Commit 0b11569f authored by Chao Liu's avatar Chao Liu
Browse files

Merge remote-tracking branch 'origin/develop' into batched_gemm_c_permute

parents e8d3a0fb fa9a0a5c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef DEVICE_GEMM_BIAS_ACTIVATION_ADD_HPP
#define DEVICE_GEMM_BIAS_ACTIVATION_ADD_HPP
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
......@@ -26,20 +29,20 @@ template <typename ALayout,
typename ADataType,
typename BDataType,
typename CDataType,
typename C0DataType,
typename C1DataType,
typename BiasDataType,
typename D0DataType,
typename GemmAccDataType,
typename CShuffleDataType,
typename ReduceAccDataType,
typename DPtrsGlobal,
typename ReducePtrsGlobal,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename C1ElementwiseOperation,
typename DxsReduceOperation,
typename DxsInElementwiseOperation,
typename DxsReduceAccElementwiseOperation,
typename DGlobalMemoryDataOperation,
typename D0ElementwiseOperation,
typename ReduceOperations,
typename ReduceInElementwiseOperations,
typename ReduceAccElementwiseOperations,
typename ReduceGlobalMemoryDataOperation,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
......@@ -74,13 +77,7 @@ template <typename ALayout,
index_t CReduceThreadLds2VGprCopySrcDstScalarPerVector_NPerBlock,
index_t CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock,
LoopScheduler LoopSched = make_default_loop_scheduler()>
struct DeviceGemmBiasAddReduce_Xdl_CShuffle
: public DeviceGemmBiasAddReduce<AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
C1ElementwiseOperation,
DxsInElementwiseOperation,
DxsReduceAccElementwiseOperation>
struct DeviceGemmBiasAddReduce_Xdl_CShuffle : public DeviceGemmReduce<1, ReduceOperations::Size()>
{
using DeviceOp = DeviceGemmBiasAddReduce_Xdl_CShuffle;
......@@ -353,7 +350,7 @@ struct DeviceGemmBiasAddReduce_Xdl_CShuffle
}
// assume D is packed tensor
static auto MakeDGridDescriptor_M(index_t MRaw)
static auto MakeReduceGridDescriptor_M(index_t MRaw)
{
const auto d_grid_desc_mraw = make_naive_tensor_descriptor_packed(make_tuple(MRaw));
......@@ -383,7 +380,7 @@ struct DeviceGemmBiasAddReduce_Xdl_CShuffle
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
using C0GridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 0));
using C1GridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
using DGridDesc_M = decltype(MakeDGridDescriptor_M(1));
using ReduceGridDesc_M = decltype(MakeReduceGridDescriptor_M(1));
// GridwiseGemm
using GridwiseGemm = GridwiseGemmBiasAddReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1<
......@@ -391,25 +388,25 @@ struct DeviceGemmBiasAddReduce_Xdl_CShuffle
GemmAccDataType,
CShuffleDataType,
CDataType,
C0DataType,
C1DataType,
BiasDataType,
D0DataType,
ReduceAccDataType,
DPtrsGlobal,
ReducePtrsGlobal,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
C1ElementwiseOperation,
DxsReduceOperation,
DxsInElementwiseOperation,
DxsReduceAccElementwiseOperation,
D0ElementwiseOperation,
ReduceOperations,
ReduceInElementwiseOperations,
ReduceAccElementwiseOperations,
InMemoryDataOperationEnum::Set,
DGlobalMemoryDataOperation,
ReduceGlobalMemoryDataOperation,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
CGridDesc_M_N,
C0GridDesc_M_N,
C1GridDesc_M_N,
DGridDesc_M,
ReduceGridDesc_M,
NumGemmKPrefetchStage,
BlockSize,
MPerBlock,
......@@ -452,9 +449,9 @@ struct DeviceGemmBiasAddReduce_Xdl_CShuffle
Argument(const ADataType* p_a_grid,
const BDataType* p_b_grid,
CDataType* p_c_grid,
const C0DataType* p_c0_grid,
const C1DataType* p_c1_grid,
DPtrsGlobal p_ds_grid,
const BiasDataType* p_bias_grid,
const D0DataType* p_d0_grid,
ReducePtrsGlobal p_reduces_grid,
index_t MRaw,
index_t NRaw,
index_t KRaw,
......@@ -465,32 +462,32 @@ struct DeviceGemmBiasAddReduce_Xdl_CShuffle
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
C1ElementwiseOperation c1_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsReduceAccElementwiseOperation dxs_out_element_op)
D0ElementwiseOperation d0_element_op,
ReduceInElementwiseOperations reduce_in_element_ops,
ReduceAccElementwiseOperations reduce_out_element_ops)
: p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid},
p_c_grid_{p_c_grid},
p_c0_grid_{p_c0_grid},
p_c1_grid_{p_c1_grid},
p_ds_grid_{p_ds_grid},
p_bias_grid_{p_bias_grid},
p_d0_grid_{p_d0_grid},
p_reduces_grid_{p_reduces_grid},
a_grid_desc_ak0_m_ak1_{DeviceOp::MakeAGridDescriptor_AK0_M_AK1(MRaw, KRaw, StrideA)},
b_grid_desc_bk0_n_bk1_{DeviceOp::MakeBGridDescriptor_BK0_N_BK1(KRaw, NRaw, StrideB)},
c_grid_desc_m_n_{DeviceOp::MakeCGridDescriptor_M_N(MRaw, NRaw, StrideC)},
c0_grid_desc_m_n_{DeviceOp::MakeCGridDescriptor_M_N(MRaw, NRaw, 0)},
c1_grid_desc_m_n_{DeviceOp::MakeCGridDescriptor_M_N(MRaw, NRaw, StrideC1)},
d_grid_desc_m_{DeviceOp::MakeDGridDescriptor_M(MRaw)},
reduce_grid_desc_m_{DeviceOp::MakeReduceGridDescriptor_M(MRaw)},
c_grid_desc_mblock_mperblock_nblock_nperblock_{},
c0_grid_desc_mblock_mperblock_nblock_nperblock_{},
c1_grid_desc_mblock_mperblock_nblock_nperblock_{},
d_grid_desc_mblock_mperblock_{},
reduce_grid_desc_mblock_mperblock_{},
block_2_ctile_map_{GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_)},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
c_element_op_{c_element_op},
c1_element_op_{c1_element_op},
dxs_in_element_op_{dxs_in_element_op},
dxs_out_element_op_{dxs_out_element_op}
d0_element_op_{d0_element_op},
reduce_in_element_ops_{reduce_in_element_ops},
reduce_out_element_ops_{reduce_out_element_ops}
{
if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_,
b_grid_desc_bk0_n_bk1_,
......@@ -509,8 +506,8 @@ struct DeviceGemmBiasAddReduce_Xdl_CShuffle
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c1_grid_desc_m_n_);
d_grid_desc_mblock_mperblock_ =
GridwiseGemm::MakeDGridDescriptor_MBlock_MPerBlock(d_grid_desc_m_);
reduce_grid_desc_mblock_mperblock_ =
GridwiseGemm::MakeReduceGridDescriptor_MBlock_MPerBlock(reduce_grid_desc_m_);
}
}
......@@ -518,29 +515,30 @@ struct DeviceGemmBiasAddReduce_Xdl_CShuffle
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
const C0DataType* p_c0_grid_;
const C1DataType* p_c1_grid_;
DPtrsGlobal p_ds_grid_;
const BiasDataType* p_bias_grid_;
const D0DataType* p_d0_grid_;
ReducePtrsGlobal p_reduces_grid_;
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
CGridDesc_M_N c_grid_desc_m_n_;
C0GridDesc_M_N c0_grid_desc_m_n_;
C1GridDesc_M_N c1_grid_desc_m_n_;
DGridDesc_M d_grid_desc_m_;
ReduceGridDesc_M reduce_grid_desc_m_;
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::C0GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c0_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::C1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c1_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::DGridDescriptor_MBlock_MPerBlock d_grid_desc_mblock_mperblock_;
typename GridwiseGemm::ReduceGridDescriptor_MBlock_MPerBlock
reduce_grid_desc_mblock_mperblock_;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
C1ElementwiseOperation c1_element_op_;
DxsInElementwiseOperation dxs_in_element_op_;
DxsReduceAccElementwiseOperation dxs_out_element_op_;
D0ElementwiseOperation d0_element_op_;
ReduceInElementwiseOperations reduce_in_element_ops_;
ReduceAccElementwiseOperations reduce_out_element_ops_;
};
// Invoker
......@@ -571,21 +569,21 @@ struct DeviceGemmBiasAddReduce_Xdl_CShuffle
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
C0DataType,
C1DataType,
DPtrsGlobal,
BiasDataType,
D0DataType,
ReducePtrsGlobal,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
C1ElementwiseOperation,
DxsInElementwiseOperation,
DxsReduceAccElementwiseOperation,
D0ElementwiseOperation,
ReduceInElementwiseOperations,
ReduceAccElementwiseOperations,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::C0GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::C1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DGridDescriptor_MBlock_MPerBlock,
typename GridwiseGemm::ReduceGridDescriptor_MBlock_MPerBlock,
typename GridwiseGemm::DefaultBlock2CTileMap,
true>;
......@@ -598,21 +596,21 @@ struct DeviceGemmBiasAddReduce_Xdl_CShuffle
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.p_c0_grid_,
arg.p_c1_grid_,
arg.p_ds_grid_,
arg.p_bias_grid_,
arg.p_d0_grid_,
arg.p_reduces_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.c1_element_op_,
arg.dxs_in_element_op_,
arg.dxs_out_element_op_,
arg.d0_element_op_,
arg.reduce_in_element_ops_,
arg.reduce_out_element_ops_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.c0_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.c1_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.d_grid_desc_mblock_mperblock_,
arg.reduce_grid_desc_mblock_mperblock_,
arg.block_2_ctile_map_);
}
else
......@@ -621,21 +619,21 @@ struct DeviceGemmBiasAddReduce_Xdl_CShuffle
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
C0DataType,
C1DataType,
DPtrsGlobal,
BiasDataType,
D0DataType,
ReducePtrsGlobal,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
C1ElementwiseOperation,
DxsInElementwiseOperation,
DxsReduceAccElementwiseOperation,
D0ElementwiseOperation,
ReduceInElementwiseOperations,
ReduceAccElementwiseOperations,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::C0GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::C1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DGridDescriptor_MBlock_MPerBlock,
typename GridwiseGemm::ReduceGridDescriptor_MBlock_MPerBlock,
typename GridwiseGemm::DefaultBlock2CTileMap,
false>;
......@@ -648,21 +646,21 @@ struct DeviceGemmBiasAddReduce_Xdl_CShuffle
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.p_c0_grid_,
arg.p_c1_grid_,
arg.p_ds_grid_,
arg.p_bias_grid_,
arg.p_d0_grid_,
arg.p_reduces_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.c1_element_op_,
arg.dxs_in_element_op_,
arg.dxs_out_element_op_,
arg.d0_element_op_,
arg.reduce_in_element_ops_,
arg.reduce_out_element_ops_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.c0_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.c1_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.d_grid_desc_mblock_mperblock_,
arg.reduce_grid_desc_mblock_mperblock_,
arg.block_2_ctile_map_);
}
......@@ -697,45 +695,76 @@ struct DeviceGemmBiasAddReduce_Xdl_CShuffle
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const ADataType* p_a,
const BDataType* p_b,
CDataType* p_c,
const C0DataType* p_c0,
const C1DataType* p_c1,
DPtrsGlobal p_dxs,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t StrideC1,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
C1ElementwiseOperation c1_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsReduceAccElementwiseOperation dxs_out_element_op)
static constexpr int NumReduce = ReduceOperations::Size();
static auto MakeArgument(const void* p_a,
const void* p_b,
const void* p_bias,
std::array<const void*, 1> p_ds,
void* p_c,
std::array<void*, NumReduce> p_reduces,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
ck::index_t StrideC,
std::array<ck::index_t, 1> StrideDs,
std::array<void*, 3> gemm_element_ops,
std::array<void*, 1> d_element_ops,
std::array<void*, NumReduce> reduce_in_element_op,
std::array<void*, NumReduce> reduce_out_element_op)
{
return Argument{p_a,
p_b,
p_c,
p_c0,
p_c1,
p_dxs,
MRaw,
NRaw,
KRaw,
ReducePtrsGlobal reduce_tuple = generate_tuple(
[&](auto I) {
auto tmp = ReducePtrsGlobal{}[I];
using T = remove_pointer_t<decltype(tmp)>;
return static_cast<T*>(p_reduces[I]);
},
Number<NumReduce>{});
ReduceInElementwiseOperations reduce_in_element_ops = generate_tuple(
[&](auto I) {
auto tmp = ReduceInElementwiseOperations{}[I];
using T = remove_pointer_t<decltype(tmp)>;
return *(static_cast<T*>(reduce_in_element_op[I]));
},
Number<NumReduce>{});
ReduceAccElementwiseOperations reduce_out_element_ops = generate_tuple(
[&](auto I) {
auto tmp = ReduceAccElementwiseOperations{}[I];
using T = remove_pointer_t<decltype(tmp)>;
return *(static_cast<T*>(reduce_out_element_op[I]));
},
Number<NumReduce>{});
AElementwiseOperation a_element_op =
*(static_cast<AElementwiseOperation*>(gemm_element_ops[0]));
BElementwiseOperation b_element_op =
*(static_cast<BElementwiseOperation*>(gemm_element_ops[1]));
CElementwiseOperation c_element_op =
*(static_cast<CElementwiseOperation*>(gemm_element_ops[2]));
D0ElementwiseOperation d_element_op =
*(static_cast<D0ElementwiseOperation*>(d_element_ops[0]));
return Argument{static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
static_cast<const BiasDataType*>(p_bias),
static_cast<const D0DataType*>(p_ds[0]),
reduce_tuple,
M,
N,
K,
StrideA,
StrideB,
StrideC,
StrideC1,
StrideDs[0],
a_element_op,
b_element_op,
c_element_op,
c1_element_op,
dxs_in_element_op,
dxs_out_element_op};
d_element_op,
reduce_in_element_ops,
reduce_out_element_ops};
}
static auto MakeInvoker() { return Invoker{}; }
......@@ -744,45 +773,74 @@ struct DeviceGemmBiasAddReduce_Xdl_CShuffle
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
const void* p_bias,
std::array<const void*, 1> p_ds,
void* p_c,
const void* p_c0,
const void* p_c1,
void* p_dxs,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t StrideC1,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
C1ElementwiseOperation c1_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsReduceAccElementwiseOperation dxs_out_element_op,
std::array<void*, NumReduce> p_reduces,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
ck::index_t StrideC,
std::array<ck::index_t, 1> StrideDs,
std::array<void*, 3> gemm_element_ops,
std::array<void*, 1> d_element_ops,
std::array<void*, NumReduce> reduce_in_element_op,
std::array<void*, NumReduce> reduce_out_element_op,
index_t /* KBatch */ = 1) override
{
DPtrsGlobal dxs_tuple = *(static_cast<DPtrsGlobal*>(p_dxs));
ReducePtrsGlobal reduce_tuple = generate_tuple(
[&](auto I) {
auto tmp = ReducePtrsGlobal{}[I];
using T = remove_pointer_t<decltype(tmp)>;
return static_cast<T*>(p_reduces[I]);
},
Number<NumReduce>{});
ReduceInElementwiseOperations reduce_in_element_ops = generate_tuple(
[&](auto I) {
auto tmp = ReduceInElementwiseOperations{}[I];
using T = remove_pointer_t<decltype(tmp)>;
return *(static_cast<T*>(reduce_in_element_op[I]));
},
Number<NumReduce>{});
ReduceAccElementwiseOperations reduce_out_element_ops = generate_tuple(
[&](auto I) {
auto tmp = ReduceAccElementwiseOperations{}[I];
using T = remove_pointer_t<decltype(tmp)>;
return *(static_cast<T*>(reduce_out_element_op[I]));
},
Number<NumReduce>{});
AElementwiseOperation a_element_op =
*(static_cast<AElementwiseOperation*>(gemm_element_ops[0]));
BElementwiseOperation b_element_op =
*(static_cast<BElementwiseOperation*>(gemm_element_ops[1]));
CElementwiseOperation c_element_op =
*(static_cast<CElementwiseOperation*>(gemm_element_ops[2]));
D0ElementwiseOperation d_element_op =
*(static_cast<D0ElementwiseOperation*>(d_element_ops[0]));
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
static_cast<const C0DataType*>(p_c0),
static_cast<const C1DataType*>(p_c1),
dxs_tuple,
MRaw,
NRaw,
KRaw,
static_cast<const BiasDataType*>(p_bias),
static_cast<const D0DataType*>(p_ds[0]),
reduce_tuple,
M,
N,
K,
StrideA,
StrideB,
StrideC,
StrideC1,
StrideDs[0],
a_element_op,
b_element_op,
c_element_op,
c1_element_op,
dxs_in_element_op,
dxs_out_element_op);
d_element_op,
reduce_in_element_ops,
reduce_out_element_ops);
}
// polymorphic
......@@ -797,7 +855,7 @@ struct DeviceGemmBiasAddReduce_Xdl_CShuffle
auto str = std::stringstream();
// clang-format off
str << "DeviceGemmReduce_Xdl_CShuffle"
str << "DeviceGemmBiasAddReduce_Xdl_CShuffle"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include "device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
struct DEGridDesc_M0_M1_M2_N0_N1
{
ck::index_t M0_, M1_, M2_, N0_, N1_;
ck::index_t stride_M0_, stride_M1_, stride_M2_, stride_N0_, stride_N1_;
};
// input : A[M, K], B[K, N],
// input : D[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D)
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation>
struct DeviceGemmBiasCPermute : public BaseOperator
{
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
const void* p_d,
void* p_e,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
DEGridDesc_M0_M1_M2_N0_N1 d_gride_desc,
DEGridDesc_M0_M1_M2_N0_N1 e_gride_desc,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
using DeviceGemmBiasCPermutePtr = std::unique_ptr<
DeviceGemmBiasCPermute<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>>;
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_bias_c_permute.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
namespace ck {
template <typename GridwiseGemm,
typename FloatAB,
typename FloatDsPointer,
typename FloatE,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename Block2ETileMap,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_bias_c_permute(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatDsPointer p_ds_grid,
FloatE* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
const AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1,
const DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2ETileMap block_2_etile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
p_b_grid,
p_ds_grid,
p_e_grid,
p_shared,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_etile_map);
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_ds_grid;
ignore = p_e_grid;
ignore = a_element_op;
ignore = b_element_op;
ignore = cde_element_op;
ignore = a_grid_desc_ak0_m_ak1;
ignore = b_grid_desc_bk0_n_bk1;
ignore = ds_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = e_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = block_2_etile_map;
#endif
}
} // namespace ck
namespace ck {
namespace tensor_operation {
namespace device {
// input : A[M, K], or A[K, N]
// input : B[K, N], or A[N, K]
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
template <typename ALayout,
typename BLayout,
typename CDELayout,
typename ADataType,
typename BDataType,
typename GemmAccDataType,
typename CShuffleDataType,
typename DDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1,
index_t BK1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched = make_default_loop_scheduler()>
struct DeviceGemmBiasCPermute_Xdl : public DeviceGemmBiasCPermute<AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>
{
using DeviceOp = DeviceGemmBiasCPermute_Xdl;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr index_t NumDTensor = I1;
static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA)
{
const auto a_grid_desc_mraw_kraw = [&]() {
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(StrideA, I1));
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(I1, StrideA));
}
}();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto MPad = M - MRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both M and K
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad M, but not K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_right_pad_transform(MRaw, MPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad K, but not M
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else
{
// not pad M or K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
}
static auto MakeBGridDescriptor_BK0_N_BK1(index_t KRaw, index_t NRaw, index_t StrideB)
{
const auto b_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(I1, StrideB));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(StrideB, I1));
}
}();
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto NPad = N - NRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both N and K
assert(K % BK1 == 0);
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_right_pad_transform(NRaw, NPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad N, but not K
assert(KRaw % BK1 == 0);
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad K, but not N
assert(K % BK1 == 0);
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_pass_through_transform(NRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else
{
// not pad N or K
assert(KRaw % BK1 == 0);
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
}
static auto MakeEGridDescriptor_M_N(DEGridDesc_M0_M1_M2_N0_N1 d_e_grid_desc)
{
index_t M0 = d_e_grid_desc.M0_;
index_t M1 = d_e_grid_desc.M1_;
index_t M2 = d_e_grid_desc.M2_;
index_t N0 = d_e_grid_desc.N0_;
index_t N1 = d_e_grid_desc.N1_;
index_t stride_M0 = d_e_grid_desc.stride_M0_;
index_t stride_M1 = d_e_grid_desc.stride_M1_;
index_t stride_M2 = d_e_grid_desc.stride_M2_;
index_t stride_N0 = d_e_grid_desc.stride_N0_;
index_t stride_N1 = d_e_grid_desc.stride_N1_;
const auto MRaw = M0 * M1 * M2;
const auto NRaw = N0 * N1;
const auto c_grid_desc_mraw_nraw = [&]() {
const auto c_grid_desc_m0_m1_m2_n0_n1 = make_naive_tensor_descriptor(
make_tuple(M0, M1, M2, N0, N1),
make_tuple(stride_M0, stride_M1, stride_M2, stride_N0, stride_N1));
return transform_tensor_descriptor(
c_grid_desc_m0_m1_m2_n0_n1,
make_tuple(make_merge_transform(make_tuple(M0, M1, M2)),
make_merge_transform(make_tuple(N0, N1))),
make_tuple(Sequence<0, 1, 2>{}, Sequence<3, 4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto MPad = M - MRaw;
const auto NPad = N - NRaw;
if constexpr(GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad M and N
return transform_tensor_descriptor(c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad M, but not N
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad), make_pass_through_transform(NRaw)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad N, but not M
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
// not pad M or N
return c_grid_desc_mraw_nraw;
}
}
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1(1, 1, 1));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1(1, 1, 1));
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N(DEGridDesc_M0_M1_M2_N0_N1{}));
// GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle<
ADataType, // TODO: distinguish A/B datatype
GemmAccDataType,
CShuffleDataType,
ck::Tuple<DDataType>,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
InMemoryDataOperationEnum::Set,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
EGridDesc_M_N,
NumGemmKPrefetchStage,
BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
false,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
false,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CDEBlockTransferScalarPerVector_NPerBlock,
LoopSched>;
// Argument
struct Argument : public BaseArgument
{
Argument(const void* p_a_grid,
const void* p_b_grid,
const void* p_d_grid,
void* p_e_grid,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
DEGridDesc_M0_M1_M2_N0_N1 d_grid_desc,
DEGridDesc_M0_M1_M2_N0_N1 e_grid_desc,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: p_a_grid_{static_cast<const ADataType*>(p_a_grid)},
p_b_grid_{static_cast<const BDataType*>(p_b_grid)},
p_ds_grid_{}, // FIXME
p_e_grid_{static_cast<EDataType*>(p_e_grid)},
a_grid_desc_ak0_m_ak1_{DeviceOp::MakeAGridDescriptor_AK0_M_AK1(MRaw, KRaw, StrideA)},
b_grid_desc_bk0_n_bk1_{DeviceOp::MakeBGridDescriptor_BK0_N_BK1(KRaw, NRaw, StrideB)},
ds_grid_desc_mblock_mperblock_nblock_nperblock_{},
e_grid_desc_m_n_{DeviceOp::MakeEGridDescriptor_M_N(e_grid_desc)},
e_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_etile_map_{GridwiseGemm::MakeDefaultBlock2ETileMap(e_grid_desc_m_n_)},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
if(MRaw != d_grid_desc.M0_ * d_grid_desc.M1_ * d_grid_desc.M2_)
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
if(NRaw != d_grid_desc.N0_ * d_grid_desc.N1_)
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_,
b_grid_desc_bk0_n_bk1_,
e_grid_desc_m_n_,
block_2_etile_map_))
{
e_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
e_grid_desc_m_n_);
p_ds_grid_(I0) = static_cast<const DDataType*>(p_d_grid);
const auto d_grid_desc_m_n = DeviceOp::MakeEGridDescriptor_M_N(d_grid_desc);
ds_grid_desc_mblock_mperblock_nblock_nperblock_(I0) =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
d_grid_desc_m_n);
}
}
// private:
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
typename GridwiseGemm::DsGridPointer p_ds_grid_;
EDataType* p_e_grid_;
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
StaticallyIndexedArray<
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
NumDTensor>
ds_grid_desc_mblock_mperblock_nblock_nperblock_; // FIXME: Ds desc may be of different
// type from E
EGridDesc_M_N e_grid_desc_m_n_;
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::DefaultBlock2ETileMap block_2_etile_map_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_))
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
const index_t grid_size =
arg.block_2_etile_map_.CalculateGridSize(arg.e_grid_desc_m_n_);
const auto K =
arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
auto launch_kernel = [&](auto has_main_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
const auto kernel = kernel_gemm_bias_c_permute<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
typename GridwiseGemm::DsGridPointer,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
ck::StaticallyIndexedArray<
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
NumDTensor>,
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DefaultBlock2ETileMap,
has_main_loop>;
return launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_ds_grid_,
arg.p_e_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.cde_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.ds_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.e_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_etile_map_);
};
float ave_time = 0;
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
ave_time = launch_kernel(integral_constant<bool, true>{});
}
else
{
ave_time = launch_kernel(integral_constant<bool, false>{});
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static bool IsSupportedArgument(const Argument& arg)
{
if(!(ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a"))
{
return false;
}
return GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const void* p_a,
const void* p_b,
const void* p_d,
void* p_e,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
DEGridDesc_M0_M1_M2_N0_N1 d_grid_desc,
DEGridDesc_M0_M1_M2_N0_N1 e_grid_desc,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{p_a,
p_b,
p_d,
p_e,
MRaw,
NRaw,
KRaw,
StrideA,
StrideB,
d_grid_desc,
e_grid_desc,
a_element_op,
b_element_op,
cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
const void* p_d,
void* p_e,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
DEGridDesc_M0_M1_M2_N0_N1 d_grid_desc,
DEGridDesc_M0_M1_M2_N0_N1 e_grid_desc,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op) override
{
return std::make_unique<Argument>(p_a,
p_b,
p_d,
p_e,
MRaw,
NRaw,
KRaw,
StrideA,
StrideB,
d_grid_desc,
e_grid_desc,
a_element_op,
b_element_op,
cde_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGemmBiasCPermute_Xdl"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "device_base.hpp"
......@@ -6,91 +9,34 @@ namespace ck {
namespace tensor_operation {
namespace device {
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename DxsInElementwiseOperation,
typename DxsReduceAccElementwiseOperation>
template <ck::index_t NumDTensor, ck::index_t NumReduce>
struct DeviceGemmReduce : public BaseOperator
{
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
const void* p_bias,
std::array<const void*, NumDTensor> p_ds,
void* p_c,
void* p_dxs,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
ck::index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsReduceAccElementwiseOperation dxs_out_element_op,
ck::index_t BatchCount = 1) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename DxsInElementwiseOperation,
typename DxsReduceAccElementwiseOperation>
using DeviceGemmReducePtr = std::unique_ptr<DeviceGemmReduce<AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
DxsInElementwiseOperation,
DxsReduceAccElementwiseOperation>>;
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename C1ElementwiseOperation,
typename DxsInElementwiseOperation,
typename DxsReduceAccElementwiseOperation>
struct DeviceGemmBiasAddReduce : public BaseOperator
{
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
const void* p_c0,
const void* p_c1,
void* p_dxs,
std::array<void*, NumReduce> p_reduces,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
ck::index_t StrideC,
ck::index_t StrideC1,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
C1ElementwiseOperation c1_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsReduceAccElementwiseOperation dxs_out_element_op,
std::array<ck::index_t, NumDTensor> StrideDs,
std::array<void*, 3> gemm_element_ops,
std::array<void*, NumDTensor> d_element_ops,
std::array<void*, NumReduce> reduce_in_element_ops,
std::array<void*, NumReduce> reduce_out_element_ops,
ck::index_t BatchCount = 1) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename C1ElementwiseOperation,
typename DxsInElementwiseOperation,
typename DxsReduceAccElementwiseOperation>
using DeviceGemmBiasAddReducePtr =
std::unique_ptr<DeviceGemmBiasAddReduce<AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
C1ElementwiseOperation,
DxsInElementwiseOperation,
DxsReduceAccElementwiseOperation>>;
template <ck::index_t NumDTensor, ck::index_t NumReduce>
using DeviceGemmReducePtr = std::unique_ptr<DeviceGemmReduce<NumDTensor, NumReduce>>;
} // namespace device
} // namespace tensor_operation
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
......@@ -29,14 +32,14 @@ template <typename ALayout,
typename GemmAccDataType,
typename CShuffleDataType,
typename ReduceAccDataType,
typename DPtrsGlobal,
typename ReducePtrsGlobal,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename DxsReduceOperation,
typename DxsInElementwiseOperation,
typename DxsReduceAccElementwiseOperation,
typename DGlobalMemoryDataOperation,
typename ReduceOperations,
typename ReduceInElementwiseOperations,
typename ReduceAccElementwiseOperations,
typename ReduceGlobalMemoryDataOperation,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
......@@ -71,11 +74,7 @@ template <typename ALayout,
index_t CReduceThreadLds2VGprCopySrcDstScalarPerVector_NPerBlock,
index_t CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock,
LoopScheduler LoopSched = make_default_loop_scheduler()>
struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
DxsInElementwiseOperation,
DxsReduceAccElementwiseOperation>
struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<0, ReduceOperations::Size()>
{
using DeviceOp = DeviceGemmReduce_Xdl_CShuffle;
......@@ -347,8 +346,8 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
}
}
// assume D is packed tensor
static auto MakeDGridDescriptor_M(index_t MRaw)
// assume Reduce is packed tensor
static auto MakeReduceGridDescriptor_M(index_t MRaw)
{
const auto d_grid_desc_mraw = make_naive_tensor_descriptor_packed(make_tuple(MRaw));
......@@ -376,7 +375,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1(1, 1, 1));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1(1, 1, 1));
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
using DGridDesc_M = decltype(MakeDGridDescriptor_M(1));
using ReduceGridDesc_M = decltype(MakeReduceGridDescriptor_M(1));
// GridwiseGemm
using GridwiseGemm = GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1<
......@@ -385,19 +384,19 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
CShuffleDataType,
CDataType,
ReduceAccDataType,
DPtrsGlobal,
ReducePtrsGlobal,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
DxsReduceOperation,
DxsInElementwiseOperation,
DxsReduceAccElementwiseOperation,
ReduceOperations,
ReduceInElementwiseOperations,
ReduceAccElementwiseOperations,
InMemoryDataOperationEnum::Set,
DGlobalMemoryDataOperation,
ReduceGlobalMemoryDataOperation,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
CGridDesc_M_N,
DGridDesc_M,
ReduceGridDesc_M,
NumGemmKPrefetchStage,
BlockSize,
MPerBlock,
......@@ -440,7 +439,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
Argument(const ADataType* p_a_grid,
const BDataType* p_b_grid,
CDataType* p_c_grid,
DPtrsGlobal p_ds_grid,
ReducePtrsGlobal p_reduces_grid,
index_t MRaw,
index_t NRaw,
index_t KRaw,
......@@ -450,24 +449,24 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsReduceAccElementwiseOperation dxs_out_element_op)
ReduceInElementwiseOperations reduce_in_element_ops,
ReduceAccElementwiseOperations reduce_out_element_ops)
: p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid},
p_c_grid_{p_c_grid},
p_ds_grid_{p_ds_grid},
p_reduces_grid_{p_reduces_grid},
a_grid_desc_ak0_m_ak1_{DeviceOp::MakeAGridDescriptor_AK0_M_AK1(MRaw, KRaw, StrideA)},
b_grid_desc_bk0_n_bk1_{DeviceOp::MakeBGridDescriptor_BK0_N_BK1(KRaw, NRaw, StrideB)},
c_grid_desc_m_n_{DeviceOp::MakeCGridDescriptor_M_N(MRaw, NRaw, StrideC)},
d_grid_desc_m_{DeviceOp::MakeDGridDescriptor_M(MRaw)},
reduce_grid_desc_m_{DeviceOp::MakeReduceGridDescriptor_M(MRaw)},
c_grid_desc_mblock_mperblock_nblock_nperblock_{},
d_grid_desc_mblock_mperblock_{},
reduce_grid_desc_mblock_mperblock_{},
block_2_ctile_map_{GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_)},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
c_element_op_{c_element_op},
dxs_in_element_op_{dxs_in_element_op},
dxs_out_element_op_{dxs_out_element_op}
reduce_in_element_ops_{reduce_in_element_ops},
reduce_out_element_ops_{reduce_out_element_ops}
{
if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_,
b_grid_desc_bk0_n_bk1_,
......@@ -478,8 +477,8 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n_);
d_grid_desc_mblock_mperblock_ =
GridwiseGemm::MakeDGridDescriptor_MBlock_MPerBlock(d_grid_desc_m_);
reduce_grid_desc_mblock_mperblock_ =
GridwiseGemm::MakeReduceGridDescriptor_MBlock_MPerBlock(reduce_grid_desc_m_);
}
}
......@@ -487,20 +486,21 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
DPtrsGlobal p_ds_grid_;
ReducePtrsGlobal p_reduces_grid_;
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
CGridDesc_M_N c_grid_desc_m_n_;
DGridDesc_M d_grid_desc_m_;
ReduceGridDesc_M reduce_grid_desc_m_;
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::DGridDescriptor_MBlock_MPerBlock d_grid_desc_mblock_mperblock_;
typename GridwiseGemm::ReduceGridDescriptor_MBlock_MPerBlock
reduce_grid_desc_mblock_mperblock_;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
DxsInElementwiseOperation dxs_in_element_op_;
DxsReduceAccElementwiseOperation dxs_out_element_op_;
ReduceInElementwiseOperations reduce_in_element_ops_;
ReduceAccElementwiseOperations reduce_out_element_ops_;
};
// Invoker
......@@ -525,7 +525,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
std::cout << "arg.d_grid_desc_m_{ " << arg.d_grid_desc_m_.GetLength(I0) << "}"
std::cout << "arg.reduce_grid_desc_m_{ " << arg.reduce_grid_desc_m_.GetLength(I0) << "}"
<< std::endl;
}
#endif
......@@ -551,16 +551,16 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
DPtrsGlobal,
ReducePtrsGlobal,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
DxsInElementwiseOperation,
DxsReduceAccElementwiseOperation,
ReduceInElementwiseOperations,
ReduceAccElementwiseOperations,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DGridDescriptor_MBlock_MPerBlock,
typename GridwiseGemm::ReduceGridDescriptor_MBlock_MPerBlock,
typename GridwiseGemm::DefaultBlock2CTileMap,
true>;
......@@ -573,16 +573,16 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.p_ds_grid_,
arg.p_reduces_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.dxs_in_element_op_,
arg.dxs_out_element_op_,
arg.reduce_in_element_ops_,
arg.reduce_out_element_ops_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.d_grid_desc_mblock_mperblock_,
arg.reduce_grid_desc_mblock_mperblock_,
arg.block_2_ctile_map_);
}
else
......@@ -591,16 +591,16 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
DPtrsGlobal,
ReducePtrsGlobal,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
DxsInElementwiseOperation,
DxsReduceAccElementwiseOperation,
ReduceInElementwiseOperations,
ReduceAccElementwiseOperations,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DGridDescriptor_MBlock_MPerBlock,
typename GridwiseGemm::ReduceGridDescriptor_MBlock_MPerBlock,
typename GridwiseGemm::DefaultBlock2CTileMap,
false>;
......@@ -613,16 +613,16 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.p_ds_grid_,
arg.p_reduces_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.dxs_in_element_op_,
arg.dxs_out_element_op_,
arg.reduce_in_element_ops_,
arg.reduce_out_element_ops_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.d_grid_desc_mblock_mperblock_,
arg.reduce_grid_desc_mblock_mperblock_,
arg.block_2_ctile_map_);
}
......@@ -657,37 +657,75 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const ADataType* p_a,
const BDataType* p_b,
CDataType* p_c,
DPtrsGlobal p_dxs,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsReduceAccElementwiseOperation dxs_out_element_op)
static constexpr int NumReduce = ReduceOperations::Size();
static auto MakeArgument(const void* p_a,
const void* p_b,
const void* p_bias,
std::array<const void*, 0> p_ds,
void* p_c,
std::array<void*, NumReduce> p_reduces,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
ck::index_t StrideC,
std::array<ck::index_t, 0> StrideDs,
std::array<void*, 3> gemm_element_ops,
std::array<void*, 0> d_element_ops,
std::array<void*, NumReduce> reduce_in_element_op,
std::array<void*, NumReduce> reduce_out_element_op)
{
return Argument{p_a,
p_b,
p_c,
p_dxs,
MRaw,
NRaw,
KRaw,
(void)p_bias;
(void)p_ds;
(void)StrideDs;
(void)d_element_ops;
ReducePtrsGlobal reduce_tuple = generate_tuple(
[&](auto I) {
auto tmp = ReducePtrsGlobal{}[I];
using T = remove_pointer_t<decltype(tmp)>;
return static_cast<T*>(p_reduces[I]);
},
Number<NumReduce>{});
ReduceInElementwiseOperations reduce_in_element_ops = generate_tuple(
[&](auto I) {
auto tmp = ReduceInElementwiseOperations{}[I];
using T = remove_pointer_t<decltype(tmp)>;
return *(static_cast<T*>(reduce_in_element_op[I]));
},
Number<NumReduce>{});
ReduceAccElementwiseOperations reduce_out_element_ops = generate_tuple(
[&](auto I) {
auto tmp = ReduceAccElementwiseOperations{}[I];
using T = remove_pointer_t<decltype(tmp)>;
return *(static_cast<T*>(reduce_out_element_op[I]));
},
Number<NumReduce>{});
AElementwiseOperation a_element_op =
*(static_cast<AElementwiseOperation*>(gemm_element_ops[0]));
BElementwiseOperation b_element_op =
*(static_cast<BElementwiseOperation*>(gemm_element_ops[1]));
CElementwiseOperation c_element_op =
*(static_cast<CElementwiseOperation*>(gemm_element_ops[2]));
return Argument{static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
reduce_tuple,
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op,
dxs_in_element_op,
dxs_out_element_op};
reduce_in_element_ops,
reduce_out_element_ops};
}
static auto MakeInvoker() { return Invoker{}; }
......@@ -696,37 +734,73 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
const void* p_bias,
std::array<const void*, 0> p_ds,
void* p_c,
void* p_dxs,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsReduceAccElementwiseOperation dxs_out_element_op,
index_t /* KBatch */ = 1) override
std::array<void*, NumReduce> p_reduces,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
ck::index_t StrideC,
std::array<ck::index_t, 0> StrideDs,
std::array<void*, 3> gemm_element_ops,
std::array<void*, 0> d_element_ops,
std::array<void*, NumReduce> reduce_in_element_op,
std::array<void*, NumReduce> reduce_out_element_op,
ck::index_t = 1) override
{
DPtrsGlobal dxs_tuple = *(static_cast<DPtrsGlobal*>(p_dxs));
(void)p_bias;
(void)p_ds;
(void)StrideDs;
(void)d_element_ops;
ReducePtrsGlobal reduce_tuple = generate_tuple(
[&](auto I) {
auto tmp = ReducePtrsGlobal{}[I];
using T = remove_pointer_t<decltype(tmp)>;
return static_cast<T*>(p_reduces[I]);
},
Number<NumReduce>{});
ReduceInElementwiseOperations reduce_in_element_ops = generate_tuple(
[&](auto I) {
auto tmp = ReduceInElementwiseOperations{}[I];
using T = remove_pointer_t<decltype(tmp)>;
return *(static_cast<T*>(reduce_in_element_op[I]));
},
Number<NumReduce>{});
ReduceAccElementwiseOperations reduce_out_element_ops = generate_tuple(
[&](auto I) {
auto tmp = ReduceAccElementwiseOperations{}[I];
using T = remove_pointer_t<decltype(tmp)>;
return *(static_cast<T*>(reduce_out_element_op[I]));
},
Number<NumReduce>{});
AElementwiseOperation a_element_op =
*(static_cast<AElementwiseOperation*>(gemm_element_ops[0]));
BElementwiseOperation b_element_op =
*(static_cast<BElementwiseOperation*>(gemm_element_ops[1]));
CElementwiseOperation c_element_op =
*(static_cast<CElementwiseOperation*>(gemm_element_ops[2]));
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
dxs_tuple,
MRaw,
NRaw,
KRaw,
reduce_tuple,
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op,
dxs_in_element_op,
dxs_out_element_op);
reduce_in_element_ops,
reduce_out_element_ops);
}
// polymorphic
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
struct DeviceGemmSplitK : public BaseOperator
{
virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
ck::index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
ck::index_t KBatch) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
using DeviceGemmSplitKPtr = std::unique_ptr<
DeviceGemmSplitK<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>>;
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
......@@ -7,7 +10,7 @@
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_splitk.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r4.hpp"
#include "ck/device_utility/device_prop.hpp"
......@@ -54,7 +57,7 @@ template <typename ADataType,
ck::index_t CThreadTransferSrcDstVectorDim,
ck::index_t CThreadTransferDstScalarPerVector>
struct DeviceGemmXdlSplitK
: public DeviceGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>
: public DeviceGemmSplitK<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
......@@ -7,7 +10,7 @@
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_splitk.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r4r2.hpp"
#include "ck/device_utility/device_prop.hpp"
......@@ -56,7 +59,7 @@ template <typename ADataType,
typename CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CBlockTransferScalarPerVector_NWaveNPerXDL>
struct DeviceGemmXdlSplitKCShuffle
: public DeviceGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>
: public DeviceGemmSplitK<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
......@@ -417,21 +420,22 @@ struct DeviceGemmXdlSplitKCShuffle
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_.GetElementSpaceSize() *
sizeof(CDataType)));
launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_);
ave_time =
launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_);
};
if(has_main_k0_block_loop)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment