename WeiLengths,
typename OutLengths,
typename ConvStrides,
typename ConvDilations,
typename InLeftPads,
typename InRightPads>
void device_convolution_backward_weight_implicit_gemm_v4r4r3_xdlops_nchw_kcyx_nkhw(
const InLengths& in_n_c_hi_wi_lengths,
const WeiLengths& wei_k_c_y_x_lengths,
const OutLengths& out_n_k_ho_wo_lengths,
const ConvStrides& conv_strides,
const ConvDilations& conv_dilations,
const InLeftPads& in_left_pads,
const InRightPads& in_right_pads,
const Tensor<TInWei>& in_n_c_hi_wi,
Tensor<TInWei>& wei_k_c_y_x,
const Tensor<TOut>& out_n_k_ho_wo,
ck::index_t nrepeat)
{
using namespace ck;
std::cout << __func__ << std::endl;
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
DeviceMem in_n_c_hi_wi_device_buf(sizeof(TInWei) * in_n_c_hi_wi.mDesc.GetElementSpace());
DeviceMem wei_k_c_y_x_device_buf(sizeof(TInWei) * wei_k_c_y_x.mDesc.GetElementSpace());
DeviceMem out_n_k_ho_wo_device_buf(sizeof(TOut) * out_n_k_ho_wo.mDesc.GetElementSpace());
in_n_c_hi_wi_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
wei_k_c_y_x_device_buf.ToDevice(wei_k_c_y_x.mData.data());
out_n_k_ho_wo_device_buf.ToDevice(out_n_k_ho_wo.mData.data());
const auto in_n_c_hi_wi_desc = make_naive_tensor_descriptor_packed(in_n_c_hi_wi_lengths);
const auto wei_k_c_y_x_desc = make_naive_tensor_descriptor_packed(wei_k_c_y_x_lengths);
const auto out_n_k_ho_wo_desc = make_naive_tensor_descriptor_packed(out_n_k_ho_wo_lengths);
#if 1
// [M, N, K0, K1] = [128, 128, 4, 8] for fp16
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerWave = 32;
constexpr index_t GemmNPerWave = 32;
constexpr index_t GemmK1 = 8;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 2;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 2, 8>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 64, 1>;
// using vector load 4, so config's wo*ho must be a multiple of 4
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK1 = 4;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 4;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 2, 8>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 1;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 8;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 1;
#elif 1
// [M, N, K0, K1] = [128, 128, 4, 8] for fp16
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 256;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 4;
constexpr index_t GemmMPerWave = 32;
constexpr index_t GemmNPerWave = 32;
constexpr index_t GemmK1 = 8;
constexpr index_t MRepeat = 4;
constexpr index_t NRepeat = 2;
using GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1 = Sequence<1, 4, 8>;
using GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1 = Sequence<4, 64, 1>;
// using vector load 4, so config's wo*ho must be a multiple of 4
constexpr index_t GemmABlockTransferSrcScalarPerVector_GemmK1 = 4;
constexpr index_t GemmABlockTransferDstScalarPerVector_GemmK1 = 4;
using GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1 = Sequence<1, 2, 8>;
using GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1 = Sequence<4, 64, 1>;
constexpr index_t GemmBBlockTransferSrcScalarPerVector_GemmN = 1;
constexpr index_t GemmBBlockTransferDstScalarPerVector_GemmK1 = 8;
constexpr index_t GemmCThreadTransferDstScalarPerVector = 1;
#endif
const auto descs = transform_backward_weight_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw_pad(
wei_k_c_y_x_desc,
in_n_c_hi_wi_desc,
out_n_k_ho_wo_desc,
conv_strides,
conv_dilations,
in_left_pads,
in_right_pads,
Number<GemmK1>{});
const auto out_gemmk0_gemmm_gemmk1_grid_desc = descs[I0];
const auto in_gemmk0_gemmn_gemmk1_grid_desc = descs[I1];
const auto wei_gemmm_gemmn_grid_desc = descs[I2];
// HACK: hacks that control index calculation when iterating over A, B, C matrix
constexpr auto out_gemmk0_gemmm_gemmk1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 1, 0, 0>{}, // 0+: GemmK0
Sequence<0, 0, 0, 0, 0>{}, // 1+: GemmM
Sequence<0, 0, 1, 0, 0>{}), // 2+: GemmK1
make_tuple(Sequence<0, 0, 2, 0, 0>{}, // 0-: GemmK0
Sequence<0, 0, 0, 0, 0>{}, // 1-: GemmM
Sequence<0, 0, 2, 0, 0>{})); // 2-: GemmK1
constexpr auto in_gemmk0_gemmn_gemmk1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0>{}, // 0+: GemmK0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0>{}, // 1+: GemmN
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0>{}), // 2+: GemmK1
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0>{}, // 0-: GemmK0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0>{}, // 1-: GemmN
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0>{})); // 2-: GemmK1
constexpr auto wei_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0+: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1+: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2+: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3+: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4+: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5+: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6+: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}), // 7+: N2
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0-: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1-: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2-: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3-: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4-: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5-: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6-: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>{})); // 7-: N2
constexpr auto out_gemmk0_gemmm_gemmk1_grid_move_slice_window_step_hacks =
Sequence<0, 0, 1, 0, 0>{};
constexpr auto in_gemmk0_gemmn_gemmk1_grid_move_slice_window_step_hacks =
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0>{};
for(index_t i = 0; i < 5; ++i)
{
float ave_time = driver_gemm_xdlops_v2r4<
BlockSize,
TInWei,
TAcc,
TOut,
InMemoryDataOperationEnum_t::Set,
decltype(out_gemmk0_gemmm_gemmk1_grid_desc),
decltype(in_gemmk0_gemmn_gemmk1_grid_desc),
decltype(wei_gemmm_gemmn_grid_desc),
GemmMPerBlock,
GemmNPerBlock,
GemmKPerBlock,
GemmMPerWave,
GemmNPerWave,
GemmK1,
MRepeat,
NRepeat,
GemmABlockTransferThreadSliceLengths_GemmK0_GemmM_GemmK1,
GemmABlockTransferThreadClusterLengths_GemmK0_GemmM_GemmK1,
Sequence<1, 0, 2>,
Sequence<1, 0, 2>,
2,
GemmABlockTransferSrcScalarPerVector_GemmK1,
GemmABlockTransferDstScalarPerVector_GemmK1,
false, // don't move back src coordinate after threadwise copy
GemmBBlockTransferThreadSliceLengths_GemmK0_GemmN_GemmK1,
GemmBBlockTransferThreadClusterLengths_GemmK0_GemmN_GemmK1,
Sequence<1, 0, 2>,
Sequence<1, 0, 2>,
2,
GemmBBlockTransferSrcScalarPerVector_GemmN,
GemmBBlockTransferDstScalarPerVector_GemmK1,
false, // don't move back src coordinate after threadwise copy
Sequence<3, 0, 1, 2, 7, 5, 4, 6>,
7,
GemmCThreadTransferDstScalarPerVector,
decltype(out_gemmk0_gemmm_gemmk1_grid_step_hacks),
decltype(in_gemmk0_gemmn_gemmk1_grid_step_hacks),
decltype(wei_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks),
decltype(out_gemmk0_gemmm_gemmk1_grid_move_slice_window_step_hacks),
decltype(in_gemmk0_gemmn_gemmk1_grid_move_slice_window_step_hacks),
false>(static_cast<TOut*>(out_n_k_ho_wo_device_buf.GetDeviceBuffer()),
static_cast<TInWei*>(in_n_c_hi_wi_device_buf.GetDeviceBuffer()),
static_cast<TInWei*>(wei_k_c_y_x_device_buf.GetDeviceBuffer()),
out_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc,
out_gemmk0_gemmm_gemmk1_grid_step_hacks,
in_gemmk0_gemmn_gemmk1_grid_step_hacks,
wei_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks,
out_gemmk0_gemmm_gemmk1_grid_move_slice_window_step_hacks,
in_gemmk0_gemmn_gemmk1_grid_move_slice_window_step_hacks,
nrepeat);
float perf = static_cast<float>(calculate_convolution_flops(
in_n_c_hi_wi_desc, wei_k_c_y_x_desc, out_n_k_ho_wo_desc)) /
(std::size_t(1000) * 1000 * 1000) / ave_time;
std::cout << "Average time : " << ave_time << " ms, " << perf << " TFlop/s" << std::endl;
}
// copy result back to host
wei_k_c_y_x_device_buf.FromDevice(wei_k_c_y_x.mData.data());
}
#pragma once
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r4.hpp"
template <ck::index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename FloatC,
ck::InMemoryDataOperationEnum_t CGlobalMemoryDataOperation,
typename AK0MK1GridDesc,
typename BK0NK1GridDesc,
typename CMNGridDesc,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t KPerBlock,
ck::index_t MPerXDL,
ck::index_t NPerXDL,
ck::index_t K1,
ck::index_t MRepeat,
ck::index_t NRepeat,
typename ABlockTransferThreadSliceLengths_K0_M_K1,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
bool AThreadTransferSrcResetCoordinateAfterRun,
typename BBlockTransferThreadSliceLengths_K0_N_K1,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BThreadTransferSrcResetCoordinateAfterRun,
typename CThreadTransferSrcDstAccessOrder,
ck::index_t CThreadTransferSrcDstVectorDim,
ck::index_t CThreadTransferDstScalarPerVector,
typename AGridStepHacks,
typename BGridStepHacks,
typename CGridStepHacks,
typename AGridMoveSliceWindowStepHacks,
typename BGridMoveSliceWindowStepHacks,
bool CAccessOrderMRepeatNRepeat>
__host__ float driver_gemm_xdlops_v2r4(const FloatAB* p_a_grid,
const FloatAB* p_b_grid,
FloatC* p_c_grid,
const AK0MK1GridDesc& a_k0_m_k1_grid_desc,
const BK0NK1GridDesc& b_k0_n_k1_grid_desc,
const CMNGridDesc& c_m_n_grid_desc,
AGridStepHacks,
BGridStepHacks,
CGridStepHacks,
AGridMoveSliceWindowStepHacks,
BGridMoveSliceWindowStepHacks,
ck::index_t nrepeat)
{
using namespace ck;
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
using GridwiseGemm =
GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r4<BlockSize,
FloatAB,
FloatAcc,
FloatC,
CGlobalMemoryDataOperation,
AK0MK1GridDesc,
BK0NK1GridDesc,
CMNGridDesc,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
K1,
MRepeat,
NRepeat,
ABlockTransferThreadSliceLengths_K0_M_K1,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
AThreadTransferSrcResetCoordinateAfterRun,
BBlockTransferThreadSliceLengths_K0_N_K1,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
BThreadTransferSrcResetCoordinateAfterRun,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector,
AGridStepHacks,
BGridStepHacks,
CGridStepHacks,
AGridMoveSliceWindowStepHacks,
BGridMoveSliceWindowStepHacks,
CAccessOrderMRepeatNRepeat>;
{
std::cout << "a_k0_m_k1_grid_desc{" << a_k0_m_k1_grid_desc.GetLength(I0) << ", "
<< a_k0_m_k1_grid_desc.GetLength(I1) << ", " << a_k0_m_k1_grid_desc.GetLength(I2)
<< "}" << std::endl;
std::cout << "b_k0_n_k1_grid_desc{" << b_k0_n_k1_grid_desc.GetLength(I0) << ", "
<< b_k0_n_k1_grid_desc.GetLength(I1) << ", " << b_k0_n_k1_grid_desc.GetLength(I2)
<< "}" << std::endl;
std::cout << "c_m_n_grid_desc{ " << c_m_n_grid_desc.GetLength(I0) << ", "
<< c_m_n_grid_desc.GetLength(I1) << "}" << std::endl;
}
if(!GridwiseGemm::CheckValidity(a_k0_m_k1_grid_desc, b_k0_n_k1_grid_desc, c_m_n_grid_desc))
{
throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting");
}
const auto c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc =
GridwiseGemm::MakeCM0N0M1N1M2M3M4N2GridDescriptor(c_m_n_grid_desc);
using CM0N0M1N1M2M3M4N2GridDesc = decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc);
const auto c_block_cluster_adaptor = GridwiseGemm::MakeCBlockClusterAdaptor(c_m_n_grid_desc);
using CBlockClusterAdaptor = decltype(c_block_cluster_adaptor);
const index_t grid_size = GridwiseGemm::CalculateGridSize(c_m_n_grid_desc);
const auto kernel = kernel_gemm_xdlops_v2r3<GridwiseGemm,
FloatAB,
FloatC,
remove_reference_t<AK0MK1GridDesc>,
remove_reference_t<BK0NK1GridDesc>,
remove_reference_t<CM0N0M1N1M2M3M4N2GridDesc>,
remove_reference_t<CBlockClusterAdaptor>>;
#if CK_EXPERIMENTAL_PASS_TENSOR_DESCRIPTOR_BY_VALUE
float ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
p_a_grid,
p_b_grid,
p_c_grid,
a_k0_m_k1_grid_desc,
b_k0_n_k1_grid_desc,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_block_cluster_adaptor);
#elif CK_EXPERIMENTAL_PASS_TENSOR_DESCRIPTOR_BY_VOID_POINTER
DeviceMem a_k0_m_k1_grid_desc_dev_buf(sizeof(AK0MK1GridDesc));
DeviceMem b_k0_n_k1_grid_desc_dev_buf(sizeof(BK0NK1GridDesc));
DeviceMem c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc_dev_buf(sizeof(CM0N0M1N1M2M3M4N2GridDesc));
DeviceMem c_block_cluster_adaptor_dev_buf(sizeof(CBlockClusterAdaptor));
a_k0_m_k1_grid_desc_dev_buf.ToDevice(&a_k0_m_k1_grid_desc);
b_k0_n_k1_grid_desc_dev_buf.ToDevice(&b_k0_n_k1_grid_desc);
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc_dev_buf.ToDevice(&c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc);
c_block_cluster_adaptor_dev_buf.ToDevice(&c_block_cluster_adaptor);
float ave_time = launch_and_time_kernel(
kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
p_a_grid,
p_b_grid,
p_c_grid,
cast_pointer_to_constant_address_space(a_k0_m_k1_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(b_k0_n_k1_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc_dev_buf.GetDeviceBuffer()),
cast_pointer_to_constant_address_space(c_block_cluster_adaptor_dev_buf.GetDeviceBuffer()));
#endif
return ave_time;
}
...@@ -13,13 +13,16 @@ ...@@ -13,13 +13,16 @@
#include "host_conv_bwd_weight.hpp" #include "host_conv_bwd_weight.hpp"
#include "device_tensor.hpp" #include "device_tensor.hpp"
#include "device_convolution_backward_weight_implicit_gemm_v4r4r2_xdlops_nchw_kcyx_nkhw.hpp" #include "device_convolution_backward_weight_implicit_gemm_v4r4r2_xdlops_nchw_kcyx_nkhw.hpp"
#include "device_convolution_backward_weight_implicit_gemm_v4r4r3_xdlops_nchw_kcyx_nkhw.hpp"
#define USE_DYNAMIC_MODE 1 #define USE_DYNAMIC_MODE 1
#define USE_CONV_WRW_V4R4R2_XDL_NCHW 1 #define USE_CONV_WRW_V4R4R2_XDL_NCHW 1
#define USE_CONV_WRW_V4R4R3_XDL_NCHW 1
enum ConvBackwardWeightAlgo enum ConvBackwardWeightAlgo
{ {
V4R4R2XDLNCHW, V4R4R2XDLNCHW,
V4R4R3XDLNCHW,
}; };
int main(int argc, char* argv[]) int main(int argc, char* argv[])
...@@ -257,6 +260,33 @@ int main(int argc, char* argv[]) ...@@ -257,6 +260,33 @@ int main(int argc, char* argv[])
} }
#endif #endif
#if USE_CONV_WRW_V4R4R3_XDL_NCHW
if(algo == ConvBackwardWeightAlgo::V4R4R3XDLNCHW)
{
if(layout != ConvTensorLayout::NCHW)
{
throw std::runtime_error("wrong! layout");
}
const auto tmp = f_make_for_device_nchw();
device_convolution_backward_weight_implicit_gemm_v4r4r3_xdlops_nchw_kcyx_nkhw<in_data_t,
acc_data_t,
out_data_t>(
tmp[I0],
tmp[I1],
tmp[I2],
tmp[I3],
tmp[I4],
tmp[I5],
tmp[I6],
in,
wei_device,
out,
nrepeat);
}
#endif
if(do_verification) if(do_verification)
{ {
host_direct_convolution_backward_weights(out, host_direct_convolution_backward_weights(out,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment