Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
0cd78566
Unverified
Commit
0cd78566
authored
Feb 15, 2023
by
zjing14
Committed by
GitHub
Feb 15, 2023
Browse files
Merge branch 'develop' into lwpck-471
parents
07905e77
19490ac4
Changes
38
Hide whitespace changes
Inline
Side-by-side
Showing
18 changed files
with
3247 additions
and
426 deletions
+3247
-426
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp
.../gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp
+654
-0
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp
...impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp
+850
-0
include/ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp
...r_operation/gpu/device/impl/device_normalization_impl.hpp
+39
-113
include/ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp
...r_operation/gpu/element/binary_element_wise_operation.hpp
+7
-0
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
...or_operation/gpu/element/unary_element_wise_operation.hpp
+6
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp
...ation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp
+937
-0
include/ck/tensor_operation/gpu/grid/gridwise_normalization_naive_variance.hpp
...ration/gpu/grid/gridwise_normalization_naive_variance.hpp
+298
-153
include/ck/tensor_operation/gpu/grid/gridwise_normalization_selector.hpp
...or_operation/gpu/grid/gridwise_normalization_selector.hpp
+195
-0
include/ck/tensor_operation/gpu/grid/gridwise_normalization_welford_variance.hpp
...tion/gpu/grid/gridwise_normalization_welford_variance.hpp
+182
-105
include/ck/utility/math_v2.hpp
include/ck/utility/math_v2.hpp
+10
-0
library/src/tensor_operation_instance/gpu/normalization/device_normalization_f16_instance.cpp
...e/gpu/normalization/device_normalization_f16_instance.cpp
+16
-11
library/src/tensor_operation_instance/gpu/normalization/device_normalization_f32_instance.cpp
...e/gpu/normalization/device_normalization_f32_instance.cpp
+18
-9
profiler/include/profiler/profile_layernorm_impl.hpp
profiler/include/profiler/profile_layernorm_impl.hpp
+5
-5
script/cmake-ck-dev.sh
script/cmake-ck-dev.sh
+2
-2
test/normalization/test_groupnorm_fp16.cpp
test/normalization/test_groupnorm_fp16.cpp
+7
-7
test/normalization/test_groupnorm_fp32.cpp
test/normalization/test_groupnorm_fp32.cpp
+7
-7
test/normalization/test_layernorm2d_fp16.cpp
test/normalization/test_layernorm2d_fp16.cpp
+7
-7
test/normalization/test_layernorm2d_fp32.cpp
test/normalization/test_layernorm2d_fp32.cpp
+7
-7
No files found.
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp
0 → 100644
View file @
0cd78566
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
K0PerBlock
,
ck
::
index_t
K1
,
ck
::
index_t
MPerWMMA
,
ck
::
index_t
NPerWMMA
,
ck
::
index_t
MRepeat
,
ck
::
index_t
NRepeat
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
ck
::
index_t
ABlockTransferSrcVectorDim
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
ABlockTransferDstScalarPerVector_K1
,
bool
ABlockLdsAddExtraM
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
ck
::
index_t
BBlockTransferSrcVectorDim
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferDstScalarPerVector_K1
,
bool
BBlockLdsAddExtraN
,
index_t
CShuffleMRepeatPerShuffle
,
index_t
CShuffleNRepeatPerShuffle
,
typename
CDEShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
ck
::
index_t
NumPrefetch
=
1
,
ck
::
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
ck
::
PipelineVersion
PipelineVer
=
ck
::
PipelineVersion
::
v1
>
struct
DeviceGemmMultipleD_Wmma_CShuffle
:
public
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGemmMultipleD_Wmma_CShuffle
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
// K1 = Max Vector Access Pixels
static
constexpr
auto
K1Number
=
Number
<
K1
>
{};
static
auto
MakeAGridDescriptor_K0_M_K1
(
index_t
M
,
index_t
K
,
index_t
StrideA
)
{
assert
(
K
%
K1
==
0
);
const
index_t
K0
=
K
/
K1
;
const
auto
a_grid_desc_m_k
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
StrideA
,
I1
));
}
#ifdef ENABLE_COLMAJOR
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I1
,
StrideA
));
}
#endif
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadM
=
(
MPerBlock
-
M
%
MPerBlock
)
%
MPerBlock
;
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_right_pad_transform
(
M
,
PadM
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
else
{
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
}
static
auto
MakeBGridDescriptor_K0_N_K1
(
index_t
K
,
index_t
N
,
index_t
StrideB
)
{
assert
(
K
%
K1
==
0
);
const
index_t
K0
=
K
/
K1
;
const
auto
b_grid_desc_k_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
StrideB
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
I1
,
StrideB
));
}
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadN
=
(
NPerBlock
-
N
%
NPerBlock
)
%
NPerBlock
;
return
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_right_pad_transform
(
N
,
PadN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
else
{
return
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
}
template
<
typename
ELayout_
>
static
auto
MakeEGridDescriptor_M_N
(
index_t
M
,
index_t
N
,
index_t
StrideE
)
{
const
auto
e_grid_desc_m_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ELayout_
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideE
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ELayout_
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I1
,
StrideE
));
}
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadM
=
(
MPerBlock
-
M
%
MPerBlock
)
%
MPerBlock
;
const
auto
PadN
=
(
NPerBlock
-
N
%
NPerBlock
)
%
NPerBlock
;
return
transform_tensor_descriptor
(
e_grid_desc_m_n
,
make_tuple
(
make_right_pad_transform
(
M
,
PadM
),
make_right_pad_transform
(
N
,
PadN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
return
transform_tensor_descriptor
(
e_grid_desc_m_n
,
make_tuple
(
make_pass_through_transform
(
M
),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
}
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NumDTensor
>&
Ms
,
const
std
::
array
<
index_t
,
NumDTensor
>&
Ns
,
const
std
::
array
<
index_t
,
NumDTensor
>&
DsStride
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
Ms
[
i
],
Ns
[
i
],
DsStride
[
i
]);
},
Number
<
NumDTensor
>
{});
}
// Gridwise descriptor, mapping to whole given provblem.
using
AGridDesc_K0_M_K1
=
decltype
(
MakeAGridDescriptor_K0_M_K1
(
1
,
1
,
1
));
using
BGridDesc_K0_N_K1
=
decltype
(
MakeBGridDescriptor_K0_N_K1
(
1
,
1
,
1
));
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({},
{},
{}))
>
;
using
EGridDesc_M_N
=
decltype
(
MakeEGridDescriptor_M_N
<
ELayout
>
(
1
,
1
,
1
));
// GridwiseOp
using
GridwiseOp
=
GridwiseGemmMultipleD_k0mk1_k0nk1_mn_wmma_cshuffle
<
// DataType Family
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
// InMemory Data Descriptor
AGridDesc_K0_M_K1
,
BGridDesc_K0_N_K1
,
DsGridDesc_M_N
,
EGridDesc_M_N
,
// ElementwiseOp Family
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
// Tiling Family
MPerBlock
,
NPerBlock
,
K0PerBlock
,
MPerWMMA
,
NPerWMMA
,
K1
,
MRepeat
,
NRepeat
,
// ThreadCluster Family
BlockSize
,
ABlockTransferThreadClusterLengths_K0_M_K1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
,
false
,
// AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM
,
BBlockTransferThreadClusterLengths_K0_N_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN
,
CShuffleMRepeatPerShuffle
,
CShuffleNRepeatPerShuffle
,
CDEShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
NumPrefetch
,
LoopSched
,
PipelineVer
>
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
void
*
p_a_grid
,
const
void
*
p_b_grid
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
,
void
*
p_e_grid
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideE
,
index_t
M01
,
index_t
N01
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
p_a_grid_
{
static_cast
<
const
ADataType
*>
(
p_a_grid
)},
p_b_grid_
{
static_cast
<
const
BDataType
*>
(
p_b_grid
)},
p_ds_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e_grid
)},
a_grid_desc_k0_m_k1_
{},
b_grid_desc_k0_n_k1_
{},
ds_grid_desc_m_n_
{},
e_grid_desc_m_n_
{},
ds_grid_desc_mblock_mperblock_nblock_nperblock
{},
e_grid_desc_mblock_mperblock_nblock_nperblock
{},
block_2_ctile_map_
{},
M01_
{
M01
},
N01_
{
N01
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
a_grid_desc_k0_m_k1_
=
DeviceOp
::
MakeAGridDescriptor_K0_M_K1
(
M
,
K
,
StrideA
);
b_grid_desc_k0_n_k1_
=
DeviceOp
::
MakeBGridDescriptor_K0_N_K1
(
K
,
N
,
StrideB
);
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
p_ds_grid
[
i
]);
// D desc
ds_grid_desc_m_n_
(
i
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
M
,
N
,
StrideDs
[
i
]);
});
e_grid_desc_m_n_
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
ELayout
>
(
M
,
N
,
StrideE
);
block_2_ctile_map_
=
GridwiseOp
::
MakeDefaultBlock2CTileMap
(
e_grid_desc_m_n_
,
M01
,
N01
);
if
(
GridwiseOp
::
CheckValidity
(
a_grid_desc_k0_m_k1_
,
b_grid_desc_k0_n_k1_
,
ds_grid_desc_m_n_
,
e_grid_desc_m_n_
,
block_2_ctile_map_
))
{
ds_grid_desc_mblock_mperblock_nblock_nperblock
=
GridwiseOp
::
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n_
);
e_grid_desc_mblock_mperblock_nblock_nperblock
=
GridwiseOp
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n_
);
}
}
// Pointers
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
typename
GridwiseOp
::
DsGridPointer
p_ds_grid_
;
EDataType
*
p_e_grid_
;
// Tensor Descriptors
AGridDesc_K0_M_K1
a_grid_desc_k0_m_k1_
;
BGridDesc_K0_N_K1
b_grid_desc_k0_n_k1_
;
DsGridDesc_M_N
ds_grid_desc_m_n_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
typename
GridwiseOp
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
typename
GridwiseOp
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock
;
// Block to Tile mapping
typename
GridwiseOp
::
DefaultBlock2CTileMap
block_2_ctile_map_
;
// Idle
index_t
M01_
;
index_t
N01_
;
// ElementwiseOp
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
#if 0
{
std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_k0_n_k1_{" << arg.b_grid_desc_k0_n_k1_.GetLength(I0)
<< ", " << arg.b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
<< arg.b_grid_desc_k0_n_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0)
<< ", " << arg.c_grid_desc_m_n_.GetLength(I1) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I2) << "}" << std::endl;
}
#endif
if
(
!
GridwiseOp
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_ctile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm_k0mk1_k0nk1_m0nm1_wmma_v1r1 has invalid setting"
);
}
const
index_t
grid_size
=
arg
.
block_2_ctile_map_
.
CalculateGridSize
(
arg
.
e_grid_desc_m_n_
);
const
auto
K
=
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I0
)
*
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I2
);
float
ave_time
=
0
;
if
(
GridwiseOp
::
CalculateHasMainKBlockLoop
(
K
))
{
const
auto
kernel
=
kernel_gemm_mupltipe_d_wmma_cshuffle
<
GridwiseOp
,
ADataType
,
BDataType
,
typename
GridwiseOp
::
DsGridPointer
,
EDataType
,
remove_reference_t
<
typename
DeviceOp
::
AGridDesc_K0_M_K1
>
,
remove_reference_t
<
typename
DeviceOp
::
BGridDesc_K0_N_K1
>
,
remove_reference_t
<
typename
GridwiseOp
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
>
,
remove_reference_t
<
typename
GridwiseOp
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
>
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
remove_reference_t
<
typename
GridwiseOp
::
DefaultBlock2CTileMap
>
,
true
>
;
// Last Option is W/O
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_ds_grid_
,
arg
.
p_e_grid_
,
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
block_2_ctile_map_
);
}
else
{
const
auto
kernel
=
kernel_gemm_mupltipe_d_wmma_cshuffle
<
GridwiseOp
,
ADataType
,
BDataType
,
typename
GridwiseOp
::
DsGridPointer
,
EDataType
,
remove_reference_t
<
typename
DeviceOp
::
AGridDesc_K0_M_K1
>
,
remove_reference_t
<
typename
DeviceOp
::
BGridDesc_K0_N_K1
>
,
remove_reference_t
<
typename
GridwiseOp
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
>
,
remove_reference_t
<
typename
GridwiseOp
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
>
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
remove_reference_t
<
typename
GridwiseOp
::
DefaultBlock2CTileMap
>
,
false
>
;
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_ds_grid_
,
arg
.
p_e_grid_
,
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
block_2_ctile_map_
);
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
ck
::
get_device_name
()
==
"gfx1100"
)
{
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
))
{
return
false
;
}
}
else
{
return
false
;
}
return
GridwiseOp
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_ctile_map_
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideE
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_ds
,
p_e
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
1
,
1
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideE
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a
,
p_b
,
p_ds
,
p_e
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
1
,
1
,
a_element_op
,
b_element_op
,
cde_element_op
);
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
std
::
map
<
LoopScheduler
,
std
::
string
>
LoopSchedToString
{
{
LoopScheduler
::
Default
,
"Default"
},
{
LoopScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
PipelineVersion
,
std
::
string
>
PipelineVersionToString
{{
PipelineVersion
::
v1
,
"v1"
},
{
PipelineVersion
::
v2
,
"v2"
}};
// clang-format off
str
<<
"DeviceGemmMultipleD_Wmma_CShuffle"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
K0PerBlock
<<
", "
<<
K1
<<
", "
<<
MPerWMMA
<<
", "
<<
NPerWMMA
<<
", "
<<
MRepeat
<<
", "
<<
NRepeat
<<
">"
<<
" NumPrefetch: "
<<
NumPrefetch
<<
", "
<<
"LoopScheduler: "
<<
LoopSchedToString
[
LoopSched
]
<<
", "
<<
"PipelineVersion: "
<<
PipelineVersionToString
[
PipelineVer
];
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp
0 → 100644
View file @
0cd78566
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <functional>
#include <iostream>
#include <iterator>
#include <numeric>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/io.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
{
template
<
index_t
NumDTensor
>
struct
ComputePtrOffsetOfStridedBatch
{
ComputePtrOffsetOfStridedBatch
()
=
default
;
ComputePtrOffsetOfStridedBatch
(
index_t
BatchStrideA
,
index_t
BatchStrideB
,
Array
<
ck
::
index_t
,
NumDTensor
>
BatchStrideDs
,
index_t
BatchStrideE
)
:
BatchStrideA_
(
BatchStrideA
),
BatchStrideB_
(
BatchStrideB
),
BatchStrideDs_
(
BatchStrideDs
),
BatchStrideE_
(
BatchStrideE
)
{
}
__host__
__device__
constexpr
long_index_t
GetAPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideA_
);
}
__host__
__device__
constexpr
long_index_t
GetBPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideB_
);
}
__host__
__device__
constexpr
auto
GetDsPtrOffset
(
index_t
g_idx
)
const
{
Array
<
long_index_t
,
NumDTensor
>
ds_offset
;
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
ds_offset
(
i
)
=
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideDs_
[
i
]);
});
return
ds_offset
;
}
__host__
__device__
constexpr
long_index_t
GetEPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideE_
);
}
index_t
BatchStrideA_
;
index_t
BatchStrideB_
;
Array
<
ck
::
index_t
,
NumDTensor
>
BatchStrideDs_
;
index_t
BatchStrideE_
;
};
}
// namespace
//
// @brief Device Convolution operation.
//
// Supports:
// @li Forward convolution with up to 3 spatial dimentions
// @li Input tensor in GNWC data format
// @li Weight tensor in GKXC data format
// @li Output tensor in GNWK data format
//
// 1D:
// out[N, Wo, K] = in[N, Wi, C] * wei[K, X, C]
// 2D:
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
// 3D:
// out[N, Do, Ho, Wo, K] = in[N, Di, Hi, Wi, C] * wei[K, Z, Y, X, C]
// Assume:
// AK1 == BK1
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ConvolutionForwardSpecialization
ConvForwardSpecialization
,
GemmSpecialization
GemmSpec
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
K0PerBlock
,
ck
::
index_t
K1
,
ck
::
index_t
MPerWMMA
,
ck
::
index_t
NPerWMMA
,
ck
::
index_t
MRepeat
,
ck
::
index_t
NRepeat
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMRepeatPerShuffle
,
index_t
CShuffleNRepeatPerShuffle
,
typename
CDEShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
index_t
NumGemmKPrefetchStage
=
1
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
ck
::
PipelineVersion
PipelineVer
=
ck
::
PipelineVersion
::
v1
>
struct
DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
:
public
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
index_t
KPerBlock
=
K0PerBlock
*
K1
;
static
constexpr
auto
conv_to_gemm_transformer
=
TransformConvFwdToGemm
<
NDimSpatial
,
ConvForwardSpecialization
>
{};
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
template
<
typename
ALay
>
static
auto
MakeAGridDescriptor_M_K
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
)
{
const
auto
in_gemmmraw_gemmkraw_desc
=
conv_to_gemm_transformer
.
template
MakeADescriptor_M_K
<
ALay
>(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
const
auto
in_gemmm_gemmk_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_desc
);
return
in_gemmm_gemmk_desc
;
}
template
<
typename
BLay
>
static
auto
MakeBGridDescriptor_N_K
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
)
{
const
auto
wei_gemmnraw_gemmkraw_desc
=
conv_to_gemm_transformer
.
template
MakeBDescriptor_N_K
<
BLay
>(
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
);
const
auto
wei_gemmn_gemmk_desc
=
matrix_padder
.
PadBDescriptor_N_K
(
wei_gemmnraw_gemmkraw_desc
);
return
wei_gemmn_gemmk_desc
;
}
template
<
typename
ELay
>
static
auto
MakeEGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
)
{
const
auto
out_gemmmraw_gemmnraw_desc
=
conv_to_gemm_transformer
.
template
MakeCDescriptor_M_N
<
ELay
>(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
);
const
auto
out_gemmm_gemmn_desc
=
matrix_padder
.
PadCDescriptor_M_N
(
out_gemmmraw_gemmnraw_desc
);
return
out_gemmm_gemmn_desc
;
}
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
ds_g_n_k_wos_lengths
[
i
],
ds_g_n_k_wos_strides
[
i
]);
},
Number
<
NumDTensor
>
{});
}
// desc for problem definition
using
AGridDesc_M_K
=
remove_cvref_t
<
decltype
(
MakeAGridDescriptor_M_K
<
ALayout
>
({},
{},
{},
{},
{},
{},
{},
{},
{},
{}))
>
;
using
BGridDesc_N_K
=
remove_cvref_t
<
decltype
(
MakeBGridDescriptor_N_K
<
BLayout
>
({},
{}))
>
;
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({},
{}))
>
;
using
EGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeEGridDescriptor_M_N
<
ELayout
>
({},
{}))
>
;
// A desc for source in blockwise copy
template
<
typename
AGridDesc_M_K
>
__host__
__device__
static
constexpr
auto
MakeAGridDescriptor_AK0_M_AK1
(
const
AGridDesc_M_K
&
a_grid_desc_m_k
)
{
const
auto
M
=
a_grid_desc_m_k
.
GetLength
(
I0
);
const
auto
K
=
a_grid_desc_m_k
.
GetLength
(
I1
);
const
auto
AK1
=
K1
;
const
auto
AK0
=
K
/
AK1
;
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
// B desc for source in blockwise copy
template
<
typename
BGridDesc_N_K
>
__host__
__device__
static
constexpr
auto
MakeBGridDescriptor_BK0_N_BK1
(
const
BGridDesc_N_K
&
b_grid_desc_n_k
)
{
const
auto
N
=
b_grid_desc_n_k
.
GetLength
(
I0
);
const
auto
K
=
b_grid_desc_n_k
.
GetLength
(
I1
);
const
auto
BK1
=
K1
;
const
auto
BK0
=
K
/
BK1
;
return
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
using
AGridDesc_AK0_M_AK1
=
decltype
(
DeviceOp
::
MakeAGridDescriptor_AK0_M_AK1
(
AGridDesc_M_K
{}));
using
BGridDesc_BK0_N_BK1
=
decltype
(
DeviceOp
::
MakeBGridDescriptor_BK0_N_BK1
(
BGridDesc_N_K
{}));
// GridwiseOp
using
GridwiseOp
=
GridwiseGemmMultipleD_k0mk1_k0nk1_mn_wmma_cshuffle
<
// DataType Family
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
// InMemory Data Descriptor
AGridDesc_AK0_M_AK1
,
BGridDesc_BK0_N_BK1
,
DsGridDesc_M_N
,
EGridDesc_M_N
,
// ElementwiseOp Family
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
// Tiling Family
MPerBlock
,
NPerBlock
,
K0PerBlock
,
MPerWMMA
,
NPerWMMA
,
K1
,
MRepeat
,
NRepeat
,
// ThreadCluster Family
BlockSize
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMRepeatPerShuffle
,
CShuffleNRepeatPerShuffle
,
CDEShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
NumGemmKPrefetchStage
,
LoopSched
,
PipelineVer
>
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
index_t
M01
,
index_t
N01
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
:
p_a_grid_
{
static_cast
<
const
ADataType
*>
(
p_a
)},
p_b_grid_
{
static_cast
<
const
BDataType
*>
(
p_b
)},
p_ds_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e
)},
num_group_
{
a_g_n_c_wis_lengths
[
0
]},
a_grid_desc_m_k_
{
DeviceOp
::
MakeAGridDescriptor_M_K
<
ALayout
>
(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
)},
b_grid_desc_n_k_
{
DeviceOp
::
MakeBGridDescriptor_N_K
<
BLayout
>
(
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
)},
ds_grid_desc_m_n_
{},
e_grid_desc_m_n_
{
DeviceOp
::
MakeEGridDescriptor_M_N
<
ELayout
>
(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
)},
a_grid_desc_ak0_m_ak1_
{
DeviceOp
::
MakeAGridDescriptor_AK0_M_AK1
(
a_grid_desc_m_k_
)},
b_grid_desc_bk0_n_bk1_
{
DeviceOp
::
MakeBGridDescriptor_BK0_N_BK1
(
b_grid_desc_n_k_
)},
ds_grid_desc_mblock_mperblock_nblock_nperblock_
{},
e_grid_desc_mblock_mperblock_nblock_nperblock_
{},
block_2_etile_map_
{
GridwiseOp
::
MakeDefaultBlock2CTileMap
(
e_grid_desc_m_n_
,
M01
,
N01
)},
compute_ptr_offset_of_batch_
{},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
},
a_g_n_c_wis_lengths_
{
a_g_n_c_wis_lengths
},
a_g_n_c_wis_strides_
{
a_g_n_c_wis_strides
},
b_g_k_c_xs_lengths_
{
b_g_k_c_xs_lengths
},
b_g_k_c_xs_strides_
{
b_g_k_c_xs_strides
},
ds_g_n_k_wos_lengths_
{
ds_g_n_k_wos_lengths
},
ds_g_n_k_wos_strides_
{
ds_g_n_k_wos_strides
},
e_g_n_k_wos_lengths_
{
e_g_n_k_wos_lengths
},
e_g_n_k_wos_strides_
{
e_g_n_k_wos_strides
},
conv_filter_strides_
{
conv_filter_strides
},
conv_filter_dilations_
{
conv_filter_dilations
},
input_left_pads_
{
input_left_pads
},
input_right_pads_
{
input_right_pads
}
{
// A/B/E Batch Stride
compute_ptr_offset_of_batch_
.
BatchStrideA_
=
a_g_n_c_wis_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideB_
=
b_g_k_c_xs_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideE_
=
e_g_n_k_wos_strides
[
0
];
// populate pointer, batch stride, desc for Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
// using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
p_ds
[
i
]);
// D batch stride
compute_ptr_offset_of_batch_
.
BatchStrideDs_
(
i
)
=
ds_g_n_k_wos_strides
[
i
][
0
];
});
// D desc
ds_grid_desc_m_n_
=
DeviceOp
::
MakeDsGridDescriptor_M_N
(
ds_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
);
// populate desc for Ds/E
e_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseOp
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n_
);
ds_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseOp
::
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n_
);
}
void
Print
()
const
{
std
::
cout
<<
"A[M, K]: "
<<
a_grid_desc_m_k_
<<
std
::
endl
;
std
::
cout
<<
"B[N, K]: "
<<
b_grid_desc_n_k_
<<
std
::
endl
;
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
std
::
cout
<<
"Ds[M, N]: "
<<
ds_grid_desc_m_n_
[
i
]
<<
std
::
endl
;
});
std
::
cout
<<
"E[M, N]: "
<<
e_grid_desc_m_n_
<<
std
::
endl
;
}
// private:
// pointers
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
typename
GridwiseOp
::
DsGridPointer
p_ds_grid_
;
EDataType
*
p_e_grid_
;
// tensor descriptors for problem definiton
index_t
num_group_
;
AGridDesc_M_K
a_grid_desc_m_k_
;
BGridDesc_N_K
b_grid_desc_n_k_
;
DsGridDesc_M_N
ds_grid_desc_m_n_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
typename
GridwiseOp
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
typename
GridwiseOp
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
// block-to-e-tile map
typename
GridwiseOp
::
DefaultBlock2CTileMap
block_2_etile_map_
;
// for computing batch offset
ComputePtrOffsetOfStridedBatch
<
NumDTensor
>
compute_ptr_offset_of_batch_
;
// element-wise op
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
// for checking IsSupportedArgument()
std
::
array
<
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides_
;
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>
ds_g_n_k_wos_lengths_
;
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>
ds_g_n_k_wos_strides_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides_
;
std
::
array
<
index_t
,
NDimSpatial
>
conv_filter_strides_
;
std
::
array
<
index_t
,
NDimSpatial
>
conv_filter_dilations_
;
std
::
array
<
index_t
,
NDimSpatial
>
input_left_pads_
;
std
::
array
<
index_t
,
NDimSpatial
>
input_right_pads_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
stream_config
.
log_level_
>
0
)
{
arg
.
Print
();
}
const
index_t
grid_size
=
arg
.
block_2_etile_map_
.
CalculateGridSize
(
arg
.
e_grid_desc_m_n_
)
*
arg
.
num_group_
;
const
auto
K
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop
)
{
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
const
auto
kernel
=
kernel_grouped_conv_fwd_multiple_d_wmma_cshuffle
<
GridwiseOp
,
ADataType
,
BDataType
,
typename
GridwiseOp
::
DsGridPointer
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseOp
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseOp
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
remove_reference_t
<
typename
GridwiseOp
::
DefaultBlock2CTileMap
>
,
ComputePtrOffsetOfStridedBatch
<
NumDTensor
>
,
has_main_loop
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_ds_grid_
,
arg
.
p_e_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
a_g_n_c_wis_lengths_
[
0
],
// Group count
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
block_2_etile_map_
,
arg
.
compute_ptr_offset_of_batch_
);
};
if
(
GridwiseOp
::
CalculateHasMainKBlockLoop
(
K
))
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
namespace
ctc
=
tensor_layout
::
convolution
;
// check device
if
(
get_device_name
()
==
"gfx1100"
)
{
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
))
{
return
false
;
}
}
else
{
return
false
;
}
// check ConvolutionForwardSpecialization
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
)
{
// check if it's 1x1, stride=1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
2
];
const
index_t
ConvStride
=
arg
.
conv_filter_strides_
[
i
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
if
(
!
(
X
==
1
&&
ConvStride
==
1
&&
LeftPad
==
0
&&
RightPad
==
0
))
{
return
false
;
}
}
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Pad0
)
{
// check if it's 1x1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
2
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
if
(
!
(
X
==
1
&&
LeftPad
==
0
&&
RightPad
==
0
))
{
return
false
;
}
}
}
// check vector access of A
// FIXME: layout
if
constexpr
(
is_same_v
<
ALayout
,
ctc
::
G_NW_C
>
||
is_same_v
<
ALayout
,
ctc
::
G_NHW_C
>
||
is_same_v
<
ALayout
,
ctc
::
G_NDHW_C
>
||
is_same_v
<
ALayout
,
ctc
::
GNWC
>
||
is_same_v
<
ALayout
,
ctc
::
GNHWC
>
||
is_same_v
<
ALayout
,
ctc
::
GNDHWC
>
||
is_same_v
<
ALayout
,
ctc
::
NWGC
>
||
is_same_v
<
ALayout
,
ctc
::
NHWGC
>
||
is_same_v
<
ALayout
,
ctc
::
NDHWGC
>
)
{
const
index_t
C
=
arg
.
a_g_n_c_wis_lengths_
[
2
];
if
(
!
(
ABlockTransferSrcVectorDim
==
2
&&
C
%
ABlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
else
{
return
false
;
}
// check vector access of B
// FIXME: layout
if
constexpr
(
is_same_v
<
BLayout
,
ctc
::
G_K_X_C
>
||
is_same_v
<
BLayout
,
ctc
::
G_K_YX_C
>
||
is_same_v
<
BLayout
,
ctc
::
G_K_ZYX_C
>
||
is_same_v
<
BLayout
,
ctc
::
GKXC
>
||
is_same_v
<
BLayout
,
ctc
::
GKYXC
>
||
is_same_v
<
BLayout
,
ctc
::
GKZYXC
>
||
is_same_v
<
BLayout
,
ctc
::
KXGC
>
||
is_same_v
<
BLayout
,
ctc
::
KYXGC
>
||
is_same_v
<
BLayout
,
ctc
::
KZYXGC
>
)
{
const
index_t
C
=
arg
.
b_g_k_c_xs_lengths_
[
2
];
if
(
!
(
BBlockTransferSrcVectorDim
==
2
&&
C
%
BBlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
else
{
return
false
;
}
// check vector access of Ds
bool
valid
=
true
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
// FIXME: layout
if
constexpr
(
is_same_v
<
DLayout
,
ctc
::
G_NW_K
>
||
is_same_v
<
DLayout
,
ctc
::
G_NHW_K
>
||
is_same_v
<
DLayout
,
ctc
::
G_NDHW_K
>
||
is_same_v
<
DLayout
,
ctc
::
GNWK
>
||
is_same_v
<
DLayout
,
ctc
::
GNHWK
>
||
is_same_v
<
DLayout
,
ctc
::
GNDHWK
>
||
is_same_v
<
DLayout
,
ctc
::
NWGK
>
||
is_same_v
<
DLayout
,
ctc
::
NHWGK
>
||
is_same_v
<
DLayout
,
ctc
::
NDHWGK
>
||
is_same_v
<
DLayout
,
ctc
::
GK
>
||
is_same_v
<
DLayout
,
ctc
::
G_K
>
)
{
const
index_t
K
=
arg
.
ds_g_n_k_wos_lengths_
[
i
][
2
];
if
(
!
(
K
%
CDEShuffleBlockTransferScalarPerVector_NPerBlock
==
0
))
{
valid
=
false
;
}
}
else
{
valid
=
false
;
}
});
if
(
!
valid
)
{
return
false
;
}
// check vector access of E
if
constexpr
(
is_same_v
<
ELayout
,
ctc
::
G_NW_K
>
||
is_same_v
<
ELayout
,
ctc
::
G_NHW_K
>
||
is_same_v
<
ELayout
,
ctc
::
G_NDHW_K
>
||
is_same_v
<
ELayout
,
ctc
::
GNWK
>
||
is_same_v
<
ELayout
,
ctc
::
GNHWK
>
||
is_same_v
<
ELayout
,
ctc
::
GNDHWK
>
||
is_same_v
<
ELayout
,
ctc
::
NWGK
>
||
is_same_v
<
ELayout
,
ctc
::
NHWGK
>
||
is_same_v
<
ELayout
,
ctc
::
NDHWGK
>
)
{
const
index_t
K
=
arg
.
e_g_n_k_wos_lengths_
[
2
];
if
(
!
(
K
%
CDEShuffleBlockTransferScalarPerVector_NPerBlock
==
0
))
{
return
false
;
}
}
else
{
return
false
;
}
// check Gridwise GEMM
return
GridwiseOp
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
);
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_ds
,
p_e
,
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
ds_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
1
,
1
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a
,
p_b
,
p_ds
,
p_e
,
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
ds_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
1
,
1
,
a_element_op
,
b_element_op
,
cde_element_op
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedConvFwdMultipleD_Wmma_CShuffle"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
getConvForwardSpecializationString
(
ConvForwardSpecialization
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp
View file @
0cd78566
...
...
@@ -10,46 +10,11 @@
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_normalization_
w
el
ford_variance
.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_normalization_
s
el
ector
.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_set_buffer_value.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
template
<
typename
GridwiseReduction
,
typename
XDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
YDataType
,
typename
AccDataType
,
typename
AccElementwiseOperation
,
typename
GridDesc_M_K
>
__global__
void
kernel_normalization
(
const
GridDesc_M_K
x_grid_desc_m_k
,
const
GridDesc_M_K
gamma_grid_desc_m_k
,
const
GridDesc_M_K
beta_grid_desc_m_k
,
const
GridDesc_M_K
y_grid_desc_m_k
,
index_t
num_k_block_tile_iteration
,
AccDataType
epsilon
,
const
XDataType
*
const
__restrict__
p_x_global
,
const
GammaDataType
*
const
__restrict__
p_gamma_global
,
const
BetaDataType
*
const
__restrict__
p_beta_global
,
YDataType
*
const
__restrict__
p_y_global
,
const
AccElementwiseOperation
acc_elementwise_op
)
{
GridwiseReduction
::
Run
(
x_grid_desc_m_k
,
gamma_grid_desc_m_k
,
beta_grid_desc_m_k
,
y_grid_desc_m_k
,
num_k_block_tile_iteration
,
epsilon
,
p_x_global
,
p_gamma_global
,
p_beta_global
,
p_y_global
,
acc_elementwise_op
);
};
}
// namespace ck
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
...
...
@@ -58,9 +23,9 @@ namespace device {
template
<
typename
XDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
Acc
DataType
,
typename
Compute
DataType
,
typename
YDataType
,
typename
Acc
ElementwiseOperation
,
typename
Y
ElementwiseOperation
,
index_t
Rank
,
index_t
NumReduceDim
,
index_t
BlockSize
,
...
...
@@ -74,16 +39,18 @@ template <typename XDataType,
index_t
GammaSrcVectorSize
,
index_t
BetaSrcVectorDim
,
index_t
BetaSrcVectorSize
,
index_t
YDstVectorSize
>
index_t
YDstVectorSize
,
bool
UseWelford
=
true
>
struct
DeviceNormalizationImpl
:
public
DeviceNormalization
<
XDataType
,
GammaDataType
,
BetaDataType
,
Acc
DataType
,
Compute
DataType
,
YDataType
,
Acc
ElementwiseOperation
,
Y
ElementwiseOperation
,
Rank
,
NumReduceDim
>
{
static_assert
(
BlockSize
==
MThreadClusterSize
*
KThreadClusterSize
);
static_assert
(
((
GammaSrcVectorDim
==
0
&&
MThreadSliceSize
%
GammaSrcVectorSize
==
0
)
||
(
GammaSrcVectorDim
==
1
&&
KThreadSliceSize
%
GammaSrcVectorSize
==
0
)),
...
...
@@ -167,51 +134,6 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
using
GridDesc_M_K
=
decltype
(
MakeSrc2dDescriptor
({
1
},
{
1
},
1
,
1
));
using
GridwiseReduceLayernormGeneric
=
GridwiseNormalizationWelfordVariance_mk_to_mk
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
AccDataType
,
AccElementwiseOperation
,
GridDesc_M_K
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
XYSrcVectorDim
,
XSrcVectorSize
,
GammaSrcVectorDim
,
GammaSrcVectorSize
,
BetaSrcVectorDim
,
BetaSrcVectorSize
,
XYSrcVectorDim
,
YDstVectorSize
,
false
>
;
using
GridwiseNormalizationSweepOnce
=
GridwiseNormalizationWelfordVariance_mk_to_mk
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
AccDataType
,
AccElementwiseOperation
,
GridDesc_M_K
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
XYSrcVectorDim
,
XSrcVectorSize
,
GammaSrcVectorDim
,
GammaSrcVectorSize
,
BetaSrcVectorDim
,
BetaSrcVectorSize
,
XYSrcVectorDim
,
YDstVectorSize
,
true
>
;
struct
Argument
:
public
BaseArgument
{
Argument
(
const
std
::
vector
<
index_t
>
lengths
,
...
...
@@ -220,7 +142,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
const
std
::
vector
<
index_t
>
betaStrides
,
const
std
::
vector
<
index_t
>
yStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
Acc
ElementwiseOperation
acc
_elementwise_op
,
Y
ElementwiseOperation
y
_elementwise_op
,
double
epsilon
,
const
XDataType
*
p_x
,
const
GammaDataType
*
p_gamma
,
...
...
@@ -230,9 +152,9 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
p_gamma_
(
p_gamma
),
p_beta_
(
p_beta
),
p_y_
(
p_y
),
acc
_elementwise_op_
(
acc
_elementwise_op
)
y
_elementwise_op_
(
y
_elementwise_op
)
{
epsilon_
=
static_cast
<
Acc
DataType
>
(
epsilon
);
epsilon_
=
static_cast
<
Compute
DataType
>
(
epsilon
);
Lengths_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
lengths
,
reduceDims
);
xStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
xStrides
,
reduceDims
);
...
...
@@ -265,7 +187,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
x_grid_desc_m_k_
.
GetLength
(
Number
<
1
>
{})
<=
KThreadClusterSize
*
KThreadSliceSize
;
}
Acc
DataType
epsilon_
;
Compute
DataType
epsilon_
;
const
XDataType
*
p_x_
;
const
GammaDataType
*
p_gamma_
;
...
...
@@ -278,7 +200,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
std
::
vector
<
index_t
>
betaStrides_
;
std
::
vector
<
index_t
>
yStrides_
;
Acc
ElementwiseOperation
acc
_elementwise_op_
;
Y
ElementwiseOperation
y
_elementwise_op_
;
int
blkGroupSize_
;
int
numBlockTileIteration_
;
...
...
@@ -295,23 +217,27 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
const
auto
kernel_main
=
arg
.
isSweeponce_
?
kernel_normalization
<
GridwiseNormalizationSweepOnce
,
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
AccDataType
,
AccElementwiseOperation
,
GridDesc_M_K
>
:
kernel_normalization
<
GridwiseReduceLayernormGeneric
,
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
AccDataType
,
AccElementwiseOperation
,
GridDesc_M_K
>
;
auto
kernel_main
=
NormalizationKernelSelector
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
ComputeDataType
,
YElementwiseOperation
,
GridDesc_M_K
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
XYSrcVectorDim
,
XSrcVectorSize
,
GammaSrcVectorDim
,
GammaSrcVectorSize
,
BetaSrcVectorDim
,
BetaSrcVectorSize
,
XYSrcVectorDim
,
YDstVectorSize
,
UseWelford
>
(
arg
.
isSweeponce_
);
float
avg_time
=
0
;
avg_time
+=
launch_and_time_kernel
(
stream_config
,
...
...
@@ -329,7 +255,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
arg
.
p_gamma_
,
arg
.
p_beta_
,
arg
.
p_y_
,
arg
.
acc
_elementwise_op_
);
arg
.
y
_elementwise_op_
);
return
(
avg_time
);
};
...
...
@@ -429,7 +355,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
void
*
p_y
,
void
*
p_saveMean
,
void
*
p_saveInvVar
,
Acc
ElementwiseOperation
acc
_elementwise_op
)
override
Y
ElementwiseOperation
y
_elementwise_op
)
override
{
// TODO
// Optional cache of the intermediate results (mean and InvVariance) during the
...
...
@@ -443,7 +369,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
betaStrides
,
yStrides
,
reduceDims
,
acc
_elementwise_op
,
y
_elementwise_op
,
epsilon
,
static_cast
<
const
XDataType
*>
(
p_x
),
static_cast
<
const
GammaDataType
*>
(
p_gamma
),
...
...
@@ -462,8 +388,8 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
// clang-format off
str
<<
"DeviceNormalizationImpl<"
<<
BlockSize
<<
","
;
str
<<
"
M_C
"
<<
MThreadClusterSize
<<
"_
S
"
<<
M
Thread
Slice
Size
<<
","
;
str
<<
"K_
C
"
<<
K
Thread
Cluster
Size
<<
"_
S
"
<<
KThreadSliceSize
<<
","
;
str
<<
"
Cluster_MK_
"
<<
MThreadClusterSize
<<
"_"
<<
K
Thread
Cluster
Size
<<
","
;
str
<<
"
Slice_M
K_"
<<
M
Thread
Slice
Size
<<
"_"
<<
KThreadSliceSize
<<
","
;
str
<<
"XYSrcVectorDim_"
<<
XYSrcVectorDim
<<
","
;
str
<<
"VectorSize_X"
<<
XSrcVectorSize
<<
"_Gamma"
<<
GammaSrcVectorSize
<<
"_Beta"
<<
BetaSrcVectorSize
<<
"_Y"
<<
YDstVectorSize
<<
">"
;
// clang-format on
...
...
include/ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp
View file @
0cd78566
...
...
@@ -150,6 +150,13 @@ struct Bilinear
template
<
typename
Y
,
typename
X0
,
typename
X1
>
__host__
__device__
constexpr
void
operator
()(
Y
&
,
const
X0
&
,
const
X1
&
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
double
,
double
,
double
>
(
double
&
y
,
const
double
&
x0
,
const
double
&
x1
)
const
{
y
=
alpha_
*
x0
+
beta_
*
x1
;
};
template
<
>
__host__
__device__
constexpr
void
operator
()
<
float
,
float
,
float
>
(
float
&
y
,
const
float
&
x0
,
const
float
&
x1
)
const
...
...
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
View file @
0cd78566
...
...
@@ -95,6 +95,12 @@ struct Scale
y
=
scale_
*
x
;
};
template
<
>
__host__
__device__
void
operator
()
<
double
,
double
>
(
double
&
y
,
const
double
&
x
)
const
{
y
=
scale_
*
x
;
};
float
scale_
;
};
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp
0 → 100644
View file @
0cd78566
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_wmma.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace
ck
{
template
<
typename
GridwiseOp
,
typename
ADataType
,
typename
BDataType
,
typename
DsPointer
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
Block2CTileMap
,
typename
ComputePtrOffsetOfBatch
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_grouped_conv_fwd_multiple_d_wmma_cshuffle
(
const
ADataType
*
__restrict__
p_a_grid
,
const
BDataType
*
__restrict__
p_b_grid
,
DsPointer
p_ds_grid
,
EDataType
*
__restrict__
p_e_grid
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
cde_element_op
,
const
index_t
batch_count
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_k0_m_k1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_k0_n_k1
,
const
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
const
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
const
Block2CTileMap
block_2_ctile_map
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx1100__))
// offset base pointer for each work-group
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
)));
const
long_index_t
e_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
)));
const
auto
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
__shared__
char
p_shared
[
GridwiseOp
::
GetSharedMemoryNumberOfByte
()];
DsPointer
p_ds_grid_grp
;
static
constexpr
index_t
NumDTensor
=
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
::
Size
();
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
p_ds_grid_grp
(
i
)
=
p_ds_grid
[
i
]
+
ds_batch_offset
[
i
];
});
GridwiseOp
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
+
a_batch_offset
,
p_b_grid
+
b_batch_offset
,
p_ds_grid_grp
,
p_e_grid
+
e_batch_offset
,
p_shared
,
a_grid_desc_k0_m_k1
,
b_grid_desc_k0_n_k1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
a_element_op
,
b_element_op
,
cde_element_op
,
block_2_ctile_map
);
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_ds_grid
;
ignore
=
p_e_grid
;
ignore
=
batch_count
;
ignore
=
a_grid_desc_k0_m_k1
;
ignore
=
b_grid_desc_k0_n_k1
;
ignore
=
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
cde_element_op
;
ignore
=
compute_ptr_offset_of_batch
;
ignore
=
block_2_ctile_map
;
#endif
}
template
<
typename
GridwiseOp
,
typename
ADataType
,
typename
BDataType
,
typename
DsPointer
,
typename
EDataType
,
typename
AGridDesc_K0_M_K1
,
typename
BGridDesc_K0_N_K1
,
typename
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
ComputePtrOffsetOfBatch
,
typename
Block2CTileMap
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_contraction_multiple_d_wmma_cshuffle
(
const
ADataType
*
__restrict__
p_a_grid
,
const
BDataType
*
__restrict__
p_b_grid
,
DsPointer
p_ds_grid
,
EDataType
*
__restrict__
p_e_grid
,
const
index_t
batch_count
,
const
AGridDesc_K0_M_K1
a_grid_desc_k0_m_k1
,
const
BGridDesc_K0_N_K1
b_grid_desc_k0_n_k1
,
const
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
const
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
cde_element_op
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
,
const
Block2CTileMap
block_2_etile_map
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx1100__))
// printf("entry kernel launch");
__shared__
char
p_shared
[
GridwiseOp
::
GetSharedMemoryNumberOfByte
()];
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
// printf("before compute_ptr_offset call");
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
)));
const
long_index_t
e_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
)));
const
auto
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
static
constexpr
index_t
NumDTensor
=
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
::
Size
();
DsPointer
p_ds_grid_grp
;
// printf("before allocate pointer d");
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
p_ds_grid_grp
(
i
)
=
p_ds_grid
[
i
]
+
ds_batch_offset
[
i
];
});
// printf("before entry");
GridwiseOp
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
+
a_batch_offset
,
p_b_grid
+
b_batch_offset
,
p_ds_grid_grp
,
p_e_grid
+
e_batch_offset
,
p_shared
,
a_grid_desc_k0_m_k1
,
b_grid_desc_k0_n_k1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
a_element_op
,
b_element_op
,
cde_element_op
,
block_2_etile_map
);
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_ds_grid
;
ignore
=
p_e_grid
;
ignore
=
batch_count
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
cde_element_op
;
ignore
=
a_grid_desc_k0_m_k1
;
ignore
=
b_grid_desc_k0_n_k1
;
ignore
=
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
e_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
block_2_etile_map
;
ignore
=
compute_ptr_offset_of_batch
;
#endif
}
template
<
typename
GridwiseOp
,
typename
ADataType
,
typename
BDataType
,
typename
DsPointer
,
typename
EDataType
,
typename
AGridDesc_K0_M_K1
,
typename
BGridDesc_K0_N_K1
,
typename
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
Block2CTileMap
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_gemm_mupltipe_d_wmma_cshuffle
(
const
ADataType
*
__restrict__
p_a_grid
,
const
BDataType
*
__restrict__
p_b_grid
,
DsPointer
p_ds_grid
,
EDataType
*
__restrict__
p_e_grid
,
const
AGridDesc_K0_M_K1
a_grid_desc_k0_m_k1
,
const
BGridDesc_K0_N_K1
b_grid_desc_k0_n_k1
,
const
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
const
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
cde_element_op
,
const
Block2CTileMap
block_2_ctile_map
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx1100__))
__shared__
char
p_shared
[
GridwiseOp
::
GetSharedMemoryNumberOfByte
()];
GridwiseOp
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
,
p_b_grid
,
p_ds_grid
,
p_e_grid
,
p_shared
,
a_grid_desc_k0_m_k1
,
b_grid_desc_k0_n_k1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
a_element_op
,
b_element_op
,
cde_element_op
,
block_2_ctile_map
);
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_ds_grid
;
ignore
=
p_e_grid
;
ignore
=
a_grid_desc_k0_m_k1
;
ignore
=
b_grid_desc_k0_n_k1
;
ignore
=
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
e_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
cde_element_op
;
ignore
=
block_2_ctile_map
;
#endif // end of if (defined(__gfx1100__))
}
template
<
// DataType Family
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
// InMemory Data Descriptor
typename
AGridDesc_K0_M_K1
,
typename
BGridDesc_K0_N_K1
,
typename
DsGridDesc_M_N
,
typename
EGridDesc_M_N
,
// ElementwiseOp Family
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
InMemoryDataOperationEnum
EGlobalMemoryDataOperation
,
// Tiling Family
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
K0PerBlock
,
index_t
MPerWmma
,
index_t
NPerWmma
,
index_t
K1Value
,
index_t
MRepeat
,
index_t
NRepeat
,
// ThreadCluster Family
index_t
BlockSize
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_K1
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_K1
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMRepeatPerShuffle
,
index_t
CShuffleNRepeatPerShuffle
,
typename
CDEShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
index_t
NumGemmKPrefetchStage
=
1
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
PipelineVersion
PipelineVer
=
PipelineVersion
::
v1
>
struct
GridwiseGemmMultipleD_k0mk1_k0nk1_mn_wmma_cshuffle
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
// K1 should be Number<...>
static
constexpr
auto
K1
=
Number
<
K1Value
>
{};
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
using
GridwiseGemmPipe
=
remove_cvref_t
<
decltype
(
GridwiseGemmPipeline_Selector
<
PipelineVer
,
NumGemmKPrefetchStage
,
LoopSched
>
())
>
;
__host__
__device__
static
constexpr
auto
GetABlockDescriptor_K0PerBlock_MPerBlock_K1
()
{
constexpr
auto
max_lds_align
=
K1
;
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_k0perblock_mperblock_k1
=
[
&
]()
{
if
constexpr
(
ABlockLdsExtraM
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
Number
<
K0PerBlock
>
{},
Number
<
MPerBlock
>
{},
K1
),
make_tuple
(
Number
<
MPerBlock
+
1
>
{}
*
K1
,
K1
,
I1
));
}
else
{
return
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
K0PerBlock
>
{},
Number
<
MPerBlock
>
{},
K1
),
max_lds_align
);
}
}();
return
a_block_desc_k0perblock_mperblock_k1
;
}
__host__
__device__
static
constexpr
auto
GetBBlockDescriptor_K0PerBlock_NPerBlock_K1
()
{
constexpr
auto
max_lds_align
=
K1
;
// B matrix in LDS memory, dst of blockwise copy
constexpr
auto
b_block_desc_k0perblock_nperblock_k1
=
[
&
]()
{
if
constexpr
(
BBlockLdsExtraN
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
Number
<
K0PerBlock
>
{},
Number
<
NPerBlock
>
{},
K1
),
make_tuple
(
Number
<
NPerBlock
+
1
>
{}
*
K1
,
K1
,
I1
));
}
else
{
return
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
K0PerBlock
>
{},
Number
<
NPerBlock
>
{},
K1
),
max_lds_align
);
}
}();
return
b_block_desc_k0perblock_nperblock_k1
;
}
__host__
__device__
static
constexpr
auto
// *Caution Here repeat is shuffle repeat
GetCShuffleBlockDescriptor_MShRepeat_MPerShRepeat_NShRepeat_NPerShRepeat
()
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MRepeat
*
MPerWmma
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NRepeat
*
NPerWmma
);
constexpr
auto
c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
CShuffleMRepeatPerShuffle
*
MWave
*
MPerWmma
>
{},
I1
,
Number
<
CShuffleNRepeatPerShuffle
*
NWave
*
NPerWmma
>
{}));
return
c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat
;
}
// ck::Tuple<const D0DataType*, const D1DataType*, ...>
static
constexpr
auto
MakeDsGridPointer
()
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
return
static_cast
<
const
DDataType
*>
(
nullptr
);
},
Number
<
NumDTensor
>
{});
}
__host__
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_desc_k0perblock_mperblock_k1
=
GetABlockDescriptor_K0PerBlock_MPerBlock_K1
();
constexpr
auto
b_block_desc_k0perblock_nperblock_k1
=
GetBBlockDescriptor_K0PerBlock_NPerBlock_K1
();
constexpr
auto
max_lds_align
=
K1
;
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_k0perblock_mperblock_k1
.
GetElementSpaceSize
(),
max_lds_align
);
constexpr
auto
b_block_space_size_aligned
=
math
::
integer_least_multiple
(
b_block_desc_k0perblock_nperblock_k1
.
GetElementSpaceSize
(),
max_lds_align
);
return
(
a_block_space_size_aligned
*
sizeof
(
ADataType
)
+
b_block_space_size_aligned
*
sizeof
(
BDataType
));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template
<
typename
Block2CTileMap
>
__host__
__device__
static
constexpr
bool
CheckValidity
(
const
AGridDesc_K0_M_K1
&
a_grid_desc_k0_m_k1
,
const
BGridDesc_K0_N_K1
&
b_grid_desc_k0_n_k1
,
const
DsGridDesc_M_N
&
ds_grid_desc_m_n
,
const
EGridDesc_M_N
&
e_grid_desc_m_n
,
const
Block2CTileMap
&
block_2_ctile_map
)
{
static_assert
(
is_known_at_compile_time
<
remove_cv_t
<
decltype
(
K1
)
>>::
value
,
"wrong! K1 need to be known at compile-time"
);
static_assert
((
MPerBlock
%
(
MPerWmma
*
MRepeat
)
==
0
)
&&
(
NPerBlock
%
(
NRepeat
*
NPerWmma
))
==
0
,
"Invalid tuning param!"
);
const
auto
M
=
a_grid_desc_k0_m_k1
.
GetLength
(
I1
);
const
auto
N
=
b_grid_desc_k0_n_k1
.
GetLength
(
I1
);
const
auto
K0
=
a_grid_desc_k0_m_k1
.
GetLength
(
I0
);
bool
valid
=
true
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
valid
=
valid
&&
(
M
==
ds_grid_desc_m_n
[
i
].
GetLength
(
I0
)
&&
N
==
ds_grid_desc_m_n
[
i
].
GetLength
(
I1
));
});
if
(
!
valid
)
{
return
false
;
}
if
(
!
(
M
==
e_grid_desc_m_n
.
GetLength
(
I0
)
&&
N
==
e_grid_desc_m_n
.
GetLength
(
I1
)
&&
K0
==
b_grid_desc_k0_n_k1
.
GetLength
(
I0
)
&&
K1
==
a_grid_desc_k0_m_k1
.
GetLength
(
I2
)
&&
K1
==
b_grid_desc_k0_n_k1
.
GetLength
(
I2
)))
return
false
;
if
(
!
(
M
%
MPerBlock
==
0
&&
N
%
NPerBlock
==
0
&&
K0
%
K0PerBlock
==
0
))
return
false
;
// check gridwise gemm pipeline
const
auto
num_k_loop
=
K0
/
K0PerBlock
;
if
(
!
GridwiseGemmPipe
::
IsSupported
(
num_k_loop
))
{
return
false
;
}
if
(
!
block_2_ctile_map
.
CheckValidity
(
e_grid_desc_m_n
))
{
return
false
;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return
true
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
(
K0PerBlock
*
K1
);
return
GridwiseGemmPipe
::
CalculateHasMainLoop
(
num_loop
);
}
// E desc for destination in blockwise copy
template
<
typename
EGridDesc_M_N_
>
__host__
__device__
static
constexpr
auto
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
EGridDesc_M_N_
&
e_grid_desc_m_n
)
{
const
auto
M
=
e_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
e_grid_desc_m_n
.
GetLength
(
I1
);
const
auto
MBlock
=
M
/
MPerBlock
;
const
auto
NBlock
=
N
/
NPerBlock
;
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
transform_tensor_descriptor
(
e_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
return
e_grid_desc_mblock_mperblock_nblock_nperblock
;
}
// Ds desc for source in blockwise copy
template
<
typename
DsGridDesc_M_N_
>
__host__
__device__
static
constexpr
auto
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
DsGridDesc_M_N_
&
ds_grid_desc_m_n
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
[
i
]);
},
Number
<
NumDTensor
>
{});
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__
__device__
static
constexpr
auto
MakeDefaultBlock2CTileMap
(
const
EGridDesc_M_N
&
e_grid_desc_m_n
,
index_t
/* M01 */
,
index_t
/* N01 */
)
{
return
BlockToCTileMap_M00_N0_M01Adapt
<
MPerBlock
,
NPerBlock
,
EGridDesc_M_N
>
(
e_grid_desc_m_n
);
}
using
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
DsGridDesc_M_N
{}))
>
;
using
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
EGridDesc_M_N
{}))
>
;
using
DefaultBlock2CTileMap
=
remove_cvref_t
<
decltype
(
MakeDefaultBlock2CTileMap
(
EGridDesc_M_N
{},
1
,
1
))
>
;
using
DsGridPointer
=
decltype
(
MakeDsGridPointer
());
template
<
bool
HasMainKBlockLoop
,
typename
Block2CTileMap
=
DefaultBlock2CTileMap
>
__device__
static
void
Run
(
const
ADataType
*
__restrict__
p_a_grid
,
const
BDataType
*
__restrict__
p_b_grid
,
DsGridPointer
p_ds_grid
,
EDataType
*
__restrict__
p_e_grid
,
void
*
__restrict__
p_shared
,
const
AGridDesc_K0_M_K1
&
a_grid_desc_k0_m_k1
,
const
BGridDesc_K0_N_K1
&
b_grid_desc_k0_n_k1
,
const
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
&
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
const
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
&
e_grid_desc_mblock_mperblock_nblock_nperblock
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
,
const
Block2CTileMap
&
block_2_ctile_map
)
{
// printf("safe entry");
// clang-format off
/*******************************************************************************/
// Memory buffer zone.
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_k0_m_k1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
,
b_grid_desc_k0_n_k1
.
GetElementSpaceSize
());
const
auto
ds_grid_buf
=
generate_tuple
(
[
&
](
auto
i
)
{
return
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_ds_grid
[
i
],
ds_grid_desc_mblock_mperblock_nblock_nperblock
[
i
].
GetElementSpaceSize
());
},
Number
<
NumDTensor
>
{});
auto
e_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_e_grid
,
e_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
/*******************************************************************************/
// BlockIdx.x -> [BlockId.m, BlockId.n]
const
auto
block_work_idx
=
block_2_ctile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
if
(
!
block_2_ctile_map
.
ValidCTileIndex
(
block_work_idx
,
make_tuple
(
e_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I0
),
e_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I2
))))
{
return
;
}
// Store BlockId into SGPR
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]
*
MPerBlock
);
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I1
]
*
NPerBlock
);
/*******************************************************************************/
// BlockLevel, A/B Matrix ThreadMapping in LDS, As Destinaion of BlockWise_Copy
const
auto
K0
=
a_grid_desc_k0_m_k1
.
GetLength
(
I0
);
constexpr
auto
max_lds_align
=
K1
;
constexpr
auto
a_block_desc_k0perblock_mperblock_k1
=
GetABlockDescriptor_K0PerBlock_MPerBlock_K1
();
constexpr
auto
b_block_desc_k0perblock_nperblock_k1
=
GetBBlockDescriptor_K0PerBlock_NPerBlock_K1
();
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
/* typename SrcElementwiseOperation, */
AElementwiseOperation
,
/* typename DstElementwiseOperation, */
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
/* InMemoryDataOperationEnum DstInMemOp, */
InMemoryDataOperationEnum
::
Set
,
/* typename BlockSliceLengths, */
Sequence
<
K0PerBlock
,
MPerBlock
,
K1
>
,
/* typename ThreadClusterLengths, */
ABlockTransferThreadClusterLengths_K0_M_K1
,
/* typename ThreadClusterArrangeOrder, */
ABlockTransferThreadClusterArrangeOrder
,
/* typename SrcData, */
ADataType
,
/* typename DstData, */
ADataType
,
/* typename SrcDesc, */
decltype
(
a_grid_desc_k0_m_k1
),
/* typename DstDesc, */
decltype
(
a_block_desc_k0perblock_mperblock_k1
),
/* typename SrcDimAccessOrder, */
ABlockTransferSrcAccessOrder
,
/* typename DstDimAccessOrder, */
Sequence
<
0
,
1
,
2
>
,
/* index_t SrcVectorDim, */
ABlockTransferSrcVectorDim
,
/* index_t DstVectorDim, */
2
,
/* index_t SrcScalarPerVector, */
ABlockTransferSrcScalarPerVector
,
/* index_t DstScalarPerVector, */
ABlockTransferDstScalarPerVector_K1
,
/* index_t SrcScalarStrideInVector, */
1
,
/* index_t DstScalarStrideInVector, */
1
,
/* bool ThreadTransferSrcResetCoordinateAfterRun, */
AThreadTransferSrcResetCoordinateAfterRun
,
/* bool ThreadTransferDstResetCoordinateAfterRun, */
true
>
(
a_grid_desc_k0_m_k1
,
make_multi_index
(
0
,
m_block_data_idx_on_grid
,
0
),
a_element_op
,
a_block_desc_k0perblock_mperblock_k1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// B matrix blockwise copy
auto
b_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
K0PerBlock
,
NPerBlock
,
K1
>
,
BBlockTransferThreadClusterLengths_K0_N_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BDataType
,
BDataType
,
decltype
(
b_grid_desc_k0_n_k1
),
decltype
(
b_block_desc_k0perblock_nperblock_k1
),
BBlockTransferSrcAccessOrder
,
Sequence
<
0
,
1
,
2
>
,
BBlockTransferSrcVectorDim
,
2
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
,
1
,
1
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
>
(
b_grid_desc_k0_n_k1
,
make_multi_index
(
0
,
n_block_data_idx_on_grid
,
0
),
b_element_op
,
b_block_desc_k0perblock_nperblock_k1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
/*******************************************************************************/
// GEMM
constexpr
auto
WmmaK
=
16
;
constexpr
auto
KPack
=
math
::
integer_least_multiple
(
K1
,
WmmaK
);
auto
blockwise_gemm
=
BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle_FIFO
<
BlockSize
,
ADataType
,
BDataType
,
AccDataType
,
decltype
(
a_block_desc_k0perblock_mperblock_k1
),
decltype
(
b_block_desc_k0perblock_nperblock_k1
),
MPerWmma
,
NPerWmma
,
MRepeat
,
NRepeat
,
KPack
>
{};
// Prepare Register for C matrix
auto
c_thread_buf
=
blockwise_gemm
.
GetCThreadBuffer
();
/*******************************************************************************/
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_k0perblock_mperblock_k1
.
GetElementSpaceSize
(),
max_lds_align
);
// LDS allocation for A and B: be careful of alignment
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
ADataType
*>
(
p_shared
),
a_block_desc_k0perblock_mperblock_k1
.
GetElementSpaceSize
());
auto
b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
BDataType
*>
(
p_shared
)
+
a_block_space_size_aligned
,
b_block_desc_k0perblock_nperblock_k1
.
GetElementSpaceSize
());
// Shift Per SUB_K
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
K0PerBlock
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
K0PerBlock
,
0
,
0
);
// gridwise GEMM pipeline
const
index_t
K0BlockMainLoop
=
__builtin_amdgcn_readfirstlane
(
K0
/
K0PerBlock
);
GridwiseGemmPipe
::
template
Run
<
HasMainKBlockLoop
>(
a_grid_desc_k0_m_k1
,
a_block_desc_k0perblock_mperblock_k1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_buf
,
a_block_slice_copy_step
,
b_grid_desc_k0_n_k1
,
b_block_desc_k0perblock_nperblock_k1
,
b_blockwise_copy
,
b_grid_buf
,
b_block_buf
,
b_block_slice_copy_step
,
blockwise_gemm
,
c_thread_buf
,
K0BlockMainLoop
);
/*******************************************************************************/
//printf("safe 1");
// write out to C, implement shuffle
{
constexpr
auto
c_thread_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs
=
blockwise_gemm
.
GetCThreadDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs
();
// This API Provide All dimension (size) you need
constexpr
auto
c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs_tmp
=
blockwise_gemm
.
GetCBlockDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs
();
constexpr
auto
MWave
=
c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs_tmp
.
GetLength
(
I1
);
constexpr
auto
MSubGroup
=
c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs_tmp
.
GetLength
(
I2
);
constexpr
auto
NWave
=
c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs_tmp
.
GetLength
(
I4
);
constexpr
auto
NThreadPerSubGroup
=
c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs_tmp
.
GetLength
(
I5
);
constexpr
auto
MAccVgprs
=
c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs_tmp
.
GetLength
(
I6
);
// LDS descriptor, shuffle and write out in MRepeat x NRepeat times
constexpr
auto
c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat
=
GetCShuffleBlockDescriptor_MShRepeat_MPerShRepeat_NShRepeat_NPerShRepeat
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
CShuffleDataType
*>
(
p_shared
),
c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat
,
make_tuple
(
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleMRepeatPerShuffle
>
{},
// MRepeat per shuffle repeat
MWave
,
// MWave
MSubGroup
,
// MSubGroup * MAccVgprs = MPerWmma
MAccVgprs
)),
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleNRepeatPerShuffle
>
{},
// NRepeat per shuffle repeat
NWave
,
// NWave
NThreadPerSubGroup
))),
// NThreadPerSubGroup = NPerWmma
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
1
,
2
,
6
>
{},
Sequence
<>
{},
Sequence
<
3
,
4
,
5
>
{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_mrepeat_mwave_msubgroup_maccvgprs_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
MRepeat
,
MWave
,
MSubGroup
,
MAccVgprs
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_to_nrepeat_nwave_nthreadpersubgroup_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
NRepeat
,
NWave
,
NThreadPerSubGroup
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_mrepeat_mwave_msubgroup_maccvgprs_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_nrepeat_nwave_nthreadpersubgroup_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// shuffle: threadwise copy C from VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
CShuffleDataType
,
decltype
(
c_thread_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs
),
decltype
(
c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMRepeatPerShuffle
,
I1
,
I1
,
CShuffleNRepeatPerShuffle
,
I1
,
I1
,
MAccVgprs
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
>
,
6
,
1
,
// vector write pixel
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs
,
make_multi_index
(
0
,
m_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
0
,
n_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
// tuple of reference to C/Ds tensor descriptors
const
auto
c_ds_desc_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_desc_mblock_mperblock_nblock_nperblock
[
i
];
},
Number
<
NumDTensor
>
{}));
// tuple of reference to C/Ds tensor buffers
const
auto
c_ds_buf_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_buf
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_buf
[
i
];
},
Number
<
NumDTensor
>
{}));
// tuple of starting index of C/Ds blockwise copy
const
auto
idx_c_ds_block_begin
=
container_concat
(
make_tuple
(
make_multi_index
(
0
,
0
,
0
,
0
)),
generate_tuple
(
[
&
](
auto
)
{
return
make_multi_index
(
block_work_idx
[
I0
],
0
,
block_work_idx
[
I1
],
0
);
},
Number
<
NumDTensor
>
{}));
// shuffle: blockwise copy C from LDS to global
auto
cde_shuffle_block_copy_lds_to_global
=
ThreadGroupTensorSliceTransfer_v7
<
ThisThreadBlock
,
// ThreadGroup
decltype
(
container_concat
(
make_tuple
(
CShuffleDataType
{}),
DsDataType
{})),
Tuple
<
EDataType
>
,
decltype
(
c_ds_desc_refs
),
decltype
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
)),
CDEElementwiseOperation
,
// ElementwiseOperation,
Sequence
<
static_cast
<
index_t
>
(
EGlobalMemoryDataOperation
)
>
,
// DstInMemOp,
Sequence
<
1
,
CShuffleMRepeatPerShuffle
*
MWave
*
MPerWmma
,
1
,
CShuffleNRepeatPerShuffle
*
NWave
*
NPerWmma
>
,
// BlockSliceLengths,
CDEShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DimAccessOrder,
3
,
// index_t VectorDim,
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
// index_t ScalarPerVector,
sequence_merge_t
<
Sequence
<
true
>
,
uniform_sequence_gen_t
<
NumDTensor
,
false
>>
,
// bool ThreadTransferSrcResetCoordinateAfterRun,
Sequence
<
false
>>
// bool ThreadTransferDstResetCoordinateAfterRun>
{
c_ds_desc_refs
,
idx_c_ds_block_begin
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
make_tuple
(
make_multi_index
(
block_work_idx
[
I0
],
0
,
block_work_idx
[
I1
],
0
)),
cde_element_op
};
// space filling curve for local reg & global memory
// space filling curve for threadwise C in VGPR
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MRepeat
,
1
,
1
,
NRepeat
,
1
,
1
,
MAccVgprs
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
>
,
Sequence
<
CShuffleMRepeatPerShuffle
,
1
,
1
,
CShuffleNRepeatPerShuffle
,
1
,
1
,
MAccVgprs
>>
{};
// space filling curve for shuffled blockwise C in global mem
constexpr
auto
sfc_cde_global
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMRepeatPerShuffle
*
MWave
*
MPerWmma
,
1
,
CShuffleNRepeatPerShuffle
*
NWave
*
NPerWmma
>>
{};
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
static_assert
(
num_access
==
sfc_cde_global
.
GetNumOfAccess
(),
"wrong!"
);
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
access_id
)
{
// make sure it's safe to write to LDS
block_sync_lds
();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs
,
sfc_c_vgpr
.
GetIndexTupleOfNumber
(
access_id
),
c_thread_buf
,
c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs
,
c_shuffle_block_buf
);
// make sure it's safe to read from LDS
block_sync_lds
();
// each block copy its data from LDS to global
cde_shuffle_block_copy_lds_to_global
.
Run
(
c_ds_desc_refs
,
c_ds_buf_refs
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
tie
(
e_grid_buf
));
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
cde_global_step
=
sfc_cde_global
.
GetForwardStep
(
access_id
);
// move on Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
cde_shuffle_block_copy_lds_to_global
.
MoveSrcSliceWindow
(
c_ds_desc_refs
,
i
+
I1
,
cde_global_step
);
});
// move on E
cde_shuffle_block_copy_lds_to_global
.
MoveDstSliceWindow
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
I0
,
cde_global_step
);
}
});
}
// clang-format on
}
};
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_normalization_naive_variance.hpp
View file @
0cd78566
...
...
@@ -4,9 +4,8 @@
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/utility/reduction_common.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp"
#include "ck/tensor_operation/gpu/block/reduction_functions_blockwise.hpp"
#include "ck/tensor_operation/gpu/thread/reduction_functions_threadwise.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
...
...
@@ -19,8 +18,8 @@ template <typename XDataType,
typename
GammaDataType
,
typename
BetaDataType
,
typename
YDataType
,
typename
Acc
DataType
,
typename
Acc
ElementwiseOperation
,
typename
Compute
DataType
,
typename
Y
ElementwiseOperation
,
typename
GridDesc_M_K
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
...
...
@@ -46,6 +45,10 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
(
YDstVectorDim
==
1
&&
KThreadSliceSize
%
YDstVectorSize
==
0
),
"Invalid thread slice sizes and/or vector sizes configuration, please check!"
);
static_assert
(
XSrcVectorSize
==
YDstVectorSize
);
static_assert
(
XSrcVectorSize
==
GammaSrcVectorSize
);
static_assert
(
XSrcVectorSize
==
BetaSrcVectorSize
);
static
constexpr
bool
reorder_thread_cluster
=
(
XSrcVectorDim
==
0
);
using
ThreadClusterLengths_M_K
=
Sequence
<
MThreadClusterSize
,
KThreadClusterSize
>
;
...
...
@@ -59,19 +62,23 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
static
constexpr
auto
thread_cluster_desc
=
make_cluster_descriptor
(
ThreadClusterLengths_M_K
{},
ThreadClusterArrangeOrder
{});
using
ThreadBufferLengths_M_K
=
Sequence
<
MThreadSliceSize
,
XSrcVectorSize
>
;
static
constexpr
auto
thread_buffer_desc_m_k
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
XSrcVectorSize
>
{}));
using
ThreadReduceSrcDesc_M_K
=
decltype
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSlice
Size
>
{})));
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
XSrcVector
Size
>
{})));
using
ThreadReduceDstDesc_M
=
decltype
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{})));
using
BlockwiseSumReduce
=
PartitionedBlockwiseReduction
<
Acc
DataType
,
using
BlockwiseSumReduce
=
PartitionedBlockwiseReduction
<
Compute
DataType
,
BlockSize
,
ThreadClusterLengths_M_K
,
ThreadClusterArrangeOrder
,
reduce
::
Add
,
true
>
;
using
ThreadwiseSumReduce
=
ThreadwiseReduction
<
Acc
DataType
,
using
ThreadwiseSumReduce
=
ThreadwiseReduction
<
Compute
DataType
,
ThreadReduceSrcDesc_M_K
,
ThreadReduceDstDesc_M
,
reduce
::
Add
,
...
...
@@ -81,64 +88,70 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
index_t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
static
constexpr
index_t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
static
constexpr
index_t
K_BlockTileStepSize
=
KThreadClusterSize
*
XSrcVectorSize
;
static
constexpr
auto
ThreadBufferNumber
=
Number
<
KThreadSliceSize
/
XSrcVectorSize
>
{};
__device__
static
void
Run
(
const
GridDesc_M_K
&
x_grid_desc_m_k
,
const
GridDesc_M_K
&
gamma_grid_desc_m_k
,
const
GridDesc_M_K
&
beta_grid_desc_m_k
,
const
GridDesc_M_K
&
y_grid_desc_m_k
,
index_t
num_k_block_tile_iteration
,
Acc
DataType
epsilon
,
Compute
DataType
epsilon
,
const
XDataType
*
const
__restrict__
p_x_global
,
const
GammaDataType
*
const
__restrict__
p_gamma_global
,
const
BetaDataType
*
const
__restrict__
p_beta_global
,
YDataType
*
const
__restrict__
p_y_global
,
const
Acc
ElementwiseOperation
acc
_elementwise_op
)
const
Y
ElementwiseOperation
y
_elementwise_op
)
{
if
constexpr
(
SweepOnce
)
{
num_k_block_tile_iteration
=
1
;
}
// LDS
__shared__
AccDataType
p_reduce_work_buffer
[
BlockSize
];
auto
y_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_y_global
,
y_grid_desc_m_k
.
GetElementSpaceSize
());
__shared__
ComputeDataType
p_reduce_work_buffer
[
BlockSize
];
auto
reduce_work_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_reduce_work_buffer
,
BlockSize
);
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
x_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
gamma_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>&
beta_thread_buf
=
gamma_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
y_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>&
x_square_thread_buf
=
y_thread_buf
;
auto
y_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_y_global
,
y_grid_desc_m_k
.
GetElementSpaceSize
());
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
mean_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
mean_square_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>&
var_thread_buf
=
auto
x_thread_buf
=
generate_tuple
(
[
&
](
auto
)
{
return
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MThreadSliceSize
*
XSrcVectorSize
,
true
>
{};
},
Number
<
ThreadBufferNumber
>
{});
auto
gamma_thread_buf
=
generate_tuple
(
[
&
](
auto
)
{
return
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MThreadSliceSize
*
GammaSrcVectorSize
,
true
>
{};
},
Number
<
ThreadBufferNumber
>
{});
auto
&
beta_thread_buf
=
gamma_thread_buf
;
auto
y_thread_buf
=
generate_tuple
(
[
&
](
auto
)
{
return
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MThreadSliceSize
*
YDstVectorSize
,
true
>
{};
},
Number
<
ThreadBufferNumber
>
{});
auto
&
x_square_thread_buf
=
y_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MThreadSliceSize
,
true
>
mean_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MThreadSliceSize
,
true
>
mean_square_thread_buf
;
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
mean_thread_buf
(
I
)
=
reduce
::
Add
::
template
GetIdentityValue
<
AccDataType
>();
mean_square_thread_buf
(
I
)
=
reduce
::
Add
::
template
GetIdentityValue
<
AccDataType
>();
});
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MThreadSliceSize
,
true
>&
var_thread_buf
=
mean_square_thread_buf
;
const
index_t
thread_local_id
=
get_thread_local_1d_id
();
const
index_t
block_global_id
=
get_block_1d_id
();
...
...
@@ -149,12 +162,8 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
const
auto
thread_m_cluster_id
=
thread_cluster_idx
[
I0
];
const
auto
thread_k_cluster_id
=
thread_cluster_idx
[
I1
];
using
ThreadBufferLengths_M_K
=
Sequence
<
MThreadSliceSize
,
KThreadSliceSize
>
;
constexpr
auto
thread_buffer_desc_m_k
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSliceSize
>
{}));
auto
threadwise_x_load
=
ThreadwiseTensorSliceTransfer_v2
<
XDataType
,
Acc
DataType
,
Compute
DataType
,
GridDesc_M_K
,
decltype
(
thread_buffer_desc_m_k
),
ThreadBufferLengths_M_K
,
...
...
@@ -166,11 +175,11 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
x_grid_desc_m_k
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSlice
Size
));
thread_k_cluster_id
*
XSrcVector
Size
));
auto
threadwise_gamma_load
=
ThreadwiseTensorSliceTransfer_v2
<
GammaDataType
,
Acc
DataType
,
Compute
DataType
,
GridDesc_M_K
,
decltype
(
thread_buffer_desc_m_k
),
ThreadBufferLengths_M_K
,
...
...
@@ -182,11 +191,11 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
gamma_grid_desc_m_k
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSlice
Size
));
thread_k_cluster_id
*
GammaSrcVector
Size
));
auto
threadwise_beta_load
=
ThreadwiseTensorSliceTransfer_v2
<
BetaDataType
,
Acc
DataType
,
Compute
DataType
,
GridDesc_M_K
,
decltype
(
thread_buffer_desc_m_k
),
ThreadBufferLengths_M_K
,
...
...
@@ -198,14 +207,14 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
beta_grid_desc_m_k
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSlice
Size
));
thread_k_cluster_id
*
BetaSrcVector
Size
));
auto
threadwise_y_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
Acc
DataType
,
ThreadwiseTensorSliceTransfer_v1r3
<
Compute
DataType
,
YDataType
,
decltype
(
thread_buffer_desc_m_k
),
GridDesc_M_K
,
Acc
ElementwiseOperation
,
Y
ElementwiseOperation
,
ThreadBufferLengths_M_K
,
ThreadBufferDimAccessOrder
,
YDstVectorDim
,
...
...
@@ -216,13 +225,10 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
y_grid_desc_m_k
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSlice
Size
),
acc
_elementwise_op
);
thread_k_cluster_id
*
YDstVector
Size
),
y
_elementwise_op
);
// Copy x from Cache
// one pass: fwd, second pass: bwd
constexpr
auto
thread_copy_fwd_step_m_k
=
make_multi_index
(
0
,
SweepOnce
?
0
:
K_BlockTileSize
);
constexpr
auto
thread_copy_fwd_step_m_k
=
make_multi_index
(
0
,
K_BlockTileStepSize
);
constexpr
auto
thread_copy_bwd_step_m_k
=
make_multi_index
(
0
,
SweepOnce
?
0
:
-
K_BlockTileSize
);
...
...
@@ -239,121 +245,260 @@ struct GridwiseNormalizationNaiveVariance_mk_to_mk
// FIXME: Should not hack the transform from deviceOP
int
reduce_length
=
x_grid_desc_m_k
.
GetTransforms
()[
I2
].
GetUpperLengths
()[
I0
];
index_t
reducedTiles
=
0
;
do
{
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
x_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
x_thread_buf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
mean_thread_buf
(
I
)
=
reduce
::
Add
::
template
GetIdentityValue
<
ComputeDataType
>();
mean_square_thread_buf
(
I
)
=
reduce
::
Add
::
template
GetIdentityValue
<
ComputeDataType
>();
});
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset_m_k
=
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
x_square_thread_buf
(
Number
<
offset_m_k
>
{})
=
x_thread_buf
(
Number
<
offset_m_k
>
{})
*
x_thread_buf
(
Number
<
offset_m_k
>
{});
// Separate sweep once and sweep twice pipeline
if
constexpr
(
SweepOnce
)
{
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
x_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
x_thread_buf
(
i
));
threadwise_gamma_load
.
Run
(
gamma_grid_desc_m_k
,
gamma_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
gamma_thread_buf
(
i
));
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
XSrcVectorSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset_m_k
=
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
x_square_thread_buf
(
i
)(
Number
<
offset_m_k
>
{})
=
x_thread_buf
(
i
)(
Number
<
offset_m_k
>
{})
*
x_thread_buf
(
i
)(
Number
<
offset_m_k
>
{});
});
});
});
ThreadwiseSumReduce
::
Reduce
(
x_thread_buf
,
mean_thread_buf
);
ThreadwiseSumReduce
::
Reduce
(
x_square_thread_buf
,
mean_square_thread_buf
);
ThreadwiseSumReduce
::
Reduce
(
x_thread_buf
[
i
]
,
mean_thread_buf
);
ThreadwiseSumReduce
::
Reduce
(
x_square_thread_buf
[
i
]
,
mean_square_thread_buf
);
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
if
constexpr
(
i
!=
ThreadBufferNumber
-
1
)
{
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
}
});
++
reducedTiles
;
}
while
(
reducedTiles
<
num_k_block_tile_iteration
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
if
constexpr
(
I
>
0
)
block_sync_lds
();
BlockwiseSumReduce
::
Reduce
(
reduce_work_buf
,
mean_thread_buf
(
I
));
mean_thread_buf
(
I
)
=
mean_thread_buf
(
I
)
/
reduce_length
;
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
if
constexpr
(
I
>
0
)
block_sync_lds
();
BlockwiseSumReduce
::
Reduce
(
reduce_work_buf
,
mean_thread_buf
(
I
));
mean_thread_buf
(
I
)
=
mean_thread_buf
(
I
)
/
reduce_length
;
BlockwiseSumReduce
::
Reduce
(
reduce_work_buf
,
mean_square_thread_buf
(
I
));
mean_square_thread_buf
(
I
)
=
mean_square_thread_buf
(
I
)
/
reduce_length
;
// var(x) = E[x^2] - E[x]^2
var_thread_buf
(
I
)
=
mean_square_thread_buf
(
I
)
-
(
mean_thread_buf
(
I
)
*
mean_thread_buf
(
I
));
});
block_sync_lds
();
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
auto
divisor
=
1
/
ck
::
math
::
sqrt
(
var_thread_buf
(
iM
)
+
epsilon
);
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
iK0
)
{
static_for
<
0
,
XSrcVectorSize
,
1
>
{}([
&
](
auto
iK1
)
{
constexpr
auto
offset_m_k
=
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK1
));
// normalize
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
=
(
x_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
-
mean_thread_buf
(
iM
))
*
divisor
;
// gamma & beta
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
=
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
*
gamma_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{});
});
});
});
BlockwiseSumReduce
::
Reduce
(
reduce_work_buf
,
mean_square_thread_buf
(
I
));
mean_square_thread_buf
(
I
)
=
mean_square_thread_buf
(
I
)
/
reduce_length
;
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_beta_load
.
Run
(
beta_grid_desc_m_k
,
beta_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
beta_thread_buf
(
i
));
// var(x) = E[x^2] - E[x]^2
var_thread_buf
(
I
)
=
mean_square_thread_buf
(
I
)
-
(
mean_thread_buf
(
I
)
*
mean_thread_buf
(
I
)
);
});
if
constexpr
(
i
!=
ThreadBufferNumber
-
1
)
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
// y = (x - E[x]) / sqrt(var[x] + epsilon)
auto
thread_copy_tail_m_k
=
(
num_k_block_tile_iteration
-
1
)
*
thread_copy_fwd_step_m_k
;
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
iK0
)
{
static_for
<
0
,
XSrcVectorSize
,
1
>
{}([
&
](
auto
iK1
)
{
constexpr
auto
offset_m_k
=
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK1
));
// beta
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
=
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
+
beta_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{});
});
});
});
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
thread_copy_tail_m_k
);
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_m_k
,
thread_copy_tail_m_k
);
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
thread_copy_tail_m_k
);
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_y_store
.
Run
(
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
y_thread_buf
(
i
),
y_grid_desc_m_k
,
y_global_val_buf
);
reducedTiles
=
0
;
do
if
constexpr
(
i
!=
ThreadBufferNumber
-
1
)
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
}
// end of sweep once
else
{
if
constexpr
(
!
SweepOnce
)
for
(
index_t
reducedTiles
=
0
;
reducedTiles
<
num_k_block_tile_iteration
;
++
reducedTiles
)
{
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
x_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
x_thread_buf
);
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
x_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
x_thread_buf
(
i
));
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
XSrcVectorSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset_m_k
=
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
x_square_thread_buf
(
i
)(
Number
<
offset_m_k
>
{})
=
x_thread_buf
(
i
)(
Number
<
offset_m_k
>
{})
*
x_thread_buf
(
i
)(
Number
<
offset_m_k
>
{});
});
});
ThreadwiseSumReduce
::
Reduce
(
x_thread_buf
[
i
],
mean_thread_buf
);
ThreadwiseSumReduce
::
Reduce
(
x_square_thread_buf
[
i
],
mean_square_thread_buf
);
});
}
threadwise_gamma_load
.
Run
(
gamma_grid_desc_m_k
,
gamma_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
gamma_thread_buf
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
if
constexpr
(
I
>
0
)
block_sync_lds
();
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset_m_k
=
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
// normalize
y_thread_buf
(
Number
<
offset_m_k
>
{})
=
(
x_thread_buf
(
Number
<
offset_m_k
>
{})
-
mean_thread_buf
(
iM
))
/
sqrt
(
var_thread_buf
(
iM
)
+
epsilon
);
// gamma
y_thread_buf
(
Number
<
offset_m_k
>
{})
=
y_thread_buf
(
Number
<
offset_m_k
>
{})
*
gamma_thread_buf
(
Number
<
offset_m_k
>
{});
});
});
BlockwiseSumReduce
::
Reduce
(
reduce_work_buf
,
mean_thread_buf
(
I
));
mean_thread_buf
(
I
)
=
mean_thread_buf
(
I
)
/
reduce_length
;
threadwise_beta_load
.
Run
(
beta_grid_desc_m_k
,
beta_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
beta_thread_buf
);
block_sync_lds
();
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset_m_k
=
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK
));
BlockwiseSumReduce
::
Reduce
(
reduce_work_buf
,
mean_square_thread_buf
(
I
));
mean_square_thread_buf
(
I
)
=
mean_square_thread_buf
(
I
)
/
reduce_length
;
// beta
y_thread_buf
(
Number
<
offset_m_k
>
{})
=
y_thread_buf
(
Number
<
offset_m_k
>
{})
+
beta_thread_buf
(
Number
<
offset_m_k
>
{});
});
// var(x) = E[x^2] - E[x]^2
var_thread_buf
(
I
)
=
mean_square_thread_buf
(
I
)
-
(
mean_thread_buf
(
I
)
*
mean_thread_buf
(
I
));
});
threadwise_y_store
.
Run
(
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
y_thread_buf
,
y_grid_desc_m_k
,
y_global_val_buf
);
auto
thread_copy_tail_m_k
=
(
num_k_block_tile_iteration
-
1
)
*
ThreadBufferNumber
*
thread_copy_fwd_step_m_k
;
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
thread_copy_tail_m_k
);
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_m_k
,
thread_copy_tail_m_k
);
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
thread_copy_tail_m_k
);
for
(
index_t
reducedTiles
=
0
;
reducedTiles
<
num_k_block_tile_iteration
;
++
reducedTiles
)
{
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
x_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
x_thread_buf
(
i
));
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_gamma_load
.
Run
(
gamma_grid_desc_m_k
,
gamma_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
gamma_thread_buf
(
i
));
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
++
reducedTiles
;
}
while
(
reducedTiles
<
num_k_block_tile_iteration
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
auto
divisor
=
1
/
ck
::
math
::
sqrt
(
var_thread_buf
(
iM
)
+
epsilon
);
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
iK0
)
{
static_for
<
0
,
XSrcVectorSize
,
1
>
{}([
&
](
auto
iK1
)
{
constexpr
auto
offset_m_k
=
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK1
));
// normalize
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
=
(
x_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
-
mean_thread_buf
(
iM
))
*
divisor
;
// gamma
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
=
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
*
gamma_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{});
});
});
});
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_beta_load
.
Run
(
beta_grid_desc_m_k
,
beta_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
beta_thread_buf
(
i
));
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
iK0
)
{
static_for
<
0
,
XSrcVectorSize
,
1
>
{}([
&
](
auto
iK1
)
{
constexpr
auto
offset_m_k
=
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK1
));
// beta
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
=
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
+
beta_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{});
});
});
});
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_y_store
.
Run
(
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
y_thread_buf
(
i
),
y_grid_desc_m_k
,
y_global_val_buf
);
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
2
*
thread_copy_bwd_step_m_k
);
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
2
*
thread_copy_bwd_step_m_k
);
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_m_k
,
2
*
thread_copy_bwd_step_m_k
);
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
2
*
thread_copy_bwd_step_m_k
);
}
}
// end of sweep twice
}
};
...
...
include/ck/tensor_operation/gpu/grid/gridwise_normalization_selector.hpp
0 → 100644
View file @
0cd78566
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_operation/gpu/grid/gridwise_normalization_naive_variance.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_normalization_welford_variance.hpp"
namespace
ck
{
template
<
typename
GridwiseReduction
,
typename
XDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
YDataType
,
typename
ComputeDataType
,
typename
YElementwiseOperation
,
typename
GridDesc_M_K
>
__global__
void
kernel_normalization
(
const
GridDesc_M_K
x_grid_desc_m_k
,
const
GridDesc_M_K
gamma_grid_desc_m_k
,
const
GridDesc_M_K
beta_grid_desc_m_k
,
const
GridDesc_M_K
y_grid_desc_m_k
,
index_t
num_k_block_tile_iteration
,
ComputeDataType
epsilon
,
const
XDataType
*
const
__restrict__
p_x_global
,
const
GammaDataType
*
const
__restrict__
p_gamma_global
,
const
BetaDataType
*
const
__restrict__
p_beta_global
,
YDataType
*
const
__restrict__
p_y_global
,
const
YElementwiseOperation
y_elementwise_op
)
{
GridwiseReduction
::
Run
(
x_grid_desc_m_k
,
gamma_grid_desc_m_k
,
beta_grid_desc_m_k
,
y_grid_desc_m_k
,
num_k_block_tile_iteration
,
epsilon
,
p_x_global
,
p_gamma_global
,
p_beta_global
,
p_y_global
,
y_elementwise_op
);
};
template
<
typename
XDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
YDataType
,
typename
ComputeDataType
,
typename
YElementwiseOperation
,
typename
GridDesc_M_K
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
index_t
KThreadClusterSize
,
index_t
MThreadSliceSize
,
index_t
KThreadSliceSize
,
index_t
XSrcVectorDim
,
index_t
XSrcVectorSize
,
index_t
GammaSrcVectorDim
,
index_t
GammaSrcVectorSize
,
index_t
BetaSrcVectorDim
,
index_t
BetaSrcVectorSize
,
index_t
YDstVectorDim
,
index_t
YDstVectorSize
,
bool
UseWelford
>
auto
NormalizationKernelSelector
(
bool
isSweepOnce
)
{
using
GridwiseNormalizationGenericNaive
=
GridwiseNormalizationNaiveVariance_mk_to_mk
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
ComputeDataType
,
YElementwiseOperation
,
GridDesc_M_K
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
XSrcVectorDim
,
XSrcVectorSize
,
GammaSrcVectorDim
,
GammaSrcVectorSize
,
BetaSrcVectorDim
,
BetaSrcVectorSize
,
YDstVectorDim
,
YDstVectorSize
,
false
>
;
using
GridwiseNormalizationSweepOnceNaive
=
GridwiseNormalizationNaiveVariance_mk_to_mk
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
ComputeDataType
,
YElementwiseOperation
,
GridDesc_M_K
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
XSrcVectorDim
,
XSrcVectorSize
,
GammaSrcVectorDim
,
GammaSrcVectorSize
,
BetaSrcVectorDim
,
BetaSrcVectorSize
,
YDstVectorDim
,
YDstVectorSize
,
true
>
;
using
GridwiseNormalizationGenericWelford
=
GridwiseNormalizationWelfordVariance_mk_to_mk
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
ComputeDataType
,
YElementwiseOperation
,
GridDesc_M_K
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
XSrcVectorDim
,
XSrcVectorSize
,
GammaSrcVectorDim
,
GammaSrcVectorSize
,
BetaSrcVectorDim
,
BetaSrcVectorSize
,
YDstVectorDim
,
YDstVectorSize
,
false
>
;
using
GridwiseNormalizationSweepOnceWelford
=
GridwiseNormalizationWelfordVariance_mk_to_mk
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
ComputeDataType
,
YElementwiseOperation
,
GridDesc_M_K
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
XSrcVectorDim
,
XSrcVectorSize
,
GammaSrcVectorDim
,
GammaSrcVectorSize
,
BetaSrcVectorDim
,
BetaSrcVectorSize
,
YDstVectorDim
,
YDstVectorSize
,
true
>
;
if
constexpr
(
UseWelford
)
{
return
isSweepOnce
?
kernel_normalization
<
GridwiseNormalizationSweepOnceWelford
,
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
ComputeDataType
,
YElementwiseOperation
,
GridDesc_M_K
>
:
kernel_normalization
<
GridwiseNormalizationGenericWelford
,
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
ComputeDataType
,
YElementwiseOperation
,
GridDesc_M_K
>
;
}
else
{
return
isSweepOnce
?
kernel_normalization
<
GridwiseNormalizationSweepOnceNaive
,
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
ComputeDataType
,
YElementwiseOperation
,
GridDesc_M_K
>
:
kernel_normalization
<
GridwiseNormalizationGenericNaive
,
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
ComputeDataType
,
YElementwiseOperation
,
GridDesc_M_K
>
;
}
}
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_normalization_welford_variance.hpp
View file @
0cd78566
...
...
@@ -16,8 +16,8 @@ template <typename XDataType,
typename
GammaDataType
,
typename
BetaDataType
,
typename
YDataType
,
typename
Acc
DataType
,
typename
Acc
ElementwiseOperation
,
typename
Compute
DataType
,
typename
Y
ElementwiseOperation
,
typename
GridDesc_M_K
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
...
...
@@ -43,6 +43,10 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
(
YDstVectorDim
==
1
&&
KThreadSliceSize
%
YDstVectorSize
==
0
),
"Invalid thread slice sizes and/or vector sizes configuration, please check!"
);
static_assert
(
XSrcVectorSize
==
YDstVectorSize
);
static_assert
(
XSrcVectorSize
==
GammaSrcVectorSize
);
static_assert
(
XSrcVectorSize
==
BetaSrcVectorSize
);
static
constexpr
bool
reorder_thread_cluster
=
(
XSrcVectorDim
==
0
);
using
ThreadClusterLengths_M_K
=
Sequence
<
MThreadClusterSize
,
KThreadClusterSize
>
;
...
...
@@ -56,15 +60,19 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
static
constexpr
auto
thread_cluster_desc
=
make_cluster_descriptor
(
ThreadClusterLengths_M_K
{},
ThreadClusterArrangeOrder
{});
using
ThreadBufferLengths_M_K
=
Sequence
<
MThreadSliceSize
,
XSrcVectorSize
>
;
static
constexpr
auto
thread_buffer_desc_m_k
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
XSrcVectorSize
>
{}));
using
ThreadReduceSrcDesc_M_K
=
decltype
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
XSrcVectorSize
>
{})));
using
ThreadReduceDstDesc_M
=
decltype
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{})));
using
ThreadwiseWelford
=
ThreadwiseWelford
<
Acc
DataType
,
ThreadReduceSrcDesc_M_K
,
ThreadReduceDstDesc_M
>
;
ThreadwiseWelford
<
Compute
DataType
,
ThreadReduceSrcDesc_M_K
,
ThreadReduceDstDesc_M
>
;
using
BlockwiseWelford
=
BlockwiseWelford
<
Acc
DataType
,
using
BlockwiseWelford
=
BlockwiseWelford
<
Compute
DataType
,
BlockSize
,
ThreadClusterLengths_M_K
,
ThreadClusterArrangeOrder
>
;
...
...
@@ -77,10 +85,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
static
constexpr
index_t
K_BlockTileStepSize
=
KThreadClusterSize
*
XSrcVectorSize
;
static
constexpr
auto
XThreadBufferNumber
=
Number
<
KThreadSliceSize
/
XSrcVectorSize
>
{};
static
constexpr
auto
GammaThreadBufferNumber
=
Number
<
KThreadSliceSize
/
XSrcVectorSize
>
{};
static
constexpr
auto
BetaThreadBufferNumber
=
Number
<
KThreadSliceSize
/
XSrcVectorSize
>
{};
static
constexpr
auto
YThreadBufferNumber
=
Number
<
KThreadSliceSize
/
XSrcVectorSize
>
{};
static
constexpr
auto
ThreadBufferNumber
=
Number
<
KThreadSliceSize
/
XSrcVectorSize
>
{};
__device__
static
int
GetKPerThread
(
const
GridDesc_M_K
&
x_grid_desc_m_k
,
int
thread_k_cluster_id
)
...
...
@@ -93,7 +98,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
if
(
kPerBlockTail
>
0
)
{
static_for
<
0
,
X
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
int
thread_max_len
=
(
thread_k_cluster_id
+
1
)
*
XSrcVectorSize
+
K_BlockTileStepSize
*
i
;
int
delta
=
thread_max_len
-
kPerBlockTail
;
...
...
@@ -110,59 +115,41 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
const
GridDesc_M_K
&
beta_grid_desc_m_k
,
const
GridDesc_M_K
&
y_grid_desc_m_k
,
index_t
num_k_block_tile_iteration
,
Acc
DataType
epsilon
,
Compute
DataType
epsilon
,
const
XDataType
*
const
__restrict__
p_x_global
,
const
GammaDataType
*
const
__restrict__
p_gamma_global
,
const
BetaDataType
*
const
__restrict__
p_beta_global
,
YDataType
*
const
__restrict__
p_y_global
,
const
Acc
ElementwiseOperation
acc
_elementwise_op
)
const
Y
ElementwiseOperation
y
_elementwise_op
)
{
if
constexpr
(
SweepOnce
)
{
num_k_block_tile_iteration
=
1
;
}
auto
y_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_y_global
,
y_grid_desc_m_k
.
GetElementSpaceSize
());
auto
x_thread_buf
=
generate_tuple
(
[
&
](
auto
)
{
return
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
Acc
DataType
,
Compute
DataType
,
MThreadSliceSize
*
XSrcVectorSize
,
true
>
{};
},
Number
<
X
ThreadBufferNumber
>
{});
Number
<
ThreadBufferNumber
>
{});
auto
gamma_thread_buf
=
generate_tuple
(
[
&
](
auto
)
{
return
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
Acc
DataType
,
Compute
DataType
,
MThreadSliceSize
*
GammaSrcVectorSize
,
true
>
{};
},
Number
<
GammaThreadBufferNumber
>
{});
auto
beta_thread_buf
=
generate_tuple
(
[
&
](
auto
)
{
return
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
BetaSrcVectorSize
,
true
>
{};
},
Number
<
BetaThreadBufferNumber
>
{});
Number
<
ThreadBufferNumber
>
{});
auto
y_thread_buf
=
generate_tuple
(
[
&
](
auto
)
{
return
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
YDstVectorSize
,
true
>
{};
},
Number
<
YThreadBufferNumber
>
{});
auto
&
beta_thread_buf
=
gamma_thread_buf
;
auto
&
y_thread_buf
=
x_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
mean_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
var_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MThreadSliceSize
,
true
>
mean_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MThreadSliceSize
,
true
>
var_thread_buf
;
const
index_t
thread_local_id
=
get_thread_local_1d_id
();
const
index_t
block_global_id
=
get_block_1d_id
();
...
...
@@ -173,12 +160,8 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
const
auto
thread_m_cluster_id
=
thread_cluster_idx
[
I0
];
const
auto
thread_k_cluster_id
=
thread_cluster_idx
[
I1
];
using
ThreadBufferLengths_M_K
=
Sequence
<
MThreadSliceSize
,
XSrcVectorSize
>
;
constexpr
auto
thread_buffer_desc_m_k
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
XSrcVectorSize
>
{}));
auto
threadwise_x_load
=
ThreadwiseTensorSliceTransfer_v2
<
XDataType
,
Acc
DataType
,
Compute
DataType
,
GridDesc_M_K
,
decltype
(
thread_buffer_desc_m_k
),
ThreadBufferLengths_M_K
,
...
...
@@ -194,7 +177,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
auto
threadwise_gamma_load
=
ThreadwiseTensorSliceTransfer_v2
<
GammaDataType
,
Acc
DataType
,
Compute
DataType
,
GridDesc_M_K
,
decltype
(
thread_buffer_desc_m_k
),
ThreadBufferLengths_M_K
,
...
...
@@ -210,7 +193,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
auto
threadwise_beta_load
=
ThreadwiseTensorSliceTransfer_v2
<
BetaDataType
,
Acc
DataType
,
Compute
DataType
,
GridDesc_M_K
,
decltype
(
thread_buffer_desc_m_k
),
ThreadBufferLengths_M_K
,
...
...
@@ -225,11 +208,11 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
thread_k_cluster_id
*
BetaSrcVectorSize
));
auto
threadwise_y_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
Acc
DataType
,
ThreadwiseTensorSliceTransfer_v1r3
<
Compute
DataType
,
YDataType
,
decltype
(
thread_buffer_desc_m_k
),
GridDesc_M_K
,
Acc
ElementwiseOperation
,
Y
ElementwiseOperation
,
ThreadBufferLengths_M_K
,
ThreadBufferDimAccessOrder
,
YDstVectorDim
,
...
...
@@ -241,7 +224,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
YDstVectorSize
),
acc
_elementwise_op
);
y
_elementwise_op
);
constexpr
auto
thread_copy_fwd_step_m_k
=
make_multi_index
(
0
,
K_BlockTileStepSize
);
constexpr
auto
thread_copy_bwd_step_m_k
=
...
...
@@ -260,67 +243,47 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
threadwise_welford
.
max_count_
=
GetKPerThread
(
x_grid_desc_m_k
,
thread_k_cluster_id
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
mean_thread_buf
(
I
)
=
type_convert
<
Acc
DataType
>
(
0.0
f
);
var_thread_buf
(
I
)
=
type_convert
<
Acc
DataType
>
(
0.0
f
);
mean_thread_buf
(
I
)
=
type_convert
<
Compute
DataType
>
(
0.0
f
);
var_thread_buf
(
I
)
=
type_convert
<
Compute
DataType
>
(
0.0
f
);
});
for
(
index_t
reducedTiles
=
0
;
reducedTiles
<
num_k_block_tile_iteration
;
++
reducedTiles
)
// Separate sweep once and sweep twice pipeline
if
constexpr
(
SweepOnce
)
{
static_for
<
0
,
X
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
x_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
x_thread_buf
(
i
));
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
threadwise_welford
.
Run
(
x_thread_buf
[
i
],
mean_thread_buf
,
var_thread_buf
);
});
}
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
if
constexpr
(
I
>
0
)
block_sync_lds
();
int
count
=
threadwise_welford
.
cur_count_
;
BlockwiseWelford
::
Run
(
mean_thread_buf
(
I
),
var_thread_buf
(
I
),
count
);
});
auto
thread_copy_tail_m_k
=
(
num_k_block_tile_iteration
-
1
)
*
XThreadBufferNumber
*
thread_copy_fwd_step_m_k
;
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
thread_copy_tail_m_k
);
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_m_k
,
thread_copy_tail_m_k
);
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
thread_copy_tail_m_k
);
for
(
index_t
reducedTiles
=
0
;
reducedTiles
<
num_k_block_tile_iteration
;
++
reducedTiles
)
{
if
constexpr
(
!
SweepOnce
)
{
static_for
<
0
,
XThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
x_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
x_thread_buf
(
i
));
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
}
static_for
<
0
,
GammaThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_gamma_load
.
Run
(
gamma_grid_desc_m_k
,
gamma_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
gamma_thread_buf
(
i
));
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
threadwise_welford
.
Run
(
x_thread_buf
[
i
],
mean_thread_buf
,
var_thread_buf
);
if
constexpr
(
i
!=
ThreadBufferNumber
-
1
)
{
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
}
});
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
if
constexpr
(
I
>
0
)
block_sync_lds
();
int
count
=
threadwise_welford
.
cur_count_
;
BlockwiseWelford
::
Run
(
mean_thread_buf
(
I
),
var_thread_buf
(
I
),
count
);
});
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
auto
divisor
=
1
/
ck
::
math
::
sqrt
(
var_thread_buf
(
iM
)
+
epsilon
);
static_for
<
0
,
X
ThreadBufferNumber
,
1
>
{}([
&
](
auto
iK0
)
{
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
iK0
)
{
static_for
<
0
,
XSrcVectorSize
,
1
>
{}([
&
](
auto
iK1
)
{
constexpr
auto
offset_m_k
=
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK1
));
...
...
@@ -330,7 +293,7 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
(
x_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
-
mean_thread_buf
(
iM
))
*
divisor
;
// gamma
// gamma
& beta
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
=
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
*
gamma_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{});
...
...
@@ -338,18 +301,20 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
});
});
static_for
<
0
,
Beta
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_beta_load
.
Run
(
beta_grid_desc_m_k
,
beta_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
beta_thread_buf
(
i
));
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
if
constexpr
(
i
!=
ThreadBufferNumber
-
1
)
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
X
ThreadBufferNumber
,
1
>
{}([
&
](
auto
iK0
)
{
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
iK0
)
{
static_for
<
0
,
XSrcVectorSize
,
1
>
{}([
&
](
auto
iK1
)
{
constexpr
auto
offset_m_k
=
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK1
));
...
...
@@ -362,22 +327,134 @@ struct GridwiseNormalizationWelfordVariance_mk_to_mk
});
});
static_for
<
0
,
Y
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_y_store
.
Run
(
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
y_thread_buf
(
i
),
y_grid_desc_m_k
,
y_global_val_buf
);
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
if
constexpr
(
i
!=
ThreadBufferNumber
-
1
)
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
}
// end of sweep once
else
{
for
(
index_t
reducedTiles
=
0
;
reducedTiles
<
num_k_block_tile_iteration
;
++
reducedTiles
)
{
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
x_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
x_thread_buf
(
i
));
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
threadwise_welford
.
Run
(
x_thread_buf
[
i
],
mean_thread_buf
,
var_thread_buf
);
});
}
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
if
constexpr
(
I
>
0
)
block_sync_lds
();
int
count
=
threadwise_welford
.
cur_count_
;
BlockwiseWelford
::
Run
(
mean_thread_buf
(
I
),
var_thread_buf
(
I
),
count
);
});
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
2
*
thread_copy_bwd_step_m_k
);
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
2
*
thread_copy_bwd_step_m_k
);
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_m_k
,
2
*
thread_copy_bwd_step_m_k
);
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
2
*
thread_copy_bwd_step_m_k
);
}
auto
thread_copy_tail_m_k
=
(
num_k_block_tile_iteration
-
1
)
*
ThreadBufferNumber
*
thread_copy_fwd_step_m_k
;
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_bwd_step_m_k
);
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
thread_copy_tail_m_k
);
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_m_k
,
thread_copy_tail_m_k
);
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
thread_copy_tail_m_k
);
for
(
index_t
reducedTiles
=
0
;
reducedTiles
<
num_k_block_tile_iteration
;
++
reducedTiles
)
{
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
x_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
x_thread_buf
(
i
));
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_gamma_load
.
Run
(
gamma_grid_desc_m_k
,
gamma_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
gamma_thread_buf
(
i
));
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
auto
divisor
=
1
/
ck
::
math
::
sqrt
(
var_thread_buf
(
iM
)
+
epsilon
);
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
iK0
)
{
static_for
<
0
,
XSrcVectorSize
,
1
>
{}([
&
](
auto
iK1
)
{
constexpr
auto
offset_m_k
=
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK1
));
// normalize
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
=
(
x_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
-
mean_thread_buf
(
iM
))
*
divisor
;
// gamma
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
=
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
*
gamma_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{});
});
});
});
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_beta_load
.
Run
(
beta_grid_desc_m_k
,
beta_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
beta_thread_buf
(
i
));
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
iK0
)
{
static_for
<
0
,
XSrcVectorSize
,
1
>
{}([
&
](
auto
iK1
)
{
constexpr
auto
offset_m_k
=
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK1
));
// beta
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
=
y_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{})
+
beta_thread_buf
(
iK0
)(
Number
<
offset_m_k
>
{});
});
});
});
static_for
<
0
,
ThreadBufferNumber
,
1
>
{}([
&
](
auto
i
)
{
threadwise_y_store
.
Run
(
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
y_thread_buf
(
i
),
y_grid_desc_m_k
,
y_global_val_buf
);
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
});
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
2
*
thread_copy_bwd_step_m_k
);
threadwise_gamma_load
.
MoveSrcSliceWindow
(
gamma_grid_desc_m_k
,
2
*
thread_copy_bwd_step_m_k
);
threadwise_beta_load
.
MoveSrcSliceWindow
(
beta_grid_desc_m_k
,
2
*
thread_copy_bwd_step_m_k
);
threadwise_y_store
.
MoveDstSliceWindow
(
y_grid_desc_m_k
,
2
*
thread_copy_bwd_step_m_k
);
}
}
// end of sweep twice
}
};
...
...
include/ck/utility/math_v2.hpp
View file @
0cd78566
...
...
@@ -83,6 +83,11 @@ static inline __host__ bool isnan(int4_t x)
};
#endif
static
inline
__host__
half_t
sqrt
(
half_t
x
)
{
return
static_cast
<
half_t
>
(
std
::
sqrt
(
static_cast
<
float
>
(
x
)));
};
static
inline
__host__
float
sqrt
(
float
x
)
{
return
std
::
sqrt
(
x
);
};
static
inline
__host__
double
sqrt
(
double
x
)
{
return
std
::
sqrt
(
x
);
};
...
...
@@ -158,6 +163,11 @@ static inline __device__ bool isnan(half_t x)
return
(
xx
&
0x7FFF
)
>
0x7C00
;
};
static
inline
__device__
half_t
sqrt
(
half_t
x
)
{
return
static_cast
<
half_t
>
(
__builtin_amdgcn_sqrtf
(
static_cast
<
float
>
(
x
)));
};
static
inline
__device__
float
sqrt
(
float
x
)
{
return
__builtin_amdgcn_sqrtf
(
x
);
};
static
inline
__device__
double
sqrt
(
double
x
)
{
return
__builtin_amdgcn_sqrt
(
x
);
};
...
...
library/src/tensor_operation_instance/gpu/normalization/device_normalization_f16_instance.cpp
View file @
0cd78566
...
...
@@ -21,20 +21,25 @@ template <typename OutElementwise, index_t Rank, index_t Reduce>
// clang-format off
using
device_normalization_f16_instances
=
std
::
tuple
<
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize>
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// fallback kernel
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
2
,
1
,
2
,
1
,
2
,
2
>
,
// fallback kernel
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
// fallback kernel
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
4
,
64
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize>
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
2
,
1
,
2
,
1
,
2
,
1
,
2
,
2
>
,
// irregular size
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
// irregular size
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
64
,
1
,
64
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
2
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
32
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
8
,
1
,
2
,
1
,
2
,
1
,
2
,
2
>
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
8
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
,
DeviceNormalizationImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
16
,
1
,
8
,
1
,
8
,
1
,
8
,
8
>
>
;
// clang-format on
...
...
library/src/tensor_operation_instance/gpu/normalization/device_normalization_f32_instance.cpp
View file @
0cd78566
...
...
@@ -19,17 +19,26 @@ using Pass = ck::tensor_operation::element_wise::PassThrough;
template
<
typename
OutElementwise
,
index_t
Rank
,
index_t
Reduce
>
using
device_layernorm_f32_instances
=
std
::
tuple
<
// clang-format off
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize>
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// fallback kernel
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
2
,
1
,
2
,
1
,
2
,
2
>
,
// fallback kernel
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
4
,
64
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
16
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
32
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize>
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
// irregular size
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
2
,
1
,
2
,
1
,
2
,
1
,
2
,
2
>
,
// irregular size
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
16
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
128
,
1
,
128
,
1
,
32
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
2
,
16
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
512
,
1
,
512
,
2
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
4
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
,
DeviceNormalizationImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
OutElementwise
,
Rank
,
Reduce
,
1024
,
1
,
1024
,
1
,
8
,
1
,
4
,
1
,
4
,
1
,
4
,
4
>
// clang-format on
>
;
...
...
profiler/include/profiler/profile_layernorm_impl.hpp
View file @
0cd78566
...
...
@@ -19,7 +19,7 @@ namespace profiler {
template
<
typename
XDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
Acc
DataType
,
typename
Compute
DataType
,
typename
YDataType
,
index_t
Rank
>
bool
profile_layernorm_impl
(
int
do_verification
,
...
...
@@ -86,7 +86,7 @@ bool profile_layernorm_impl(int do_verification,
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalization
<
XDataType
,
GammaDataType
,
BetaDataType
,
Acc
DataType
,
Compute
DataType
,
YDataType
,
PassThrough
,
Rank
,
...
...
@@ -109,7 +109,7 @@ bool profile_layernorm_impl(int do_verification,
GammaDataType
,
BetaDataType
,
YDataType
,
Acc
DataType
,
Compute
DataType
,
PassThrough
,
Rank
,
NumReduceDim
>
;
...
...
@@ -181,8 +181,8 @@ bool profile_layernorm_impl(int do_verification,
{
y_dev
.
FromDevice
(
y
.
mData
.
data
());
bool
pass
=
ck
::
utils
::
check_err
(
y
.
mData
,
host_y
.
mData
,
"Error: Incorrect results
d1
"
,
1e-3
,
1e-3
);
bool
pass
=
ck
::
utils
::
check_err
(
y
.
mData
,
host_y
.
mData
,
"Error: Incorrect results"
,
1e-3
,
1e-3
);
if
(
do_log
)
{
...
...
script/cmake-ck-dev.sh
View file @
0cd78566
...
...
@@ -10,8 +10,8 @@ cmake
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_CXX_FLAGS
=
"-O3 -ftemplate-backtrace-limit=0 -gline-tables-only -save-temps=
$PWD
"
\
-D
CMAKE_BUILD_TYPE
=
Release
\
-D
BUILD_DEV
=
O
N
\
-D
GPU_TARGETS
=
"
gfx908;
gfx90a"
\
-D
BUILD_DEV
=
O
FF
\
-D
GPU_TARGETS
=
"gfx90a"
\
-D
CMAKE_VERBOSE_MAKEFILE:BOOL
=
ON
\
-D
USE_BITINT_EXTENSION_INT4
=
OFF
\
${
MY_PROJECT_SOURCE
}
...
...
test/normalization/test_groupnorm_fp16.cpp
View file @
0cd78566
...
...
@@ -12,11 +12,11 @@ template <typename Tuple>
class
TestGroupnorm
:
public
::
testing
::
Test
{
protected:
using
XDataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
GammaDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
BetaDataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
Acc
DataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
YDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
XDataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
GammaDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
BetaDataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
Compute
DataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
YDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
void
Run
()
{
...
...
@@ -36,7 +36,7 @@ class TestGroupnorm : public ::testing::Test
ck
::
profiler
::
profile_groupnorm_impl
<
XDataType
,
GammaDataType
,
BetaDataType
,
Acc
DataType
,
Compute
DataType
,
YDataType
>
(
true
,
2
,
false
,
false
,
length
);
EXPECT_TRUE
(
success
);
}
...
...
@@ -44,7 +44,7 @@ class TestGroupnorm : public ::testing::Test
};
using
KernelTypes
=
::
testing
::
Types
<
// XDataType, GammaDataType, BetaDataType,
Acc
DataType, YDataType>
// XDataType, GammaDataType, BetaDataType,
Compute
DataType, YDataType>
std
::
tuple
<
F16
,
F16
,
F16
,
F32
,
F16
>>
;
TYPED_TEST_SUITE
(
TestGroupnorm
,
KernelTypes
);
...
...
test/normalization/test_groupnorm_fp32.cpp
View file @
0cd78566
...
...
@@ -12,11 +12,11 @@ template <typename Tuple>
class
TestGroupnorm
:
public
::
testing
::
Test
{
protected:
using
XDataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
GammaDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
BetaDataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
Acc
DataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
YDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
XDataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
GammaDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
BetaDataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
Compute
DataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
YDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
void
Run
()
{
...
...
@@ -34,7 +34,7 @@ class TestGroupnorm : public ::testing::Test
ck
::
profiler
::
profile_groupnorm_impl
<
XDataType
,
GammaDataType
,
BetaDataType
,
Acc
DataType
,
Compute
DataType
,
YDataType
>
(
true
,
2
,
false
,
false
,
length
);
EXPECT_TRUE
(
success
);
}
...
...
@@ -42,7 +42,7 @@ class TestGroupnorm : public ::testing::Test
};
using
KernelTypes
=
::
testing
::
Types
<
// XDataType, GammaDataType, BetaDataType,
Acc
DataType, YDataType>
// XDataType, GammaDataType, BetaDataType,
Compute
DataType, YDataType>
std
::
tuple
<
F32
,
F32
,
F32
,
F32
,
F32
>>
;
TYPED_TEST_SUITE
(
TestGroupnorm
,
KernelTypes
);
...
...
test/normalization/test_layernorm2d_fp16.cpp
View file @
0cd78566
...
...
@@ -12,11 +12,11 @@ template <typename Tuple>
class
TestLayernorm2d
:
public
::
testing
::
Test
{
protected:
using
XDataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
GammaDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
BetaDataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
Acc
DataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
YDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
XDataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
GammaDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
BetaDataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
Compute
DataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
YDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
void
Run
()
{
...
...
@@ -29,7 +29,7 @@ class TestLayernorm2d : public ::testing::Test
bool
success
=
ck
::
profiler
::
profile_layernorm_impl
<
XDataType
,
GammaDataType
,
BetaDataType
,
Acc
DataType
,
Compute
DataType
,
YDataType
,
2
>
(
true
,
2
,
false
,
false
,
length
);
EXPECT_TRUE
(
success
);
...
...
@@ -38,7 +38,7 @@ class TestLayernorm2d : public ::testing::Test
};
using
KernelTypes
=
::
testing
::
Types
<
// XDataType, GammaDataType, BetaDataType,
Acc
DataType, YDataType>
// XDataType, GammaDataType, BetaDataType,
Compute
DataType, YDataType>
std
::
tuple
<
F16
,
F16
,
F16
,
F32
,
F16
>>
;
TYPED_TEST_SUITE
(
TestLayernorm2d
,
KernelTypes
);
...
...
test/normalization/test_layernorm2d_fp32.cpp
View file @
0cd78566
...
...
@@ -12,11 +12,11 @@ template <typename Tuple>
class
TestLayernorm2d
:
public
::
testing
::
Test
{
protected:
using
XDataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
GammaDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
BetaDataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
Acc
DataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
YDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
XDataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
GammaDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
BetaDataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
Compute
DataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
YDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
void
Run
()
{
...
...
@@ -29,7 +29,7 @@ class TestLayernorm2d : public ::testing::Test
bool
success
=
ck
::
profiler
::
profile_layernorm_impl
<
XDataType
,
GammaDataType
,
BetaDataType
,
Acc
DataType
,
Compute
DataType
,
YDataType
,
2
>
(
true
,
2
,
false
,
false
,
length
);
EXPECT_TRUE
(
success
);
...
...
@@ -38,7 +38,7 @@ class TestLayernorm2d : public ::testing::Test
};
using
KernelTypes
=
::
testing
::
Types
<
// XDataType, GammaDataType, BetaDataType,
Acc
DataType, YDataType>
// XDataType, GammaDataType, BetaDataType,
Compute
DataType, YDataType>
std
::
tuple
<
F32
,
F32
,
F32
,
F32
,
F32
>>
;
TYPED_TEST_SUITE
(
TestLayernorm2d
,
KernelTypes
);
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment