Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
0ade7981
Commit
0ade7981
authored
Jun 26, 2022
by
Jing Zhang
Browse files
add mnk padding
parent
ab04f22f
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
276 additions
and
94 deletions
+276
-94
example/24_batched_gemm_c_permute/batched_gemm_c_permute_xdl_fp16.cpp
...atched_gemm_c_permute/batched_gemm_c_permute_xdl_fp16.cpp
+19
-20
include/ck/tensor_operation/gpu/device/device_batched_gemm_c_permute_xdl.hpp
...peration/gpu/device/device_batched_gemm_c_permute_xdl.hpp
+257
-74
No files found.
example/24_batched_gemm_c_permute/batched_gemm_c_permute_xdl_fp16.cpp
View file @
0ade7981
...
@@ -39,7 +39,9 @@ using AElementOp = ck::tensor_operation::element_wise::PassThrough;
...
@@ -39,7 +39,9 @@ using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// static constexpr auto MNPadding = ck::tensor_operation::device::GemmSpecialization::MNPadding;
static
constexpr
auto
MNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// clang-format off
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmCPermuteXdl
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmCPermuteXdl
...
@@ -47,7 +49,8 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmCPermu
...
@@ -47,7 +49,8 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmCPermu
//######| | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | Operation| Operation| Operation| | | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | Operation| Operation| Operation| | | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// < Row, Col, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, MNPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8>;
<
Row
,
Col
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
MNKPadding
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
// clang-format on
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
...
@@ -59,13 +62,9 @@ int main(int argc, char* argv[])
...
@@ -59,13 +62,9 @@ int main(int argc, char* argv[])
int
init_method
=
1
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
bool
time_kernel
=
false
;
// const int M = 88;
const
int
M
=
88
;
// const int N = 64;
const
int
N
=
64
;
// const int K = 88;
const
int
K
=
88
;
const
int
M
=
256
;
const
int
N
=
128
;
const
int
K
=
64
;
const
int
stride_A
=
K
;
const
int
stride_A
=
K
;
const
int
stride_B
=
K
;
const
int
stride_B
=
K
;
...
@@ -76,8 +75,8 @@ int main(int argc, char* argv[])
...
@@ -76,8 +75,8 @@ int main(int argc, char* argv[])
const
int
batch_count
=
G0
*
G1
;
const
int
batch_count
=
G0
*
G1
;
// output layout - [G0, M, G1, N]
// output layout - [G0, M, G1, N]
const
int
stride_
B
0
=
M
*
G1
*
N
;
const
int
stride_
G
0
=
M
*
G1
*
N
;
const
int
stride_
B
1
=
N
;
const
int
stride_
G
1
=
N
;
const
int
stride_M
=
G1
*
N
;
const
int
stride_M
=
G1
*
N
;
const
int
stride_N
=
1
;
const
int
stride_N
=
1
;
...
@@ -97,7 +96,7 @@ int main(int argc, char* argv[])
...
@@ -97,7 +96,7 @@ int main(int argc, char* argv[])
// GEMM shape
// GEMM shape
ck
::
tensor_operation
::
device
::
BatchedGemmCPermuteDesc
batched_gemm_c_permute_desc
{
ck
::
tensor_operation
::
device
::
BatchedGemmCPermuteDesc
batched_gemm_c_permute_desc
{
G0
,
G1
,
M
,
N
,
stride_
B
0
,
stride_
B
1
,
stride_M
,
stride_N
};
G0
,
G1
,
M
,
N
,
stride_
G
0
,
stride_
G
1
,
stride_M
,
stride_N
};
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count_
,
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count_
,
std
::
size_t
row
,
std
::
size_t
row
,
...
@@ -119,24 +118,24 @@ int main(int argc, char* argv[])
...
@@ -119,24 +118,24 @@ int main(int argc, char* argv[])
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
batch_count
,
M
,
K
,
stride_A
,
ALayout
{}));
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
batch_count
,
M
,
K
,
stride_A
,
ALayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
batch_count
,
K
,
N
,
stride_B
,
BLayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
batch_count
,
K
,
N
,
stride_B
,
BLayout
{}));
auto
f_host_c_tensor_descriptor
=
[](
std
::
size_t
B
0_
,
auto
f_host_c_tensor_descriptor
=
[](
std
::
size_t
G
0_
,
std
::
size_t
B
1_
,
std
::
size_t
G
1_
,
std
::
size_t
M_
,
std
::
size_t
M_
,
std
::
size_t
N_
,
std
::
size_t
N_
,
std
::
size_t
stride_
B
0_
,
std
::
size_t
stride_
G
0_
,
std
::
size_t
stride_
B
1_
,
std
::
size_t
stride_
G
1_
,
std
::
size_t
stride_M_
,
std
::
size_t
stride_M_
,
std
::
size_t
stride_N_
)
{
std
::
size_t
stride_N_
)
{
return
HostTensorDescriptor
(
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
B
0_
,
B
1_
,
M_
,
N_
}),
std
::
vector
<
std
::
size_t
>
({
G
0_
,
G
1_
,
M_
,
N_
}),
std
::
vector
<
std
::
size_t
>
({
stride_
B
0_
,
stride_
B
1_
,
stride_M_
,
stride_N_
}));
std
::
vector
<
std
::
size_t
>
({
stride_
G
0_
,
stride_
G
1_
,
stride_M_
,
stride_N_
}));
};
};
Tensor
<
CDataType
>
c_g0_g1_m_n_host_result
(
Tensor
<
CDataType
>
c_g0_g1_m_n_host_result
(
f_host_c_tensor_descriptor
(
G0
,
G1
,
M
,
N
,
stride_
B
0
,
stride_
B
1
,
stride_M
,
stride_N
));
f_host_c_tensor_descriptor
(
G0
,
G1
,
M
,
N
,
stride_
G
0
,
stride_
G
1
,
stride_M
,
stride_N
));
Tensor
<
CDataType
>
c_g0_g1_m_n_device_result
(
Tensor
<
CDataType
>
c_g0_g1_m_n_device_result
(
f_host_c_tensor_descriptor
(
G0
,
G1
,
M
,
N
,
stride_
B
0
,
stride_
B
1
,
stride_M
,
stride_N
));
f_host_c_tensor_descriptor
(
G0
,
G1
,
M
,
N
,
stride_
G
0
,
stride_
G
1
,
stride_M
,
stride_N
));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
...
...
include/ck/tensor_operation/gpu/device/device_batched_gemm_c_permute_xdl.hpp
View file @
0ade7981
...
@@ -166,148 +166,331 @@ struct DeviceBatchedGemmCPermuteXdl : public DeviceBatchedGemmCPermute<AElementw
...
@@ -166,148 +166,331 @@ struct DeviceBatchedGemmCPermuteXdl : public DeviceBatchedGemmCPermute<AElementw
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
auto
MakeAGridDescriptor_K0_M_K1
(
index_t
M
,
index_t
K
,
index_t
s
tride
_
A
)
static
auto
MakeAGridDescriptor_
A
K0_M_
A
K1
(
index_t
M
Raw
,
index_t
K
Raw
,
index_t
S
trideA
)
{
{
assert
(
K
%
BK1
==
0
);
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
const
index_t
K0
=
K
/
AK1
;
const
auto
a_grid_desc_m_k
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
stride_A
,
I1
));
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
StrideA
,
I1
));
}
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
::
value
)
else
if
constexpr
(
is_same
_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I1
,
stride_A
));
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
I1
,
StrideA
));
}
}
}();
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
K
=
math
::
integer_divide_ceil
(
KRaw
,
KPerBlock
)
*
KPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
KPad
=
K
-
KRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
{
const
auto
PadM
=
(
MPerBlock
-
M
%
MPerBlock
)
%
MPerBlock
;
// pad both M and K
assert
(
K
%
AK1
==
0
);
return
transform_tensor_descriptor
(
const
auto
AK0
=
K
/
AK1
;
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
AK1
)),
const
auto
a_grid_desc_m_k
=
make_right_pad_transform
(
M
,
PadM
)),
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
}
else
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
{
return
transform_tensor_descriptor
(
// pad M, but not K
a_grid_desc_m_k
,
assert
(
KRaw
%
AK1
==
0
);
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
AK1
)),
make_pass_through_transform
(
M
)),
const
auto
AK0
=
KRaw
/
AK1
;
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_right_pad_transform
(
MRaw
,
MPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
}
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad K, but not M
assert
(
K
%
AK1
==
0
);
static
auto
MakeBGridDescriptor_K0_N_K1
(
index_t
K
,
index_t
N
,
index_t
stride_B
)
const
auto
AK0
=
K
/
AK1
;
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_pass_through_transform
(
MRaw
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
MRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
{
{
assert
(
K
%
BK1
==
0
);
// not pad M or K
assert
(
KRaw
%
AK1
==
0
);
const
index_t
K0
=
K
/
BK1
;
const
auto
AK0
=
KRaw
/
AK1
;
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
MRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_k_n
=
[
&
]()
{
return
a_grid_desc_ak0_m_ak1
;
}
}
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
stride_B
,
I1
));
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
I1
,
stride_B
));
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
}
}();
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerBlock
)
*
NPerBlock
;
const
auto
K
=
math
::
integer_divide_ceil
(
KRaw
,
KPerBlock
)
*
KPerBlock
;
const
auto
NPad
=
N
-
NRaw
;
const
auto
KPad
=
K
-
KRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
{
const
auto
PadN
=
(
NPerBlock
-
N
%
NPerBlock
)
%
NPerBlock
;
// pad both N and K
assert
(
K
%
BK1
==
0
);
return
transform_tensor_descriptor
(
const
auto
BK0
=
K
/
BK1
;
b_grid_desc_k_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
BK1
)),
const
auto
b_grid_desc_n_k
=
make_right_pad_transform
(
N
,
PadN
)),
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_right_pad_transform
(
NRaw
,
NPad
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
}
else
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
{
return
transform_tensor_descriptor
(
// pad N, but not K
b_grid_desc_k_n
,
assert
(
KRaw
%
BK1
==
0
);
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
BK1
)),
make_pass_through_transform
(
N
)),
const
auto
BK0
=
KRaw
/
BK1
;
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad K, but not N
assert
(
K
%
BK1
==
0
);
const
auto
BK0
=
K
/
BK1
;
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_pass_through_transform
(
NRaw
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
{
// not pad N or K
assert
(
KRaw
%
BK1
==
0
);
const
auto
BK0
=
KRaw
/
BK1
;
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
}
}
}
static
auto
MakeCGridDescriptor_M_N
(
index_t
M
,
index_t
N
,
index_t
stride_M
,
index_t
stride_N
)
static
auto
MakeCGridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
stride_M
,
index_t
stride_N
)
{
{
const
auto
c_grid_desc_m_n
=
[
&
]()
{
const
auto
c_grid_desc_mraw_nraw
=
[
&
]()
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
stride_M
,
stride_N
));
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
stride_M
,
stride_N
));
}();
}();
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerBlock
)
*
NPerBlock
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
const
auto
MPad
=
M
-
MRaw
;
{
const
auto
NPad
=
N
-
NRaw
;
const
auto
PadM
=
(
MPerBlock
-
M
%
MPerBlock
)
%
MPerBlock
;
const
auto
PadN
=
(
NPerBlock
-
N
%
NPerBlock
)
%
NPerBlock
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad M and N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad M, but not N
return
transform_tensor_descriptor
(
return
transform_tensor_descriptor
(
c_grid_desc_m
_n
,
c_grid_desc_m
raw_nraw
,
make_tuple
(
make_right_pad_transform
(
M
,
Pad
M
),
make_
right_pad
_transform
(
N
,
PadN
)),
make_tuple
(
make_right_pad_transform
(
M
Raw
,
M
Pad
),
make_
pass_through
_transform
(
N
Raw
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
}
else
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
{
// pad N, but not M
return
transform_tensor_descriptor
(
return
transform_tensor_descriptor
(
c_grid_desc_m
_n
,
c_grid_desc_m
raw_nraw
,
make_tuple
(
make_pass_through_transform
(
M
),
make_
pass_through
_transform
(
N
)),
make_tuple
(
make_pass_through_transform
(
M
Raw
),
make_
right_pad
_transform
(
N
Raw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
}
else
{
// not pad M or N
return
c_grid_desc_mraw_nraw
;
}
}
}
static
auto
MakeEGridDescriptor_G0_G1_M_N
(
index_t
G0
,
static
auto
MakeEGridDescriptor_G0_G1_M_N
(
index_t
G0
,
index_t
G1
,
index_t
G1
,
index_t
M
,
index_t
M
Raw
,
index_t
N
,
index_t
N
Raw
,
index_t
stride_G0
,
index_t
stride_G0
,
index_t
stride_G1
,
index_t
stride_G1
,
index_t
stride_M
,
index_t
stride_M
,
index_t
stride_N
)
index_t
stride_N
)
{
{
const
auto
e_grid_desc_g0_g1_m
_n
=
[
&
]()
{
const
auto
e_grid_desc_g0_g1_m
raw_nraw
=
[
&
]()
{
return
make_naive_tensor_descriptor
(
return
make_naive_tensor_descriptor
(
make_tuple
(
G0
,
G1
,
M
,
N
),
make_tuple
(
stride_G0
,
stride_G1
,
stride_M
,
stride_N
));
make_tuple
(
G0
,
G1
,
MRaw
,
NRaw
),
make_tuple
(
stride_G0
,
stride_G1
,
stride_M
,
stride_N
));
}();
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
{
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerBlock
)
*
NPerBlock
;
const
auto
PadM
=
(
MPerBlock
-
M
%
MPerBlock
)
%
MPerBlock
;
const
auto
PadN
=
(
NPerBlock
-
N
%
NPerBlock
)
%
NPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
NPad
=
N
-
NRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad M and N
return
transform_tensor_descriptor
(
e_grid_desc_g0_g1_mraw_nraw
,
make_tuple
(
make_pass_through_transform
(
G0
),
make_pass_through_transform
(
G1
),
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad M, but not N
return
transform_tensor_descriptor
(
e_grid_desc_g0_g1_mraw_nraw
,
make_tuple
(
make_pass_through_transform
(
G0
),
make_pass_through_transform
(
G1
),
make_right_pad_transform
(
MRaw
,
MPad
),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad N, but not M
return
transform_tensor_descriptor
(
return
transform_tensor_descriptor
(
e_grid_desc_g0_g1_m
_n
,
e_grid_desc_g0_g1_m
raw_nraw
,
make_tuple
(
make_pass_through_transform
(
G0
),
make_tuple
(
make_pass_through_transform
(
G0
),
make_pass_through_transform
(
G1
),
make_pass_through_transform
(
G1
),
make_
right_pad
_transform
(
M
,
PadM
),
make_
pass_through
_transform
(
M
Raw
),
make_right_pad_transform
(
N
,
Pad
N
)),
make_right_pad_transform
(
N
Raw
,
N
Pad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
}
}
else
else
{
{
return
e_grid_desc_g0_g1_m_n
;
// not pad M or N
return
e_grid_desc_g0_g1_mraw_nraw
;
}
}
}
}
using
AGridDesc_K0_M_K1
=
decltype
(
MakeAGridDescriptor_K0_M_K1
(
1
,
1
,
1
));
using
AGridDesc_K0_M_K1
=
decltype
(
MakeAGridDescriptor_
A
K0_M_
A
K1
(
1
,
1
,
1
));
using
BGridDesc_K0_N_K1
=
decltype
(
MakeBGridDescriptor_K0_N_K1
(
1
,
1
,
1
));
using
BGridDesc_K0_N_K1
=
decltype
(
MakeBGridDescriptor_
B
K0_N_
B
K1
(
1
,
1
,
1
));
using
CGridDesc_M_N
=
decltype
(
MakeCGridDescriptor_M_N
(
1
,
1
,
1
,
1
));
using
CGridDesc_M_N
=
decltype
(
MakeCGridDescriptor_M_N
(
1
,
1
,
1
,
1
));
using
EGridDesc_G0_G1_M_N
=
decltype
(
MakeEGridDescriptor_G0_G1_M_N
(
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
));
using
EGridDesc_G0_G1_M_N
=
decltype
(
MakeEGridDescriptor_G0_G1_M_N
(
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
));
...
@@ -417,9 +600,9 @@ struct DeviceBatchedGemmCPermuteXdl : public DeviceBatchedGemmCPermute<AElementw
...
@@ -417,9 +600,9 @@ struct DeviceBatchedGemmCPermuteXdl : public DeviceBatchedGemmCPermute<AElementw
p_c_grid_
{
p_c_grid
},
p_c_grid_
{
p_c_grid
},
BatchCount_
(
BatchCount
),
BatchCount_
(
BatchCount
),
a_grid_desc_k0_m_k1_
{
a_grid_desc_k0_m_k1_
{
DeviceBatchedGemmCPermuteXdl
::
MakeAGridDescriptor_K0_M_K1
(
M
,
K
,
stride_A
)},
DeviceBatchedGemmCPermuteXdl
::
MakeAGridDescriptor_
A
K0_M_
A
K1
(
M
,
K
,
stride_A
)},
b_grid_desc_k0_n_k1_
{
b_grid_desc_k0_n_k1_
{
DeviceBatchedGemmCPermuteXdl
::
MakeBGridDescriptor_K0_N_K1
(
K
,
N
,
stride_B
)},
DeviceBatchedGemmCPermuteXdl
::
MakeBGridDescriptor_
B
K0_N_
B
K1
(
K
,
N
,
stride_B
)},
c_grid_desc_m_n_
{
DeviceBatchedGemmCPermuteXdl
::
MakeCGridDescriptor_M_N
(
c_grid_desc_m_n_
{
DeviceBatchedGemmCPermuteXdl
::
MakeCGridDescriptor_M_N
(
batched_gemm_c_permute_desc
.
M_
,
batched_gemm_c_permute_desc
.
M_
,
batched_gemm_c_permute_desc
.
N_
,
batched_gemm_c_permute_desc
.
N_
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment