Unverified Commit 0cd78566 authored by zjing14's avatar zjing14 Committed by GitHub
Browse files

Merge branch 'develop' into lwpck-471

parents 07905e77 19490ac4
......@@ -9,7 +9,7 @@ Full documentation for Composable Kernel is not yet available.
- Fixed grouped ConvBwdWeight test case failure (#524).
### Optimizations
- Optimized ...
- Improve proformance of normalization kernel
### Added
- Added user tutorial (#563).
......
......@@ -16,7 +16,7 @@ using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using AccDataType = float;
using ComputeDataType = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
constexpr int Rank = 2;
......@@ -54,7 +54,7 @@ int main(int argc, char* argv[])
using DeviceOp = ck::tensor_operation::device::DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
ComputeDataType,
YDataType,
PassThrough,
Rank,
......
......@@ -38,7 +38,9 @@ add_example_executable_no_testing(example_gemm_xdl_fp64 gemm_xdl_fp64.cpp)
add_dependencies(example_gemm_xdl example_gemm_xdl_skip_b_lds_fp16)
add_dependencies(example_gemm_xdl example_gemm_xdl_fp64)
add_custom_target(example_gemm_wmma)
add_example_executable(example_gemm_wmma_fp16 gemm_wmma_fp16.cpp)
add_dependencies(example_gemm_wmma example_gemm_wmma_fp16)
if(GPU_TARGETS MATCHES "gfx1100")
add_custom_target(example_gemm_wmma)
add_example_executable(example_gemm_wmma_fp16 gemm_wmma_fp16.cpp)
add_dependencies(example_gemm_wmma example_gemm_wmma_fp16)
endif()
add_example_executable(example_gemm_bilinear_xdl_fp16 gemm_bilinear_xdl_fp16.cpp)
if(GPU_TARGETS MATCHES "gfx1100")
add_example_executable(example_gemm_bilinear_wmma_fp16 gemm_bilinear_wmma_fp16.cpp)
endif()
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
struct AlphaBetaAdd
{
AlphaBetaAdd(float alpha, float beta) : alpha_(alpha), beta_(beta){};
template <typename E, typename C, typename D>
__host__ __device__ constexpr void operator()(E& e, const C& c, const D& d) const;
template <>
__host__ __device__ constexpr void operator()<ck::half_t, float, ck::half_t>(
ck::half_t& e, const float& c, const ck::half_t& d) const
{
e = ck::type_convert<ck::half_t>(alpha_ * c + beta_ * ck::type_convert<float>(d));
};
float alpha_;
float beta_;
};
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using DDataType = F16;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using DLayout = Row;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AlphaBetaAdd;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using DeviceOpInstance =
ck::tensor_operation::device::DeviceGemmMultipleD_Wmma_CShuffle<ALayout,
BLayout,
ck::Tuple<DLayout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<DDataType>,
EDataType,
AccDataType,
CShuffleDataType,
AElementOp,
BElementOp,
CDEElementOp,
GemmSpec,
256,
128,
256,
8,
8,
16,
16,
4,
4,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
1,
1,
S<1, 32, 1, 8>,
8>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = true;
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideD = 4096;
ck::index_t StrideE = 4096;
float alpha = 1.0f;
float beta = 1.0f;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 6)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
alpha = std::stof(argv[4]);
beta = std::stof(argv[5]);
}
else if(argc == 13)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideD = std::stoi(argv[9]);
StrideE = std::stoi(argv[10]);
alpha = std::stof(argv[11]);
beta = std::stof(argv[12]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE, alpha, "
"beta\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<DDataType> d_m_n(f_host_tensor_descriptor(M, N, StrideD, DLayout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "d_m_n: " << d_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_m_n.GenerateTensorValue(GeneratorTensor_2<DDataType>{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_m_n.GenerateTensorValue(GeneratorTensor_3<DDataType>{-0.5, 0.5});
}
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(DDataType) * d_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
d_device_buf.ToDevice(d_m_n.mData.data());
e_device_buf.ToDevice(e_m_n_device_result.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{alpha, beta};
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{d_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, 1>{StrideD},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_m_n({M, N});
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CShuffleDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d_m_n(m, n));
}
}
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
return ck::utils::check_err(e_m_n_device_result, e_m_n_host_result) ? 0 : 1;
}
return 0;
}
add_example_executable(example_contraction_bilinear_xdl_fp32 contraction_bilinear_xdl_fp32.cpp)
add_example_executable(example_contraction_scale_xdl_fp32 contraction_scale_xdl_fp32.cpp)
add_example_executable(example_contraction_bilinear_xdl_fp64 contraction_bilinear_xdl_fp64.cpp)
add_example_executable(example_contraction_scale_xdl_fp64 contraction_scale_xdl_fp64.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F64 = double;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F64;
using BDataType = F64;
using AccDataType = F64;
using CShuffleDataType = F64;
using DDataType = F64;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F64;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Bilinear;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// clang-format off
using DeviceOpInstanceKKNN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F64, F64, F64, F64, DsDataType, F64, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 16, 2, 2, 16, 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, 1, 1, S<1, 16, 1, 16>, 1>;
using DeviceOpInstanceKNNN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F64, F64, F64, F64, DsDataType, F64, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 16, 2, 1, 16, 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, 0, 1, 1, S<1, 16, 1, 16>, 1>;
using DeviceOpInstanceMKNN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F64, F64, F64, F64, DsDataType, F64, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 16, 1, 2, 16, 16, 4, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, 1, 1, S<1, 16, 1, 16>, 1>;
using DeviceOpInstanceMNNN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F64, F64, F64, F64, DsDataType, F64, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 16, 1, 1, 16, 16, 4, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, 0, 1, 1, S<1, 16, 1, 16>, 1>;
// clang-format on
using DeviceOpInstance = DeviceOpInstanceKKNN;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template <ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename EDataType,
typename AccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
ck::enable_if_t<NumDimM == 2 && NumDimN == 2 && NumDimK == 2, bool> = false>
struct ReferenceContraction_M2_N2_K2 : public ck::tensor_operation::device::BaseOperator
{
// Argument
struct Argument : public ck::tensor_operation::device::BaseArgument
{
Argument(const Tensor<ADataType>& a_ms_ks,
const Tensor<BDataType>& b_ns_ks,
Tensor<EDataType>& e_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: a_ms_ks_{a_ms_ks},
b_ns_ks_{b_ns_ks},
e_ms_ns_{e_ms_ns},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
}
const Tensor<ADataType>& a_ms_ks_;
const Tensor<BDataType>& b_ns_ks_;
Tensor<EDataType>& e_ms_ns_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
};
// Invoker
struct Invoker : public ck::tensor_operation::device::BaseInvoker
{
using Argument = ReferenceContraction_M2_N2_K2::Argument;
float Run(const Argument& arg)
{
auto f_ms_ns = [&](auto m0, auto m1, auto n0, auto n1) {
const int K0 = arg.a_ms_ks_.mDesc.GetLengths()[2];
const int K1 = arg.a_ms_ks_.mDesc.GetLengths()[3];
AccDataType v_acc = 0;
for(int k0 = 0; k0 < K0; ++k0)
{
for(int k1 = 0; k1 < K1; ++k1)
{
AccDataType v_a;
AccDataType v_b;
arg.a_element_op_(
v_a, ck::type_convert<const AccDataType>(arg.a_ms_ks_(m0, m1, k0, k1)));
arg.b_element_op_(
v_b, ck::type_convert<const AccDataType>(arg.b_ns_ks_(n0, n1, k0, k1)));
v_acc += v_a * v_b;
}
}
AccDataType v_c;
arg.cde_element_op_(v_c, v_acc);
arg.e_ms_ns_(m0, m1, n0, n1) = v_c;
};
make_ParallelTensorFunctor(f_ms_ns,
arg.e_ms_ns_.mDesc.GetLengths()[0],
arg.e_ms_ns_.mDesc.GetLengths()[1],
arg.e_ms_ns_.mDesc.GetLengths()[2],
arg.e_ms_ns_.mDesc.GetLengths()[3])(
std::thread::hardware_concurrency());
return 0;
}
float Run(const ck::tensor_operation::device::BaseArgument* p_arg,
const StreamConfig& /* stream_config */ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const ck::tensor_operation::device::BaseArgument*) override
{
return true;
}
static auto MakeArgument(const Tensor<ADataType>& a_ms_ks,
const Tensor<BDataType>& b_ns_ks,
Tensor<EDataType>& e_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{a_ms_ks, b_ns_ks, e_ms_ns, a_element_op, b_element_op, cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<ck::tensor_operation::device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceContraction_M2_N2_K2"
<< std::endl;
// clang-format on
return str.str();
}
};
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// A[M0, M1, K0, K1]
std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a_ms_ks_strides{524288, 4096, 128, 1};
// B[N0, N1, K0, K1]
std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b_ns_ks_strides{524288, 4096, 128, 1};
// D[M0, M1, N0, N1]
std::vector<ck::index_t> d_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> d_ms_ns_strides{524288, 4096, 128, 1};
// E[M0, M1, N0, N1]
std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};
float alpha = 1.f;
float beta = 1.f;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 28)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t M0 = std::stoi(argv[4]);
const ck::index_t M1 = std::stoi(argv[5]);
const ck::index_t N0 = std::stoi(argv[6]);
const ck::index_t N1 = std::stoi(argv[7]);
const ck::index_t K0 = std::stoi(argv[8]);
const ck::index_t K1 = std::stoi(argv[9]);
a_ms_ks_lengths = {M0, M1, K0, K1};
a_ms_ks_strides = {
std::stoi(argv[10]), std::stoi(argv[11]), std::stoi(argv[12]), std::stoi(argv[13])};
b_ns_ks_lengths = {N0, N1, K0, K1};
b_ns_ks_strides = {
std::stoi(argv[14]), std::stoi(argv[15]), std::stoi(argv[16]), std::stoi(argv[17])};
d_ms_ns_lengths = {M0, M1, N0, N1};
d_ms_ns_strides = {
std::stoi(argv[18]), std::stoi(argv[19]), std::stoi(argv[20]), std::stoi(argv[21])};
e_ms_ns_lengths = {M0, M1, N0, N1};
e_ms_ns_strides = {
std::stoi(argv[22]), std::stoi(argv[23]), std::stoi(argv[24]), std::stoi(argv[25])};
alpha = std::stof(argv[26]);
beta = std::stof(argv[27]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 7: M0, M1, N0, N1, K0, K1\n");
printf("arg10 to 13: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1\n");
printf("arg14 to 17: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1\n");
printf("arg18 to 21: Stride_D_M0, Stride_D_M1, Stride_D_N0, Stride_D_N1\n");
printf("arg22 to 25: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1\n");
printf("arg26 to 27: alpha, beta\n");
exit(0);
}
Tensor<ADataType> a_ms_ks(a_ms_ks_lengths, a_ms_ks_strides);
Tensor<BDataType> b_ns_ks(b_ns_ks_lengths, b_ns_ks_strides);
Tensor<EDataType> d_ms_ns(d_ms_ns_lengths, d_ms_ns_strides);
Tensor<EDataType> e_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
Tensor<EDataType> e_ms_ns_device_result(e_ms_ns_lengths, e_ms_ns_strides);
std::cout << "a_ms_ks: " << a_ms_ks.mDesc << std::endl;
std::cout << "b_ns_ks: " << b_ns_ks.mDesc << std::endl;
std::cout << "d_ms_ns: " << d_ms_ns.mDesc << std::endl;
std::cout << "e_ms_ns: " << e_ms_ns_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_ns_ks.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_ms_ns.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_ns_ks.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_ms_ns.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(DDataType) * d_ms_ns.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_ms_ns_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_ms_ks.mData.data());
b_device_buf.ToDevice(b_ns_ks.mData.data());
d_device_buf.ToDevice(d_ms_ns.mData.data());
// set zero
e_device_buf.SetZero();
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{alpha, beta};
// device operation
auto op = DeviceOpInstance{};
auto invoker = op.MakeInvoker();
auto argument = op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{d_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
a_ms_ks_lengths,
a_ms_ks_strides,
b_ns_ks_lengths,
b_ns_ks_strides,
std::array<std::vector<ck::index_t>, 1>{d_ms_ns_lengths},
std::array<std::vector<ck::index_t>, 1>{d_ms_ns_strides},
e_ms_ns_lengths,
e_ms_ns_strides,
a_element_op,
b_element_op,
cde_element_op);
if(!op.IsSupportedArgument(argument))
{
std::cout << op.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t M =
ck::accumulate_n<ck::index_t>(e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t N = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t K = ck::accumulate_n<ck::index_t>(
a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(DDataType) * M * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< op.GetTypeString() << std::endl;
e_device_buf.FromDevice(e_ms_ns_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
using ReferenceOpInstance = ReferenceContraction_M2_N2_K2<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
CShuffleDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceOpInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_ms_ks, b_ns_ks, c_ms_ns_host_result, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(size_t m0 = 0; m0 < e_ms_ns_host_result.mDesc.GetLengths()[0]; ++m0)
{
for(size_t m1 = 0; m1 < e_ms_ns_host_result.mDesc.GetLengths()[1]; ++m1)
{
for(size_t n0 = 0; n0 < e_ms_ns_host_result.mDesc.GetLengths()[2]; ++n0)
{
for(size_t n1 = 0; n1 < e_ms_ns_host_result.mDesc.GetLengths()[3]; ++n1)
{
cde_element_op(e_ms_ns_host_result(m0, m1, n0, n1),
c_ms_ns_host_result(m0, m1, n0, n1),
d_ms_ns(m0, m1, n0, n1));
}
}
}
}
return ck::utils::check_err(e_ms_ns_device_result, e_ms_ns_host_result) ? 0 : 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F64 = double;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F64;
using BDataType = F64;
using AccDataType = F64;
using CShuffleDataType = F64;
using DsDataType = ck::Tuple<>;
using EDataType = F64;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Scale;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// clang-format off
using DeviceOpInstanceKKN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F64, F64, F64, F64, DsDataType, F64, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 16, 2, 2, 16, 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, 1, 1, S<1, 16, 1, 16>, 1>;
using DeviceOpInstanceKNN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F64, F64, F64, F64, DsDataType, F64, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 16, 2, 1, 16, 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, 0, 1, 1, S<1, 16, 1, 16>, 1>;
using DeviceOpInstanceMKN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F64, F64, F64, F64, DsDataType, F64, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 16, 1, 2, 16, 16, 4, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, 1, 1, S<1, 16, 1, 16>, 1>;
using DeviceOpInstanceMNN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F64, F64, F64, F64, DsDataType, F64, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 16, 1, 1, 16, 16, 4, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, 0, 1, 1, S<1, 16, 1, 16>, 1>;
// clang-format on
using DeviceOpInstance = DeviceOpInstanceKKN;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template <ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename EDataType,
typename AccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
ck::enable_if_t<NumDimM == 2 && NumDimN == 2 && NumDimK == 2, bool> = false>
struct ReferenceContraction_M2_N2_K2 : public ck::tensor_operation::device::BaseOperator
{
// Argument
struct Argument : public ck::tensor_operation::device::BaseArgument
{
Argument(const Tensor<ADataType>& a_ms_ks,
const Tensor<BDataType>& b_ns_ks,
Tensor<EDataType>& e_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: a_ms_ks_{a_ms_ks},
b_ns_ks_{b_ns_ks},
e_ms_ns_{e_ms_ns},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
}
const Tensor<ADataType>& a_ms_ks_;
const Tensor<BDataType>& b_ns_ks_;
Tensor<EDataType>& e_ms_ns_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
};
// Invoker
struct Invoker : public ck::tensor_operation::device::BaseInvoker
{
using Argument = ReferenceContraction_M2_N2_K2::Argument;
float Run(const Argument& arg)
{
auto f_ms_ns = [&](auto m0, auto m1, auto n0, auto n1) {
const int K0 = arg.a_ms_ks_.mDesc.GetLengths()[2];
const int K1 = arg.a_ms_ks_.mDesc.GetLengths()[3];
AccDataType v_acc = 0;
for(int k0 = 0; k0 < K0; ++k0)
{
for(int k1 = 0; k1 < K1; ++k1)
{
AccDataType v_a;
AccDataType v_b;
arg.a_element_op_(
v_a, ck::type_convert<const AccDataType>(arg.a_ms_ks_(m0, m1, k0, k1)));
arg.b_element_op_(
v_b, ck::type_convert<const AccDataType>(arg.b_ns_ks_(n0, n1, k0, k1)));
v_acc += v_a * v_b;
}
}
AccDataType v_c;
arg.cde_element_op_(v_c, v_acc);
arg.e_ms_ns_(m0, m1, n0, n1) = v_c;
};
make_ParallelTensorFunctor(f_ms_ns,
arg.e_ms_ns_.mDesc.GetLengths()[0],
arg.e_ms_ns_.mDesc.GetLengths()[1],
arg.e_ms_ns_.mDesc.GetLengths()[2],
arg.e_ms_ns_.mDesc.GetLengths()[3])(
std::thread::hardware_concurrency());
return 0;
}
float Run(const ck::tensor_operation::device::BaseArgument* p_arg,
const StreamConfig& /* stream_config */ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const ck::tensor_operation::device::BaseArgument*) override
{
return true;
}
static auto MakeArgument(const Tensor<ADataType>& a_ms_ks,
const Tensor<BDataType>& b_ns_ks,
Tensor<EDataType>& e_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{a_ms_ks, b_ns_ks, e_ms_ns, a_element_op, b_element_op, cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<ck::tensor_operation::device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceContraction_M2_N2_K2"
<< std::endl;
// clang-format on
return str.str();
}
};
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// A[M0, M1, K0, K1]
std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a_ms_ks_strides{524288, 4096, 128, 1};
// B[N0, N1, K0, K1]
std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b_ns_ks_strides{524288, 4096, 128, 1};
// E[M0, M1, N0, N1]
std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};
float scale = 1.f;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 23)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t M0 = std::stoi(argv[4]);
const ck::index_t M1 = std::stoi(argv[5]);
const ck::index_t N0 = std::stoi(argv[6]);
const ck::index_t N1 = std::stoi(argv[7]);
const ck::index_t K0 = std::stoi(argv[8]);
const ck::index_t K1 = std::stoi(argv[9]);
a_ms_ks_lengths = {M0, M1, K0, K1};
a_ms_ks_strides = {
std::stoi(argv[10]), std::stoi(argv[11]), std::stoi(argv[12]), std::stoi(argv[13])};
b_ns_ks_lengths = {N0, N1, K0, K1};
b_ns_ks_strides = {
std::stoi(argv[14]), std::stoi(argv[15]), std::stoi(argv[16]), std::stoi(argv[17])};
e_ms_ns_lengths = {M0, M1, N0, N1};
e_ms_ns_strides = {
std::stoi(argv[18]), std::stoi(argv[19]), std::stoi(argv[20]), std::stoi(argv[21])};
scale = std::stof(argv[22]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 9: M0, M1, N0, N1, K0, K1\n");
printf("arg10 to 13: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1\n");
printf("arg14 to 17: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1\n");
printf("arg18 to 21: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1\n");
printf("arg22: scale\n");
exit(0);
}
Tensor<ADataType> a_ms_ks(a_ms_ks_lengths, a_ms_ks_strides);
Tensor<BDataType> b_ns_ks(b_ns_ks_lengths, b_ns_ks_strides);
Tensor<EDataType> e_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
Tensor<EDataType> e_ms_ns_device_result(e_ms_ns_lengths, e_ms_ns_strides);
std::cout << "a_ms_ks: " << a_ms_ks.mDesc << std::endl;
std::cout << "b_ns_ks: " << b_ns_ks.mDesc << std::endl;
std::cout << "e_ms_ns: " << e_ms_ns_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_ns_ks.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_ns_ks.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_ms_ns_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_ms_ks.mData.data());
b_device_buf.ToDevice(b_ns_ks.mData.data());
// set zero
e_device_buf.SetZero();
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{scale};
// device operation
auto op = DeviceOpInstance{};
auto invoker = op.MakeInvoker();
auto argument = op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 0>{},
e_device_buf.GetDeviceBuffer(),
a_ms_ks_lengths,
a_ms_ks_strides,
b_ns_ks_lengths,
b_ns_ks_strides,
std::array<std::vector<ck::index_t>, 0>{},
std::array<std::vector<ck::index_t>, 0>{},
e_ms_ns_lengths,
e_ms_ns_strides,
a_element_op,
b_element_op,
cde_element_op);
if(!op.IsSupportedArgument(argument))
{
std::cout << op.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t M =
ck::accumulate_n<ck::index_t>(e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t N = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t K = ck::accumulate_n<ck::index_t>(
a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + +sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< op.GetTypeString() << std::endl;
e_device_buf.FromDevice(e_ms_ns_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
using ReferenceOpInstance = ReferenceContraction_M2_N2_K2<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
CShuffleDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceOpInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_ms_ks, b_ns_ks, c_ms_ns_host_result, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(size_t m0 = 0; m0 < e_ms_ns_host_result.mDesc.GetLengths()[0]; ++m0)
{
for(size_t m1 = 0; m1 < e_ms_ns_host_result.mDesc.GetLengths()[1]; ++m1)
{
for(size_t n0 = 0; n0 < e_ms_ns_host_result.mDesc.GetLengths()[2]; ++n0)
{
for(size_t n1 = 0; n1 < e_ms_ns_host_result.mDesc.GetLengths()[3]; ++n1)
{
cde_element_op(e_ms_ns_host_result(m0, m1, n0, n1),
c_ms_ns_host_result(m0, m1, n0, n1));
}
}
}
}
return ck::utils::check_err(e_ms_ns_device_result, e_ms_ns_host_result) ? 0 : 1;
}
return 0;
}
......@@ -24,7 +24,7 @@ using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using AccDataType = float;
using ComputeDataType = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
constexpr int Rank = 2;
......@@ -34,7 +34,7 @@ using DeviceInstance =
ck::tensor_operation::device::DeviceNormalizationImpl<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
ComputeDataType,
YDataType,
PassThrough,
Rank,
......@@ -121,7 +121,7 @@ int main()
GammaDataType,
BetaDataType,
YDataType,
AccDataType,
ComputeDataType,
PassThrough,
Rank,
NumReduceDim>;
......
add_example_executable(example_batched_gemm_bias_e_permute_xdl_fp16 batched_gemm_bias_e_permute_xdl_fp16.cpp)
if(GPU_TARGETS MATCHES "gfx1100")
add_example_executable(example_batched_gemm_bias_e_permute_wmma_fp16 batched_gemm_bias_e_permute_wmma_fp16.cpp)
endif()
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_contraction_multiple_d_wmma_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F16;
using DDataType = F16;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F16;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 1;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Add;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto ABSpec = ck::tensor_operation::device::TensorSpecialization::Packed;
static constexpr auto DESpec = ck::tensor_operation::device::TensorSpecialization::Default;
using DeviceOpInstanceKKNN =
ck::tensor_operation::device::DeviceBatchedContractionMultipleD_Wmma_CShuffle<NumDimG,
NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
DsDataType,
EDataType,
AccDataType,
CShuffleDataType,
AElementOp,
BElementOp,
CDEElementOp,
GemmSpec,
ABSpec,
ABSpec,
DESpec,
256,
128,
256,
8,
8,
16,
16,
4,
4,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
1,
1,
S<1, 32, 1, 8>,
8>;
using DeviceOpInstance = DeviceOpInstanceKKNN;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template <ck::index_t NumDimG,
ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename EDataType,
typename AccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
ck::enable_if_t<NumDimG == 2 && NumDimM == 2 && NumDimN == 2 && NumDimK == 1, bool> =
false>
struct ReferenceContraction_G2_M2_N2_K1 : public ck::tensor_operation::device::BaseOperator
{
// Argument
struct Argument : public ck::tensor_operation::device::BaseArgument
{
Argument(const Tensor<ADataType>& a_gs_ms_ks,
const Tensor<BDataType>& b_gs_ns_ks,
Tensor<EDataType>& e_gs_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: a_gs_ms_ks_{a_gs_ms_ks},
b_gs_ns_ks_{b_gs_ns_ks},
e_gs_ms_ns_{e_gs_ms_ns},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
}
const Tensor<ADataType>& a_gs_ms_ks_;
const Tensor<BDataType>& b_gs_ns_ks_;
Tensor<EDataType>& e_gs_ms_ns_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
};
// Invoker
struct Invoker : public ck::tensor_operation::device::BaseInvoker
{
using Argument = ReferenceContraction_G2_M2_N2_K1::Argument;
float Run(const Argument& arg)
{
auto f_ms_ns = [&](auto g0, auto g1, auto m0, auto m1, auto n0, auto n1) {
const int K0 = arg.a_gs_ms_ks_.mDesc.GetLengths()[4];
AccDataType v_acc = 0;
for(int k0 = 0; k0 < K0; ++k0)
{
AccDataType v_a;
AccDataType v_b;
arg.a_element_op_(
v_a,
ck::type_convert<const AccDataType>(arg.a_gs_ms_ks_(g0, g1, m0, m1, k0)));
arg.b_element_op_(
v_b,
ck::type_convert<const AccDataType>(arg.b_gs_ns_ks_(g0, g1, n0, n1, k0)));
v_acc += v_a * v_b;
}
AccDataType v_c;
arg.cde_element_op_(v_c, v_acc);
arg.e_gs_ms_ns_(g0, g1, m0, m1, n0, n1) = v_c;
};
make_ParallelTensorFunctor(f_ms_ns,
arg.e_gs_ms_ns_.mDesc.GetLengths()[0],
arg.e_gs_ms_ns_.mDesc.GetLengths()[1],
arg.e_gs_ms_ns_.mDesc.GetLengths()[2],
arg.e_gs_ms_ns_.mDesc.GetLengths()[3],
arg.e_gs_ms_ns_.mDesc.GetLengths()[4],
arg.e_gs_ms_ns_.mDesc.GetLengths()[5])(
std::thread::hardware_concurrency());
return 0;
}
float Run(const ck::tensor_operation::device::BaseArgument* p_arg,
const StreamConfig& /* stream_config */ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const ck::tensor_operation::device::BaseArgument*) override
{
return true;
}
static auto MakeArgument(const Tensor<ADataType>& a_gs_ms_ks,
const Tensor<BDataType>& b_gs_ns_ks,
Tensor<EDataType>& e_gs_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{
a_gs_ms_ks, b_gs_ns_ks, e_gs_ms_ns, a_element_op, b_element_op, cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<ck::tensor_operation::device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceContraction_G2_M2_N2_K1"
<< std::endl;
// clang-format on
return str.str();
}
};
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = true;
ck::index_t G0 = 1;
ck::index_t G1 = 2;
ck::index_t M0 = 4;
ck::index_t M1 = 128;
ck::index_t N0 = 16;
ck::index_t N1 = 256;
ck::index_t K0 = 2048;
// A[G0, G1, M0, M1, K0]
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M0, M1, K0};
std::vector<ck::index_t> a_gs_ms_ks_strides{G1 * M0 * M1 * K0, M0 * M1 * K0, M1 * K0, K0, 1};
// B[G0, G1, N0, N1, K0]
std::vector<ck::index_t> b_gs_ns_ks_lengths{G0, G1, N0, N1, K0};
std::vector<ck::index_t> b_gs_ns_ks_strides{G1 * N0 * N1 * K0, N0 * N1 * K0, N1 * K0, K0, 1};
// D[G0, G1, M0, N0, M1, N1]
std::vector<ck::index_t> d_gs_ms_ns_lengths{G0, G1, M0, M1, N0, N1};
std::vector<ck::index_t> d_gs_ms_ns_strides{G1 * N0 * N1, N0 * N1, 0, 0, N1, 1};
// E[G0, G1, M0, N0, M1, N1]
std::vector<ck::index_t> e_gs_ms_ns_lengths{G0, G1, M0, M1, N0, N1};
std::vector<ck::index_t> e_gs_ms_ns_strides{
G1 * M0 * N0 * M1 * N1, M0 * N0 * M1 * N1, N0 * M1 * N1, N1, M1 * N1, 1};
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
exit(0);
}
Tensor<ADataType> a_gs_ms_ks(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
Tensor<BDataType> b_gs_ns_ks(b_gs_ns_ks_lengths, b_gs_ns_ks_strides);
Tensor<DDataType> d_gs_ms_ns(d_gs_ms_ns_lengths, d_gs_ms_ns_strides);
Tensor<EDataType> e_gs_ms_ns_host_result(e_gs_ms_ns_lengths, e_gs_ms_ns_strides);
Tensor<EDataType> e_gs_ms_ns_device_result(e_gs_ms_ns_lengths, e_gs_ms_ns_strides);
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b_gs_ns_ks: " << b_gs_ns_ks.mDesc << std::endl;
std::cout << "d_gs_ms_ns: " << d_gs_ms_ns.mDesc << std::endl;
std::cout << "e_gs_ms_ns: " << e_gs_ms_ns_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_2<DDataType>{-5, 5});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_3<DDataType>{-0.5, 0.5});
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_gs_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_gs_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(DDataType) * d_gs_ms_ns.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) *
e_gs_ms_ns_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_gs_ms_ks.mData.data());
b_device_buf.ToDevice(b_gs_ns_ks.mData.data());
d_device_buf.ToDevice(d_gs_ms_ns.mData.data());
// set zero
e_device_buf.SetZero();
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
// device operation
auto op = DeviceOpInstance{};
auto invoker = op.MakeInvoker();
auto argument = op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{d_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b_gs_ns_ks_lengths,
b_gs_ns_ks_strides,
std::array<std::vector<ck::index_t>, 1>{d_gs_ms_ns_lengths},
std::array<std::vector<ck::index_t>, 1>{d_gs_ms_ns_strides},
e_gs_ms_ns_lengths,
e_gs_ms_ns_strides,
a_element_op,
b_element_op,
cde_element_op);
if(!op.IsSupportedArgument(argument))
{
std::cout << op.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t G =
ck::accumulate_n<ck::index_t>(e_gs_ms_ns_lengths.begin(), NumDimG, 1, std::multiplies<>{});
ck::index_t M = ck::accumulate_n<ck::index_t>(
e_gs_ms_ns_lengths.begin() + NumDimG, NumDimM, 1, std::multiplies<>{});
ck::index_t N = ck::accumulate_n<ck::index_t>(
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t K = ck::accumulate_n<ck::index_t>(
a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM, NumDimK, 1, std::multiplies<>{});
std::cout << "GMNK=" << G << ", " << M << ", " << N << ", " << K << std::endl;
std::size_t flop = std::size_t(2) * G * M * N * K;
std::size_t num_btype = sizeof(ADataType) * G * M * K + sizeof(BDataType) * G * K * N +
sizeof(DDataType) * G * M * N + sizeof(EDataType) * G * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< op.GetTypeString() << std::endl;
e_device_buf.FromDevice(e_gs_ms_ns_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_ms_ns_host_result(e_gs_ms_ns_lengths, e_gs_ms_ns_strides);
using ReferenceOpInstance = ReferenceContraction_G2_M2_N2_K1<NumDimG,
NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
CShuffleDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceOpInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_gs_ms_ks, b_gs_ns_ks, c_ms_ns_host_result, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(size_t g0 = 0; g0 < e_gs_ms_ns_host_result.mDesc.GetLengths()[0]; ++g0)
{
for(size_t g1 = 0; g1 < e_gs_ms_ns_host_result.mDesc.GetLengths()[1]; ++g1)
{
for(size_t m0 = 0; m0 < e_gs_ms_ns_host_result.mDesc.GetLengths()[2]; ++m0)
{
for(size_t m1 = 0; m1 < e_gs_ms_ns_host_result.mDesc.GetLengths()[3]; ++m1)
{
for(size_t n0 = 0; n0 < e_gs_ms_ns_host_result.mDesc.GetLengths()[4]; ++n0)
{
for(size_t n1 = 0; n1 < e_gs_ms_ns_host_result.mDesc.GetLengths()[5];
++n1)
{
cde_element_op(e_gs_ms_ns_host_result(g0, g1, m0, m1, n0, n1),
c_ms_ns_host_result(g0, g1, m0, m1, n0, n1),
d_gs_ms_ns(g0, g1, m0, m1, n0, n1));
}
}
}
}
}
}
return ck::utils::check_err(e_gs_ms_ns_device_result, e_gs_ms_ns_host_result) ? 0 : 1;
}
return 0;
}
......@@ -16,6 +16,9 @@ if(USE_BITINT_EXTENSION_INT4)
add_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int4)
endif() # USE_BITINT_EXTENSION_INT4
if(GPU_TARGETS MATCHES "gfx1100")
add_example_executable(example_grouped_conv_fwd_bias_relu_add_wmma_fp16 grouped_conv_fwd_bias_relu_add_wmma_fp16.cpp)
endif()
add_example_executable(example_grouped_conv_fwd_xdl_fp16 grouped_conv_fwd_xdl_fp16.cpp)
......
......@@ -137,7 +137,7 @@ inline bool parse_cmd_args(int argc,
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
conv_param = ck::utils::conv::parse_conv_param(
num_dim_spatial, threshold_to_catch_partial_args, argv);
num_dim_spatial, threshold_to_catch_partial_args + 1, argv);
}
else
{
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <algorithm>
#include <array>
#include <iostream>
#include <string>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using BF16 = ck::bhalf_t;
using FP16 = ck::half_t;
using FP32 = float;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
using I4 = ck::int4_t;
#endif
using I8 = std::int8_t;
using I32 = std::int32_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <typename InputLay, typename WeightLay, typename OutputLay>
struct CommonLayoutSetting
{
using InputLayout = InputLay;
using WeightLayout = WeightLay;
using OutputLayout = OutputLay;
};
template <ck::index_t NDimSpatial>
struct CommonLayoutSettingSelector;
namespace ctl = ck::tensor_layout::convolution;
template <>
struct CommonLayoutSettingSelector<1> final
: CommonLayoutSetting<ctl::G_NW_C, ctl::G_K_X_C, ctl::G_NW_K>
{
};
template <>
struct CommonLayoutSettingSelector<2> final
: CommonLayoutSetting<ctl::G_NHW_C, ctl::G_K_YX_C, ctl::G_NHW_K>
{
};
template <>
struct CommonLayoutSettingSelector<3> final
: CommonLayoutSetting<ctl::G_NDHW_C, ctl::G_K_ZYX_C, ctl::G_NDHW_K>
{
};
template <ck::index_t NDimSpatial>
using InputLayout = typename CommonLayoutSettingSelector<NDimSpatial>::InputLayout;
template <ck::index_t NDimSpatial>
using WeightLayout = typename CommonLayoutSettingSelector<NDimSpatial>::WeightLayout;
template <ck::index_t NDimSpatial>
using OutputLayout = typename CommonLayoutSettingSelector<NDimSpatial>::OutputLayout;
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = true;
};
#define DefaultConvParam \
ck::utils::conv::ConvParam \
{ \
2, 32, 2, 256, 192, {3, 3}, {71, 71}, {2, 2}, {1, 1}, {1, 1}, { 1, 1 } \
}
inline void print_help_msg()
{
std::cerr << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: time kernel (0=no, 1=yes)\n"
<< ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
}
inline bool parse_cmd_args(int argc,
char* argv[],
ExecutionConfig& config,
ck::utils::conv::ConvParam& conv_param)
{
constexpr int num_execution_config_args =
3; // arguments for do_verification, init_method, time_kernel
constexpr int num_conv_param_leading_args = 5; // arguments for num_dim_spatial_, G_, N_, K_, C_
constexpr int threshold_to_catch_partial_args = 1 + num_execution_config_args;
constexpr int threshold_to_catch_all_args =
threshold_to_catch_partial_args + num_conv_param_leading_args;
if(argc == 1)
{
// use default
}
// catch only ExecutionConfig arguments
else if(argc == threshold_to_catch_partial_args)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
}
// catch both ExecutionConfig & ConvParam arguments
else if(threshold_to_catch_all_args < argc && ((argc - threshold_to_catch_all_args) % 3 == 0))
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
conv_param = ck::utils::conv::parse_conv_param(
num_dim_spatial, threshold_to_catch_partial_args + 1, argv);
}
else
{
print_help_msg();
return false;
}
return true;
}
inline HostTensorDescriptor make_input_descriptor(const ck::utils::conv::ConvParam& conv_param)
{
switch(conv_param.num_dim_spatial_)
{
case 1:
return HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.C_, conv_param.input_spatial_lengths_[0]},
{
conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.G_ * conv_param.C_ // wi
});
case 2:
return HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.C_,
conv_param.input_spatial_lengths_[0],
conv_param.input_spatial_lengths_[1]},
{
conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.input_spatial_lengths_[1] *
conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.input_spatial_lengths_[1] * conv_param.G_ * conv_param.C_, // hi
conv_param.G_ * conv_param.C_ // wi
});
case 3:
return HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.C_,
conv_param.input_spatial_lengths_[0],
conv_param.input_spatial_lengths_[1],
conv_param.input_spatial_lengths_[2]},
{
conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.input_spatial_lengths_[1] *
conv_param.input_spatial_lengths_[2] * conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.input_spatial_lengths_[1] * conv_param.input_spatial_lengths_[2] *
conv_param.G_ * conv_param.C_, // di
conv_param.input_spatial_lengths_[2] * conv_param.G_ * conv_param.C_, // hi
conv_param.G_ * conv_param.C_ // wi
});
}
throw std::runtime_error("unsuppored # dim spatial");
}
inline HostTensorDescriptor make_weight_descriptor(const ck::utils::conv::ConvParam& conv_param)
{
switch(conv_param.num_dim_spatial_)
{
case 1:
return HostTensorDescriptor(
{conv_param.G_, conv_param.K_, conv_param.C_, conv_param.filter_spatial_lengths_[0]},
{
conv_param.K_ * conv_param.filter_spatial_lengths_[0] * conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] * conv_param.C_, // k
1, // c
conv_param.C_ // x
});
case 2:
return HostTensorDescriptor(
{conv_param.G_,
conv_param.K_,
conv_param.C_,
conv_param.filter_spatial_lengths_[0],
conv_param.filter_spatial_lengths_[1]},
{
conv_param.K_ * conv_param.filter_spatial_lengths_[0] *
conv_param.filter_spatial_lengths_[1] * conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] * conv_param.filter_spatial_lengths_[1] *
conv_param.C_, // k
1, // c
conv_param.filter_spatial_lengths_[1] * conv_param.C_, // y
conv_param.C_ // x
});
case 3:
return HostTensorDescriptor(
{conv_param.G_,
conv_param.K_,
conv_param.C_,
conv_param.filter_spatial_lengths_[0],
conv_param.filter_spatial_lengths_[1],
conv_param.filter_spatial_lengths_[2]},
{
conv_param.K_ * conv_param.filter_spatial_lengths_[0] *
conv_param.filter_spatial_lengths_[1] * conv_param.filter_spatial_lengths_[2] *
conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] * conv_param.filter_spatial_lengths_[1] *
conv_param.filter_spatial_lengths_[2] * conv_param.C_, // k
1, // c
conv_param.filter_spatial_lengths_[1] * conv_param.filter_spatial_lengths_[2] *
conv_param.C_, // z
conv_param.filter_spatial_lengths_[2] * conv_param.C_, // y
conv_param.C_ // x
});
}
throw std::runtime_error("unsuppored # dim spatial");
}
inline HostTensorDescriptor make_bias_descriptor(const ck::utils::conv::ConvParam& conv_param)
{
switch(conv_param.num_dim_spatial_)
{
case 1:
return HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]},
{
conv_param.K_, // g
0, // k
1, // c
0 // x
});
case 2:
return HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
0, // n
1, // k
0, // ho
0 // wo
});
case 3:
return HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1],
conv_param.output_spatial_lengths_[2]},
{
conv_param.K_, // g
0, // n
1, // k
0, // z
0, // y
0 // x
});
}
throw std::runtime_error("unsuppored # dim spatial");
}
inline HostTensorDescriptor make_output_descriptor(const ck::utils::conv::ConvParam& conv_param)
{
switch(conv_param.num_dim_spatial_)
{
case 1:
return HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.G_ * conv_param.K_ // wo
});
case 2:
return HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.output_spatial_lengths_[1] *
conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.output_spatial_lengths_[1] * conv_param.G_ * conv_param.K_, // ho
conv_param.G_ * conv_param.K_ // wo
});
case 3:
return HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1],
conv_param.output_spatial_lengths_[2]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.output_spatial_lengths_[1] *
conv_param.output_spatial_lengths_[2] * conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.output_spatial_lengths_[1] * conv_param.output_spatial_lengths_[2] *
conv_param.G_ * conv_param.K_, // do
conv_param.output_spatial_lengths_[2] * conv_param.G_ * conv_param.K_, // ho
conv_param.G_ * conv_param.K_ // wo
});
}
throw std::runtime_error("unsuppored # dim spatial");
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common_wmma.hpp"
// kernel data types
using InKernelDataType = FP16;
using WeiKernelDataType = FP16;
using AccDataType = FP32;
using CShuffleDataType = FP16;
using BiasKernelDataType = FP16;
using ResidualKernelDataType = FP16;
using OutKernelDataType = FP16;
// tensor data types
using InUserDataType = InKernelDataType;
using WeiUserDataType = WeiKernelDataType;
using OutUserDataType = OutKernelDataType;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::AddReluAdd;
#include "run_grouped_conv_fwd_bias_relu_add_wmma_example.inc"
int main(int argc, char* argv[]) { return !run_grouped_conv_fwd_bias_relu_add_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
template <typename BiasLay, typename ResidualLay>
struct LayoutSetting
{
using BiasLayout = BiasLay;
using ResidualLayout = ResidualLay;
};
template <ck::index_t NDimSpatial>
struct LayoutSettingSelector;
template <>
struct LayoutSettingSelector<1> final : LayoutSetting<ctl::G_K, ctl::G_NW_K>
{
};
template <>
struct LayoutSettingSelector<2> final : LayoutSetting<ctl::G_K, ctl::G_NHW_K>
{
};
template <>
struct LayoutSettingSelector<3> final : LayoutSetting<ctl::G_K, ctl::G_NDHW_K>
{
};
template <ck::index_t NDimSpatial>
using BiasLayout = typename LayoutSettingSelector<NDimSpatial>::BiasLayout;
template <ck::index_t NDimSpatial>
using ResidualLayout = typename LayoutSettingSelector<NDimSpatial>::ResidualLayout;
template <ck::index_t NDimSpatial>
using DeviceConvFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD_Wmma_CShuffle<
NDimSpatial,
InputLayout<NDimSpatial>,
WeightLayout<NDimSpatial>,
ck::Tuple<BiasLayout<NDimSpatial>, ResidualLayout<NDimSpatial>>,
OutputLayout<NDimSpatial>,
InKernelDataType,
WeiKernelDataType,
ck::Tuple<BiasKernelDataType, ResidualKernelDataType>,
OutKernelDataType,
AccDataType,
CShuffleDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
4, // K0PerBlock
8, // K1
16, // MPerWMMA
16, // NPerWMMA
4, // MRepeat
2, // NRepeat
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
true, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
true, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8>;
template <ck::index_t NDimSpatial>
using HostConvFwdInstance = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InUserDataType,
WeiUserDataType,
CShuffleDataType,
InElementOp,
WeiElementOp,
PassThrough>;
template <ck::index_t NDimSpatial>
bool run_grouped_conv_fwd_bias_relu_add(const ExecutionConfig& config,
const ck::utils::conv::ConvParam& conv_param)
{
static_assert(1 <= NDimSpatial && NDimSpatial <= 3, "Unsupported NDimSpatial");
const auto in_g_n_c_wis_desc = make_input_descriptor(conv_param);
const auto wei_g_k_c_xs_desc = make_weight_descriptor(conv_param);
const auto bias_g_n_k_wos_desc = make_bias_descriptor(conv_param);
const auto out_g_n_k_wos_desc = make_output_descriptor(conv_param);
Tensor<InUserDataType> in(in_g_n_c_wis_desc);
Tensor<WeiUserDataType> wei(wei_g_k_c_xs_desc);
Tensor<OutUserDataType> bias(bias_g_n_k_wos_desc);
Tensor<OutUserDataType> residual(bias_g_n_k_wos_desc);
Tensor<OutUserDataType> out_host(out_g_n_k_wos_desc);
Tensor<OutKernelDataType> out_device(out_g_n_k_wos_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "bias: " << bias.mDesc << std::endl;
std::cout << "residual: " << residual.mDesc << std::endl;
std::cout << "out: " << out_host.mDesc << std::endl;
switch(config.init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_2<InUserDataType>{-5, 5});
wei.GenerateTensorValue(GeneratorTensor_2<WeiUserDataType>{-5, 5});
bias.GenerateTensorValue(GeneratorTensor_2<OutUserDataType>{-5, 5});
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InUserDataType>{0.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiUserDataType>{-0.5, 0.5});
bias.GenerateTensorValue(GeneratorTensor_3<OutUserDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InKernelDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiKernelDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem bias_device_buf(sizeof(OutKernelDataType) * bias.mDesc.GetElementSpaceSize());
DeviceMem residual_device_buf(sizeof(OutKernelDataType) * residual.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutKernelDataType) * out_device.mDesc.GetElementSpaceSize());
#ifdef BUILD_INT4_EXAMPLE
const Tensor<InKernelDataType> in_converted(in);
const Tensor<WeiKernelDataType> wei_converted(wei);
const Tensor<OutKernelDataType> bias_converted(bias);
const Tensor<OutKernelDataType> residual_converted(residual);
in_device_buf.ToDevice(in_converted.mData.data());
wei_device_buf.ToDevice(wei_converted.mData.data());
bias_device_buf.ToDevice(bias_converted.mData.data());
residual_device_buf.ToDevice(residual_converted.mData.data());
#else
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
bias_device_buf.ToDevice(bias.mData.data());
residual_device_buf.ToDevice(residual.mData.data());
#endif
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> d0_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> d0_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial + 3> d1_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> d1_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(bias_g_n_k_wos_desc.GetLengths(), d0_g_n_k_wos_lengths);
copy(bias_g_n_k_wos_desc.GetStrides(), d0_g_n_k_wos_strides);
copy(bias_g_n_k_wos_desc.GetLengths(), d1_g_n_k_wos_lengths);
copy(bias_g_n_k_wos_desc.GetStrides(), d1_g_n_k_wos_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
// do Conv
auto conv = DeviceConvFwdInstance<NDimSpatial>{};
auto invoker = conv.MakeInvoker();
auto argument =
conv.MakeArgument(in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
std::array<const void*, 2>{bias_device_buf.GetDeviceBuffer(),
residual_device_buf.GetDeviceBuffer()},
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
std::array<std::array<ck::index_t, NDimSpatial + 3>, 2>{
{d0_g_n_k_wos_lengths, d1_g_n_k_wos_lengths}},
std::array<std::array<ck::index_t, NDimSpatial + 3>, 2>{
{d0_g_n_k_wos_strides, d1_g_n_k_wos_strides}},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
std::size_t flop = conv_param.GetFlops();
std::size_t num_btype = conv_param.GetByte<InUserDataType, WeiUserDataType, OutUserDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(config.do_verification)
{
Tensor<CShuffleDataType> c_host(out_g_n_k_wos_desc);
auto ref_conv = HostConvFwdInstance<NDimSpatial>{};
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei,
c_host,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
InElementOp{},
WeiElementOp{},
PassThrough{});
ref_invoker.Run(ref_argument);
// TODO: implement elementwise operation for host
out_host.ForEach([&](auto&, auto idx) {
OutElementOp{}(out_host(idx), c_host(idx), bias(idx), residual(idx));
});
out_device_buf.FromDevice(out_device.mData.data());
#ifdef BUILD_INT4_EXAMPLE
const Tensor<OutUserDataType> out_device_converted(out_device);
return ck::utils::check_err(
out_device_converted, out_host, "Error: incorrect results!", 1e-5f, 1e-4f);
#else
return ck::utils::check_err(
out_device, out_host, "Error: incorrect results!", 1e-5f, 1e-4f);
#endif
}
return true;
}
bool run_grouped_conv_fwd_bias_relu_add_example(int argc, char* argv[])
{
ExecutionConfig config;
ck::utils::conv::ConvParam conv_param = DefaultConvParam;
if(!parse_cmd_args(argc, argv, config, conv_param))
{
return false;
}
switch(conv_param.num_dim_spatial_)
{
case 1: return run_grouped_conv_fwd_bias_relu_add<1>(config, conv_param);
case 2: return run_grouped_conv_fwd_bias_relu_add<2>(config, conv_param);
case 3: return run_grouped_conv_fwd_bias_relu_add<3>(config, conv_param);
}
return false;
}
......@@ -27,7 +27,7 @@ using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using AccDataType = float;
using ComputeDataType = float;
struct YElementOp
{
......@@ -50,7 +50,7 @@ using DeviceInstance =
ck::tensor_operation::device::DeviceNormalizationImpl<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
ComputeDataType,
YDataType,
YElementOp,
Rank,
......@@ -157,7 +157,7 @@ int main(int argc, char* argv[])
GammaDataType,
BetaDataType,
YDataType,
AccDataType,
ComputeDataType,
YElementOp>;
ReferenceInstance ref;
......
......@@ -20,6 +20,7 @@ float launch_and_time_kernel(const StreamConfig& stream_config,
#if CK_TIME_KERNEL
if(stream_config.time_kernel_)
{
#if DEBUG_LOG
printf("%s: grid_dim {%d, %d, %d}, block_dim {%d, %d, %d} \n",
__func__,
grid_dim.x,
......@@ -29,15 +30,15 @@ float launch_and_time_kernel(const StreamConfig& stream_config,
block_dim.y,
block_dim.z);
const int nrepeat = 10;
printf("Warm up 1 time\n");
#endif
// warm up
kernel<<<grid_dim, block_dim, lds_byte, stream_config.stream_id_>>>(args...);
const int nrepeat = 10;
#if DEBUG_LOG
printf("Start running %d times...\n", nrepeat);
#endif
hipEvent_t start, stop;
hip_check_error(hipEventCreate(&start));
......
......@@ -14,9 +14,9 @@ namespace device {
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename AccDataType,
typename ComputeDataType,
typename YDataType,
typename AccElementwiseOperation,
typename YElementwiseOperation,
index_t Rank,
index_t NumReduceDim>
struct DeviceNormalization : public BaseOperator
......@@ -35,7 +35,7 @@ struct DeviceNormalization : public BaseOperator
void* p_y,
void* p_savedMean,
void* p_savedInvVar,
AccElementwiseOperation acc_elementwise_op) = 0;
YElementwiseOperation y_elementwise_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
......@@ -43,17 +43,17 @@ struct DeviceNormalization : public BaseOperator
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename AccDataType,
typename ComputeDataType,
typename YDataType,
typename AccElementwiseOperation,
typename YElementwiseOperation,
index_t Rank,
index_t NumReduceDim>
using DeviceNormalizationPtr = std::unique_ptr<DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
ComputeDataType,
YDataType,
AccElementwiseOperation,
YElementwiseOperation,
Rank,
NumReduceDim>>;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// Tensor Contraction:
// input : A
// input : B
// input : D0, D1, ...
// output : E
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// A[G0, G1, ..., M0, M1, M2, ..., K0, K1, K2, ...]
// B[G0, G1, ..., N0, N1, N2, ..., K0, K1, K2, ...]
// D[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
// E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
// NOTE: TensorSpecialization::Packed specialized tensor is "packed" in a sense that each inner
// dimension in a dimension group (eg [G0, G1] in Gs, [M0, M1, M2] in Ms, etc.) are contiguous and
// ordered. Not in a sense that the tensor [G0, G1, ..., M0, M1, ..., N0, N1...] can be permuted
// while still being a contiguous, unpadded tensor. In other words, it merely degenerates into
// TensorSpecialization::Default with NumDimG/M/N/K = 1
//
// Detail- Packed tensor satisfies
// stride_0 = 1
// stride_i = stride_{i - 1} * extent_{i - 1}
// So tensor
// [G0, G1, G2, M, N]
// transposed into tensor
// [G0, G2, G1, M, N]
// with strides
// [G2 * G1 * M * N, G1 * M * N, M * N, N, 1]
// is again a packed tensor. MakeGridDescriptor() currently just merges dimensions and ignores some
// strides from input tensor extents so finer dimension information is lost. Merging dimensions is
// essentially a degenerated case of TensorSpecialization::Default with NumDimG/M/N/K = 1.
//
// Might need to expose dimension order to the interface to fully support
// TensorSpecialization::Packed in a traditional sense of "packed" tensor
template <index_t NumDimG,
index_t NumDimM,
index_t NumDimN,
index_t NumDimK,
typename ADataType,
typename BDataType,
typename DsDataType,
typename EDataType,
typename AccDataType,
typename CShuffleDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
GemmSpecialization GemmSpec,
TensorSpecialization ASpec,
TensorSpecialization BSpec,
TensorSpecialization DESpec,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
ck::index_t MPerWMMA,
ck::index_t NPerWMMA,
ck::index_t MRepeat,
ck::index_t NRepeat,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
bool ABlockLdsAddExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsAddExtraN,
index_t CShuffleMRepeatPerShuffle,
index_t CShuffleNRepeatPerShuffle,
typename CDEShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEShuffleBlockTransferScalarPerVector_NPerBlock,
ck::index_t NumPrefetch = 1,
ck::LoopScheduler LoopSched = make_default_loop_scheduler(),
ck::PipelineVersion PipelineVer = ck::PipelineVersion::v1>
struct DeviceBatchedContractionMultipleD_Wmma_CShuffle
: public DeviceBatchedContractionMultipleD<NumDimG,
NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>
{
using DeviceOp = DeviceBatchedContractionMultipleD_Wmma_CShuffle;
static constexpr index_t NumDTensor = DsDataType::Size();
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
// K1 = Max Vector Access Pixels
static constexpr auto K1Number = Number<K1>{};
static constexpr auto matrix_padder =
MatrixPadder<GemmSpec, index_t, index_t, index_t>{MPerBlock, NPerBlock, K0PerBlock* K1};
// Assume: A[G0, G1, ..., M0, M1, M2, ..., K0, K1, K2, ...]
static auto MakeAGridDescriptor_M_K(const std::vector<index_t>& a_gs_ms_ks_lengths_vec,
const std::vector<index_t>& a_gs_ms_ks_strides_vec)
{
assert(a_gs_ms_ks_lengths_vec.size() == NumDimG + NumDimM + NumDimK &&
a_gs_ms_ks_strides_vec.size() == NumDimG + NumDimM + NumDimK);
const auto to_tuple = [&](auto& vec, auto start, auto end) {
return generate_tuple([&](auto i) { return vec[start + i]; }, Number<end - start>{});
};
const auto a_ms_ks_lengths = to_tuple(
a_gs_ms_ks_lengths_vec, Number<NumDimG>{}, Number<NumDimG + NumDimM + NumDimK>{});
const auto a_ms_ks_strides = to_tuple(
a_gs_ms_ks_strides_vec, Number<NumDimG>{}, Number<NumDimG + NumDimM + NumDimK>{});
// dimension Ids for M0, M1, ...
constexpr auto mDimIds = typename arithmetic_sequence_gen<0, NumDimM, 1>::type{};
// dimension Ids for K0, K1, ...
constexpr auto kDimIds =
typename arithmetic_sequence_gen<NumDimM, NumDimM + NumDimK, 1>::type{};
// lengths for M0, M1, ...
const auto mLengths = get_container_subset(a_ms_ks_lengths, mDimIds);
// lengths for K0, K1, ...
const auto kLengths = get_container_subset(a_ms_ks_lengths, kDimIds);
if constexpr(ASpec == TensorSpecialization::Packed)
{
auto M = container_reduce(mLengths, math::multiplies{}, Number<1>{});
auto K = container_reduce(kLengths, math::multiplies{}, Number<1>{});
const auto a_grid_desc_mraw_kraw = make_naive_tensor_descriptor(
make_tuple(M, K),
make_tuple(a_ms_ks_strides[Number<NumDimM - 1>{}],
a_ms_ks_strides[Number<NumDimM + NumDimK - 1>{}]));
return matrix_padder.PadADescriptor_M_K(a_grid_desc_mraw_kraw);
}
else
{
// naive tensor A[M0, M1, M2, ..., K0, K1, K2...]
const auto a_grid_desc_ms_ks =
make_naive_tensor_descriptor(a_ms_ks_lengths, a_ms_ks_strides);
// transformed tensor A[MRaw = M0 * M1 * M2 * ... , KRaw = K0 * K1 * K2 * ...]
const auto a_grid_desc_mraw_kraw = transform_tensor_descriptor(
a_grid_desc_ms_ks,
make_tuple(make_merge_transform(mLengths), make_merge_transform(kLengths)),
make_tuple(mDimIds, kDimIds),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return matrix_padder.PadADescriptor_M_K(a_grid_desc_mraw_kraw);
}
}
// Assume: B[G0, G1, ..., N0, N1, N2, ..., K0, K1, K2, ...]
static auto MakeBGridDescriptor_N_K(const std::vector<index_t>& b_gs_ns_ks_lengths_vec,
const std::vector<index_t>& b_gs_ns_ks_strides_vec)
{
assert(b_gs_ns_ks_lengths_vec.size() == NumDimG + NumDimN + NumDimK &&
b_gs_ns_ks_strides_vec.size() == NumDimG + NumDimN + NumDimK);
const auto to_tuple = [&](auto& vec, auto start, auto end) {
return generate_tuple([&](auto i) { return vec[start + i]; }, Number<end - start>{});
};
const auto b_ns_ks_lengths = to_tuple(
b_gs_ns_ks_lengths_vec, Number<NumDimG>{}, Number<NumDimG + NumDimN + NumDimK>{});
const auto b_ns_ks_strides = to_tuple(
b_gs_ns_ks_strides_vec, Number<NumDimG>{}, Number<NumDimG + NumDimN + NumDimK>{});
// dimension Ids for N0, N1, ...
constexpr auto nDimIds = typename arithmetic_sequence_gen<0, NumDimN, 1>::type{};
// dimension Ids for K0, K1, ...
constexpr auto kDimIds =
typename arithmetic_sequence_gen<NumDimN, NumDimN + NumDimK, 1>::type{};
// lengths for K0, K1, ...
const auto kLengths = get_container_subset(b_ns_ks_lengths, kDimIds);
// lengths for N0, N1, ...
const auto nLengths = get_container_subset(b_ns_ks_lengths, nDimIds);
if constexpr(BSpec == TensorSpecialization::Packed)
{
auto N = container_reduce(nLengths, math::multiplies{}, Number<1>{});
auto K = container_reduce(kLengths, math::multiplies{}, Number<1>{});
const auto b_grid_desc_nraw_kraw = make_naive_tensor_descriptor(
make_tuple(N, K),
make_tuple(b_ns_ks_strides[Number<NumDimN - 1>{}],
b_ns_ks_strides[Number<NumDimN + NumDimK - 1>{}]));
return matrix_padder.PadBDescriptor_N_K(b_grid_desc_nraw_kraw);
}
else
{
// naive tensor B[N0, N1, N2, ..., K0, K1, K2, ...]
const auto b_grid_desc_ns_ks =
make_naive_tensor_descriptor(b_ns_ks_lengths, b_ns_ks_strides);
// transformed tensor B[NRaw = N0 * N1 * N2 * ..., KRaw = K0 * K1 * K2 * ...]
const auto b_grid_desc_nraw_kraw = transform_tensor_descriptor(
b_grid_desc_ns_ks,
make_tuple(make_merge_transform(nLengths), make_merge_transform(kLengths)),
make_tuple(nDimIds, kDimIds),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return matrix_padder.PadBDescriptor_N_K(b_grid_desc_nraw_kraw);
}
}
// assume E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
static auto MakeEGridDescriptor_M_N(const std::vector<index_t>& e_gs_ms_ns_lengths_vec,
const std::vector<index_t>& e_gs_ms_ns_strides_vec)
{
assert(e_gs_ms_ns_lengths_vec.size() == NumDimG + NumDimM + NumDimN &&
e_gs_ms_ns_strides_vec.size() == NumDimG + NumDimM + NumDimN);
const auto to_tuple = [&](auto& vec, auto start, auto end) {
return generate_tuple([&](auto i) { return vec[start + i]; }, Number<end - start>{});
};
const auto e_ms_ns_lengths = to_tuple(
e_gs_ms_ns_lengths_vec, Number<NumDimG>{}, Number<NumDimG + NumDimM + NumDimN>{});
const auto e_ms_ns_strides = to_tuple(
e_gs_ms_ns_strides_vec, Number<NumDimG>{}, Number<NumDimG + NumDimM + NumDimN>{});
// dimension Ids for M0, M1, ...
constexpr auto mDimIds = typename arithmetic_sequence_gen<0, NumDimM, 1>::type{};
// dimension Ids for N0, N1, ...
constexpr auto nDimIds =
typename arithmetic_sequence_gen<NumDimM, NumDimM + NumDimN, 1>::type{};
// lengths for M0, M1, ...
const auto mLengths = get_container_subset(e_ms_ns_lengths, mDimIds);
// lengths for K0, K1, ...
const auto nLengths = get_container_subset(e_ms_ns_lengths, nDimIds);
if constexpr(DESpec == TensorSpecialization::Packed)
{
auto M = container_reduce(mLengths, math::multiplies{}, Number<1>{});
auto N = container_reduce(nLengths, math::multiplies{}, Number<1>{});
const auto e_grid_desc_mraw_nraw = make_naive_tensor_descriptor(
make_tuple(M, N),
make_tuple(e_ms_ns_strides[Number<NumDimM - 1>{}],
e_ms_ns_strides[Number<NumDimM + NumDimN - 1>{}]));
return matrix_padder.PadCDescriptor_M_N(e_grid_desc_mraw_nraw);
}
else
{
// naive tensor E[M0, M1, M2, ..., N0, N1, N2...]
const auto e_grid_desc_ms_ns =
make_naive_tensor_descriptor(e_ms_ns_lengths, e_ms_ns_strides);
// transformed tensor E[MRaw = M0 * M1 * M2 * ... , NRaw = N0 * N1 * N2 * ...]
const auto e_grid_desc_mraw_nraw = transform_tensor_descriptor(
e_grid_desc_ms_ns,
make_tuple(make_merge_transform(mLengths), make_merge_transform(nLengths)),
make_tuple(mDimIds, nDimIds),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return matrix_padder.PadCDescriptor_M_N(e_grid_desc_mraw_nraw);
}
}
// assume E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
static auto MakeEGridDescriptor_G_M_N(const std::vector<index_t>& e_gs_ms_ns_lengths_vec,
const std::vector<index_t>& e_gs_ms_ns_strides_vec)
{
assert(e_gs_ms_ns_lengths_vec.size() == NumDimG + NumDimM + NumDimN &&
e_gs_ms_ns_strides_vec.size() == NumDimG + NumDimM + NumDimN);
const auto to_tuple = [&](auto& vec, auto start, auto end) {
return generate_tuple([&](auto i) { return vec[start + i]; }, Number<end - start>{});
};
const auto e_gs_ms_ns_lengths =
to_tuple(e_gs_ms_ns_lengths_vec, Number<0>{}, Number<NumDimG + NumDimM + NumDimN>{});
const auto e_gs_ms_ns_strides =
to_tuple(e_gs_ms_ns_strides_vec, Number<0>{}, Number<NumDimG + NumDimM + NumDimN>{});
// dimension Ids for G0, G1, ...
constexpr auto gDimIds = typename arithmetic_sequence_gen<0, NumDimG, 1>::type{};
// dimension Ids for M0, M1, ...
constexpr auto mDimIds =
typename arithmetic_sequence_gen<NumDimG, NumDimG + NumDimM, 1>::type{};
// dimension Ids for N0, N1, ...
constexpr auto nDimIds = typename arithmetic_sequence_gen<NumDimG + NumDimM,
NumDimG + NumDimM + NumDimN,
1>::type{};
// lengths for G0, G1, ...
const auto gLengths = get_container_subset(e_gs_ms_ns_lengths, gDimIds);
// lengths for M0, M1, ...
const auto mLengths = get_container_subset(e_gs_ms_ns_lengths, mDimIds);
// lengths for K0, K1, ...
const auto nLengths = get_container_subset(e_gs_ms_ns_lengths, nDimIds);
if constexpr(DESpec == TensorSpecialization::Packed)
{
auto G = container_reduce(gLengths, math::multiplies{}, Number<1>{});
auto M = container_reduce(mLengths, math::multiplies{}, Number<1>{});
auto N = container_reduce(nLengths, math::multiplies{}, Number<1>{});
const auto e_grid_desc_g_mraw_nraw = make_naive_tensor_descriptor(
make_tuple(G, M, N),
make_tuple(e_gs_ms_ns_strides[Number<NumDimG - 1>{}],
e_gs_ms_ns_strides[Number<NumDimG + NumDimM - 1>{}],
e_gs_ms_ns_strides[Number<NumDimG + NumDimM + NumDimN - 1>{}]));
// return matrix_padder.PadCDescriptor_M_N(e_grid_desc_g_mraw_nraw);
return e_grid_desc_g_mraw_nraw;
}
else
{
// naive tensor E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
const auto e_grid_desc_gs_ms_ns =
make_naive_tensor_descriptor(e_gs_ms_ns_lengths, e_gs_ms_ns_strides);
// transformed tensor E[G = G0 * G1 * ..., MRaw = M0 * M1 * M2 * ... , NRaw = N0 * N1 *
// N2 * ...]
const auto e_grid_desc_g_mraw_nraw = transform_tensor_descriptor(
e_grid_desc_gs_ms_ns,
make_tuple(make_merge_transform(gLengths),
make_merge_transform(mLengths),
make_merge_transform(nLengths)),
make_tuple(gDimIds, mDimIds, nDimIds),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
// return matrix_padder.PadCDescriptor_M_N(e_grid_desc_g_mraw_nraw);
return e_grid_desc_g_mraw_nraw;
}
}
static auto MakeDsGridDescriptor_M_N(
const std::array<std::vector<index_t>, NumDTensor>& ds_gs_ms_ns_lengths_vec,
const std::array<std::vector<index_t>, NumDTensor>& ds_gs_ms_ns_strides_vec)
{
return generate_tuple(
[&](auto i) {
return DeviceOp::MakeEGridDescriptor_M_N(ds_gs_ms_ns_lengths_vec[i],
ds_gs_ms_ns_strides_vec[i]);
},
Number<NumDTensor>{});
}
static auto MakeDsGridDescriptor_G_M_N(
const std::array<std::vector<index_t>, NumDTensor>& ds_gs_ms_ns_lengths_vec,
const std::array<std::vector<index_t>, NumDTensor>& ds_gs_ms_ns_strides_vec)
{
return generate_tuple(
[&](auto i) {
return DeviceOp::MakeEGridDescriptor_G_M_N(ds_gs_ms_ns_lengths_vec[i],
ds_gs_ms_ns_strides_vec[i]);
},
Number<NumDTensor>{});
}
// Gridwise descriptor, mapping to whole given provblem.
using AGridDesc_M_K = decltype(MakeAGridDescriptor_M_K({}, {}));
using BGridDesc_N_K = decltype(MakeBGridDescriptor_N_K({}, {}));
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({}, {}))>;
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N({}, {}));
using DsGridDesc_G_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_G_M_N({}, {}))>;
using EGridDesc_G_M_N = decltype(MakeEGridDescriptor_G_M_N({}, {}));
struct ComputePtrOffsetOfStridedBatch
{
ComputePtrOffsetOfStridedBatch(index_t batch_stride_A,
index_t batch_stride_B,
DsGridDesc_G_M_N ds_grid_desc_g_m_n,
EGridDesc_G_M_N e_grid_desc_g_m_n)
: batch_stride_A_(batch_stride_A),
batch_stride_B_(batch_stride_B),
ds_grid_desc_g_m_n_(ds_grid_desc_g_m_n),
e_grid_desc_g_m_n_(e_grid_desc_g_m_n)
{
}
__host__ __device__ constexpr long_index_t GetAPtrOffset(index_t g_idx) const
{
return static_cast<long_index_t>(g_idx) * batch_stride_A_;
}
__host__ __device__ constexpr long_index_t GetBPtrOffset(index_t g_idx) const
{
return static_cast<long_index_t>(g_idx) * batch_stride_B_;
}
__host__ __device__ constexpr auto GetDsPtrOffset(index_t g_idx) const
{
std::array<long_index_t, NumDTensor> ds_offset;
static_for<0, NumDTensor, 1>{}([&](auto i) {
ds_offset[i] = static_cast<long_index_t>(g_idx) *
ds_grid_desc_g_m_n_[i].CalculateOffset(make_multi_index(1, 0, 0));
});
return ds_offset;
}
__host__ __device__ constexpr long_index_t GetEPtrOffset(index_t g_idx) const
{
return static_cast<long_index_t>(g_idx) *
e_grid_desc_g_m_n_.CalculateOffset(make_multi_index(1, 0, 0));
}
private:
index_t batch_stride_A_;
index_t batch_stride_B_;
DsGridDesc_G_M_N ds_grid_desc_g_m_n_;
EGridDesc_G_M_N e_grid_desc_g_m_n_;
};
// A desc for source in blockwise copy
template <typename AGridDesc_M_K>
__host__ __device__ static constexpr auto
MakeAGridDescriptor_K0_M_K1(const AGridDesc_M_K& a_grid_desc_m_k)
{
const auto M = a_grid_desc_m_k.GetLength(I0);
const auto K = a_grid_desc_m_k.GetLength(I1);
const auto AK0 = K / K1;
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, K1)), make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
// B desc for source in blockwise copy
template <typename BGridDesc_N_K>
__host__ __device__ static constexpr auto
MakeBGridDescriptor_K0_N_K1(const BGridDesc_N_K& b_grid_desc_n_k)
{
const auto N = b_grid_desc_n_k.GetLength(I0);
const auto K = b_grid_desc_n_k.GetLength(I1);
const auto BK0 = K / K1;
return transform_tensor_descriptor(
b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, K1)), make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
using AGridDesc_K0_M_K1 = decltype(DeviceOp::MakeAGridDescriptor_K0_M_K1(AGridDesc_M_K{}));
using BGridDesc_K0_N_K1 = decltype(DeviceOp::MakeBGridDescriptor_K0_N_K1(BGridDesc_N_K{}));
// GridwiseOp
using GridwiseOp = GridwiseGemmMultipleD_k0mk1_k0nk1_mn_wmma_cshuffle<
// DataType Family
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
// InMemory Data Descriptor
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
DsGridDesc_M_N,
EGridDesc_M_N,
// ElementwiseOp Family
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
InMemoryDataOperationEnum::Set,
// Tiling Family
MPerBlock,
NPerBlock,
K0PerBlock,
MPerWMMA,
NPerWMMA,
K1,
MRepeat,
NRepeat,
// ThreadCluster Family
BlockSize,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN,
CShuffleMRepeatPerShuffle,
CShuffleNRepeatPerShuffle,
CDEShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CDEShuffleBlockTransferScalarPerVector_NPerBlock,
NumPrefetch,
LoopSched,
PipelineVer>;
// Argument
struct Argument : public BaseArgument
{
Argument(const void* p_a_grid,
const void* p_b_grid,
std::array<const void*, NumDTensor> p_ds_grid,
void* p_e_grid,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& b_gs_ns_ks_lengths,
const std::array<std::vector<index_t>, NumDTensor>& ds_gs_ms_ns_lengths,
const std::vector<index_t>& e_gs_ms_ns_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_strides,
const std::array<std::vector<index_t>, NumDTensor>& ds_gs_ms_ns_strides,
const std::vector<index_t>& e_gs_ms_ns_strides,
index_t M01,
index_t N01,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: p_a_grid_{static_cast<const ADataType*>(p_a_grid)},
p_b_grid_{static_cast<const BDataType*>(p_b_grid)},
p_ds_grid_{},
p_e_grid_{static_cast<EDataType*>(p_e_grid)},
a_grid_desc_m_k_{},
b_grid_desc_n_k_{},
ds_grid_desc_m_n_{},
e_grid_desc_m_n_{},
ds_grid_desc_g_m_n_{
DeviceOp::MakeDsGridDescriptor_G_M_N(ds_gs_ms_ns_lengths, ds_gs_ms_ns_strides)},
e_grid_desc_g_m_n_{
DeviceOp::MakeEGridDescriptor_G_M_N(e_gs_ms_ns_lengths, e_gs_ms_ns_strides)},
a_grid_desc_k0_m_k1_{},
b_grid_desc_k0_n_k1_{},
ds_grid_desc_mblock_mperblock_nblock_nperblock{},
e_grid_desc_mblock_mperblock_nblock_nperblock{},
block_2_ctile_map_{},
M01_{M01},
N01_{N01},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op},
a_mz_stride_{},
a_kz_stride_{},
b_nz_stride_{},
b_kz_stride_{},
ds_nz_stride_{},
e_nz_stride_{},
a_batch_stride_{a_gs_ms_ks_strides[NumDimG - 1]},
b_batch_stride_{b_gs_ns_ks_strides[NumDimG - 1]},
compute_ptr_offset_of_batch_{
a_batch_stride_, b_batch_stride_, ds_grid_desc_g_m_n_, e_grid_desc_g_m_n_}
{
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
// D pointer
p_ds_grid_(i) = static_cast<const DDataType*>(p_ds_grid[i]);
});
a_grid_desc_m_k_ =
DeviceOp::MakeAGridDescriptor_M_K(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
b_grid_desc_n_k_ =
DeviceOp::MakeBGridDescriptor_N_K(b_gs_ns_ks_lengths, b_gs_ns_ks_strides);
ds_grid_desc_m_n_ =
DeviceOp::MakeDsGridDescriptor_M_N(ds_gs_ms_ns_lengths, ds_gs_ms_ns_strides);
e_grid_desc_m_n_ =
DeviceOp::MakeEGridDescriptor_M_N(e_gs_ms_ns_lengths, e_gs_ms_ns_strides);
a_grid_desc_k0_m_k1_ = DeviceOp::MakeAGridDescriptor_K0_M_K1(a_grid_desc_m_k_);
b_grid_desc_k0_n_k1_ = DeviceOp::MakeBGridDescriptor_K0_N_K1(b_grid_desc_n_k_);
block_2_ctile_map_ = GridwiseOp::MakeDefaultBlock2CTileMap(e_grid_desc_m_n_, M01, N01);
ds_grid_desc_mblock_mperblock_nblock_nperblock =
GridwiseOp::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
ds_grid_desc_m_n_);
e_grid_desc_mblock_mperblock_nblock_nperblock =
GridwiseOp::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(e_grid_desc_m_n_);
// for sanity check of vector memory access
a_mz_stride_ = a_gs_ms_ks_strides[NumDimG + NumDimM - 1];
a_kz_stride_ = a_gs_ms_ks_strides[NumDimG + NumDimM + NumDimK - 1];
b_nz_stride_ = b_gs_ns_ks_strides[NumDimG + NumDimN - 1];
b_kz_stride_ = b_gs_ns_ks_strides[NumDimG + NumDimN + NumDimK - 1];
for(index_t i = 0; i < NumDTensor; ++i)
{
ds_nz_stride_[i] = ds_gs_ms_ns_strides[i][NumDimG + NumDimM + NumDimN - 1];
}
e_nz_stride_ = e_gs_ms_ns_strides[NumDimG + NumDimM + NumDimN - 1];
}
// Pointers
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
typename GridwiseOp::DsGridPointer p_ds_grid_;
EDataType* p_e_grid_;
// Tensor Descriptors
AGridDesc_M_K a_grid_desc_m_k_;
BGridDesc_N_K b_grid_desc_n_k_;
DsGridDesc_M_N ds_grid_desc_m_n_;
EGridDesc_M_N e_grid_desc_m_n_;
DsGridDesc_G_M_N ds_grid_desc_g_m_n_;
EGridDesc_G_M_N e_grid_desc_g_m_n_;
AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
typename GridwiseOp::DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock;
typename GridwiseOp::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock;
// Block to Tile mapping
typename GridwiseOp::DefaultBlock2CTileMap block_2_ctile_map_;
// Idle
index_t M01_;
index_t N01_;
// ElementwiseOp
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
// Strides for the last M/N/K dimensions of A/B/Ds/E
// for sanity check of vector load/store
index_t a_mz_stride_;
index_t a_kz_stride_;
index_t b_nz_stride_;
index_t b_kz_stride_;
std::array<index_t, NumDTensor> ds_nz_stride_;
index_t e_mz_stride_;
index_t e_nz_stride_;
index_t a_batch_stride_;
index_t b_batch_stride_;
// Batch Offset
ComputePtrOffsetOfStridedBatch compute_ptr_offset_of_batch_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
const index_t G = arg.e_grid_desc_g_m_n_.GetLength(I0);
const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.e_grid_desc_m_n_) * G;
const auto K =
arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2);
auto launch_kernel = [&](auto has_main_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
const auto kernel = kernel_contraction_multiple_d_wmma_cshuffle<
GridwiseOp,
ADataType,
BDataType,
typename GridwiseOp::DsGridPointer,
EDataType,
DeviceOp::AGridDesc_K0_M_K1,
DeviceOp::BGridDesc_K0_N_K1,
typename GridwiseOp::DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseOp::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
ComputePtrOffsetOfStridedBatch,
typename GridwiseOp::DefaultBlock2CTileMap,
has_main_loop>;
return launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_ds_grid_,
arg.p_e_grid_,
G,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.ds_grid_desc_mblock_mperblock_nblock_nperblock,
arg.e_grid_desc_mblock_mperblock_nblock_nperblock,
arg.a_element_op_,
arg.b_element_op_,
arg.cde_element_op_,
arg.compute_ptr_offset_of_batch_,
arg.block_2_ctile_map_);
};
if(GridwiseOp::CalculateHasMainKBlockLoop(K))
{
return launch_kernel(integral_constant<bool, true>{});
}
else
{
return launch_kernel(integral_constant<bool, false>{});
}
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
if(ck::get_device_name() == "gfx1100")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, int32_t>))
{
return false;
}
}
else
{
return false;
}
if(!GridwiseOp::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.ds_grid_desc_m_n_,
arg.e_grid_desc_m_n_,
arg.block_2_ctile_map_))
{
return false;
}
// check vector access
static_assert((ABlockTransferSrcVectorDim == 1 || ABlockTransferSrcVectorDim == 2) &&
(BBlockTransferSrcVectorDim == 1 || BBlockTransferSrcVectorDim == 2),
"wrong!");
// vector memory access of A: could be on M or AK1 dimension
if constexpr(ABlockTransferSrcVectorDim == 1)
{
if(!(arg.a_mz_stride_ == 1 &&
arg.a_grid_desc_k0_m_k1_.GetLength(I1) % ABlockTransferSrcScalarPerVector == 0))
{
return false;
}
}
else
{
if(!(arg.a_kz_stride_ == 1 &&
arg.a_grid_desc_k0_m_k1_.GetLength(I2) % ABlockTransferSrcScalarPerVector == 0))
{
return false;
}
}
// vector memory access of B: could be on N or BK1 dimension
if constexpr(BBlockTransferSrcVectorDim == 1)
{
if(!(arg.b_nz_stride_ == 1 &&
arg.b_grid_desc_k0_n_k1_.GetLength(I1) % BBlockTransferSrcScalarPerVector == 0))
{
return false;
}
}
else
{
if(!(arg.b_kz_stride_ == 1 &&
arg.b_grid_desc_k0_n_k1_.GetLength(I2) % BBlockTransferSrcScalarPerVector == 0))
{
return false;
}
}
// vector memory access of Ds: always on NPerBlock dimension
bool valid_d_access = true;
static_for<0, NumDTensor, 1>{}([&](auto i) {
if(!(arg.ds_nz_stride_[i] == 1 &&
arg.ds_grid_desc_mblock_mperblock_nblock_nperblock[i].GetLength(I3) %
CDEShuffleBlockTransferScalarPerVector_NPerBlock ==
0))
{
valid_d_access = false;
}
});
if(valid_d_access == false)
{
return false;
}
// vector memory access of E: always on NPerBlock dimension
if(!((arg.e_nz_stride_ == 1 &&
arg.e_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I3) %
CDEShuffleBlockTransferScalarPerVector_NPerBlock ==
0) ||
CDEShuffleBlockTransferScalarPerVector_NPerBlock == 1))
{
return false;
}
return true;
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto
MakeArgument(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_e,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
const std::vector<index_t>& b_gs_ns_ks_strides,
const std::array<std::vector<index_t>, NumDTensor>& ds_gs_ms_ns_lengths,
const std::array<std::vector<index_t>, NumDTensor>& ds_gs_ms_ns_strides,
const std::vector<index_t>& e_gs_ms_ns_lengths,
const std::vector<index_t>& e_gs_ms_ns_strides,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{p_a,
p_b,
p_ds,
p_e,
a_gs_ms_ks_lengths,
b_gs_ns_ks_lengths,
ds_gs_ms_ns_lengths,
e_gs_ms_ns_lengths,
a_gs_ms_ks_strides,
b_gs_ns_ks_strides,
ds_gs_ms_ns_strides,
e_gs_ms_ns_strides,
1,
1,
a_element_op,
b_element_op,
cde_element_op};
}
// polymorphic
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_e,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
const std::vector<index_t>& b_gs_ns_ks_strides,
const std::array<std::vector<index_t>, NumDTensor>& ds_gs_ms_ns_lengths,
const std::array<std::vector<index_t>, NumDTensor>& ds_gs_ms_ns_strides,
const std::vector<index_t>& e_gs_ms_ns_lengths,
const std::vector<index_t>& e_gs_ms_ns_strides,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op) override
{
return std::make_unique<Argument>(p_a,
p_b,
p_ds,
p_e,
a_gs_ms_ks_lengths,
b_gs_ns_ks_lengths,
ds_gs_ms_ns_lengths,
e_gs_ms_ns_lengths,
a_gs_ms_ks_strides,
b_gs_ns_ks_strides,
ds_gs_ms_ns_strides,
e_gs_ms_ns_strides,
1,
1,
a_element_op,
b_element_op,
cde_element_op);
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
std::map<LoopScheduler, std::string> LoopSchedToString{
{LoopScheduler::Default, "Default"}, {LoopScheduler::Interwave, "Interwave"}};
std::map<PipelineVersion, std::string> PipelineVersionToString{{PipelineVersion::v1, "v1"},
{PipelineVersion::v2, "v2"}};
// clang-format off
str << "DeviceBatchedContractionMultipleD_Wmma_CShuffle"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock << ", "
<< K1 << ", "
<< MPerWMMA << ", "
<< NPerWMMA << ", "
<< MRepeat << ", "
<< NRepeat
<< ">"
<< " NumPrefetch: "
<< NumPrefetch << ", "
<< "LoopScheduler: "
<< LoopSchedToString[LoopSched] << ", "
<< "PipelineVersion: "
<< PipelineVersionToString[PipelineVer];
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment