"magic_pdf/integrations/vscode:/vscode.git/clone" did not exist on "e52bd023f75f7bf351ebd051c5251beb44153a0a"
Unverified Commit 0a72e4df authored by Chao Liu's avatar Chao Liu Committed by GitHub
Browse files

Change initialization method of tensor for iGEMM (#49)

* change init method
parent 58a80570
...@@ -179,26 +179,38 @@ int main(int argc, char* argv[]) ...@@ -179,26 +179,38 @@ int main(int argc, char* argv[])
std::size_t num_thread = std::thread::hardware_concurrency(); std::size_t num_thread = std::thread::hardware_concurrency();
if(do_verification)
{
switch(init_method) switch(init_method)
{ {
case 0: case 0:
wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread); // no initialization
out.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
break; break;
case 1: case 1:
wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
out.GenerateTensorValue(GeneratorTensor_1{}, num_thread); out.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
break; break;
case 2: case 2:
out.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
break;
case 3:
out.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread); wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
break;
case 4:
out.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread); out.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
break;
case 5:
out.GenerateTensorValue(GeneratorTensor_3<float>{0.0, 1.0}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_3<float>{-0.5, 0.5}, num_thread);
break; break;
default: default:
wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread); out.GenerateTensorValue(GeneratorTensor_2{1, 5}, num_thread);
out.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
} auto gen_wei = [](auto... is) {
return GeneratorTensor_2{1, 5}(is...) * GeneratorTensor_Checkboard{}(is...);
};
wei.GenerateTensorValue(gen_wei, num_thread);
} }
auto f_make_for_device_nchw = [&]() { auto f_make_for_device_nchw = [&]() {
......
...@@ -205,26 +205,31 @@ int main(int argc, char* argv[]) ...@@ -205,26 +205,31 @@ int main(int argc, char* argv[])
std::size_t num_thread = std::thread::hardware_concurrency(); std::size_t num_thread = std::thread::hardware_concurrency();
if(do_verification)
{
switch(init_method) switch(init_method)
{ {
case 0: case 0:
// no initialization
break;
case 1:
in.GenerateTensorValue(GeneratorTensor_1{}, num_thread); in.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread); wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
break; break;
case 1: case 2:
in.GenerateTensorValue(GeneratorTensor_1{}, num_thread); in.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread); wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
break; break;
case 2: case 3:
in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread); in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread); wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
break; break;
case 3: case 4:
in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread); in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread); wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
break; break;
case 5:
in.GenerateTensorValue(GeneratorTensor_3<float>{0.0, 1.0}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_3<float>{-0.5, 0.5}, num_thread);
break;
default: default:
in.GenerateTensorValue(GeneratorTensor_2{1, 5}, num_thread); in.GenerateTensorValue(GeneratorTensor_2{1, 5}, num_thread);
...@@ -233,7 +238,6 @@ int main(int argc, char* argv[]) ...@@ -233,7 +238,6 @@ int main(int argc, char* argv[])
}; };
wei.GenerateTensorValue(gen_wei, num_thread); wei.GenerateTensorValue(gen_wei, num_thread);
} }
}
auto f_make_for_device_nchw = [&]() { auto f_make_for_device_nchw = [&]() {
#if USE_DYNAMIC_MODE #if USE_DYNAMIC_MODE
......
...@@ -152,26 +152,31 @@ int main(int argc, char* argv[]) ...@@ -152,26 +152,31 @@ int main(int argc, char* argv[])
std::size_t num_thread = std::thread::hardware_concurrency(); std::size_t num_thread = std::thread::hardware_concurrency();
if(do_verification)
{
switch(init_method) switch(init_method)
{ {
case 0: case 0:
// no initialization
break;
case 1:
in.GenerateTensorValue(GeneratorTensor_1{}, num_thread); in.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread); wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
break; break;
case 1: case 2:
in.GenerateTensorValue(GeneratorTensor_1{}, num_thread); in.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread); wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
break; break;
case 2: case 3:
in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread); in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread); wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
break; break;
case 3: case 4:
in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread); in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread); wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
break; break;
case 5:
in.GenerateTensorValue(GeneratorTensor_3<float>{0.0, 1.0}, num_thread);
wei.GenerateTensorValue(GeneratorTensor_3<float>{-0.5, 0.5}, num_thread);
break;
default: default:
in.GenerateTensorValue(GeneratorTensor_2{1, 5}, num_thread); in.GenerateTensorValue(GeneratorTensor_2{1, 5}, num_thread);
...@@ -180,7 +185,6 @@ int main(int argc, char* argv[]) ...@@ -180,7 +185,6 @@ int main(int argc, char* argv[])
}; };
wei.GenerateTensorValue(gen_wei, num_thread); wei.GenerateTensorValue(gen_wei, num_thread);
} }
}
auto f_make_for_device_nchw = [&]() { auto f_make_for_device_nchw = [&]() {
const auto in_lengths_dev = make_tuple(N, C, Hi, Wi); const auto in_lengths_dev = make_tuple(N, C, Hi, Wi);
......
...@@ -9,7 +9,7 @@ struct GeneratorTensor_1 ...@@ -9,7 +9,7 @@ struct GeneratorTensor_1
int value = 1; int value = 1;
template <typename... Is> template <typename... Is>
double operator()(Is... is) float operator()(Is... is)
{ {
return value; return value;
} }
...@@ -21,29 +21,31 @@ struct GeneratorTensor_2 ...@@ -21,29 +21,31 @@ struct GeneratorTensor_2
int max_value = 1; int max_value = 1;
template <typename... Is> template <typename... Is>
double operator()(Is...) float operator()(Is...)
{ {
return (std::rand() % (max_value - min_value)) + min_value; return (std::rand() % (max_value - min_value)) + min_value;
} }
}; };
template <typename T>
struct GeneratorTensor_3 struct GeneratorTensor_3
{ {
T min_value = 0;
T max_value = 1;
template <typename... Is> template <typename... Is>
double operator()(Is... is) float operator()(Is...)
{ {
std::array<ck::index_t, sizeof...(Is)> dims = {{static_cast<ck::index_t>(is)...}}; float tmp = float(std::rand()) / float(RAND_MAX);
auto f_acc = [](auto a, auto b) { return 10 * a + b; };
return std::accumulate(dims.begin(), dims.end(), ck::index_t(0), f_acc); return min_value + tmp * (max_value - min_value);
} }
}; };
struct GeneratorTensor_Checkboard struct GeneratorTensor_Checkboard
{ {
template <typename... Ts> template <typename... Ts>
double operator()(Ts... Xs) const float operator()(Ts... Xs) const
{ {
std::array<ck::index_t, sizeof...(Ts)> dims = {{static_cast<ck::index_t>(Xs)...}}; std::array<ck::index_t, sizeof...(Ts)> dims = {{static_cast<ck::index_t>(Xs)...}};
return std::accumulate(dims.begin(), return std::accumulate(dims.begin(),
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment