Commit 088a4f2b authored by aska-0096's avatar aska-0096
Browse files

1. compile success

2. incorrect output
3. non-desired instruction scheduling
parent 9a0cdb30
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/utility/loop_scheduler.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/warp/xdlops_gemm.hpp"
#include "ck/tensor_description/tensor_adaptor.hpp"
namespace ck {
#if 0
template <index_t MNXdlPerWave, index_t MNWaves, index_t MNPerXdl, typename TileDesc_K0_MN_K1>
__host__ __device__ static constexpr auto
MakeGemmMmaTileDescriptor_MN0_MN1_MN2_K(const TileDesc_K0_MN_K1&)
{
constexpr index_t K0 = TileDesc_K0_MN_K1{}.GetLength(Number<0>{});
constexpr index_t K1 = TileDesc_K0_MN_K1{}.GetLength(Number<2>{});
return transform_tensor_descriptor(
TileDesc_K0_MN_K1{},
make_tuple(make_merge_transform_v3_division_mod(make_tuple(Number<K0>{}, Number<K1>{})),
make_unmerge_transform(
make_tuple(Number<MNXdlPerWave>{}, Number<MNWaves>{}, Number<MNPerXdl>{}))),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}),
make_tuple(Sequence<3>{}, Sequence<0, 1, 2>{}));
}
#endif
template <index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPack,
bool TransposeC = false,
index_t AMmaKStride =
KPack* XdlopsGemm<FloatAB, MPerXDL, NPerXDL, KPack, TransposeC>{}.K0PerXdlops,
index_t BMmaKStride =
KPack* XdlopsGemm<FloatAB, MPerXDL, NPerXDL, KPack, TransposeC>{}.K0PerXdlops>
struct BlockwiseGemmXdlops_pipeline_v1
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
static constexpr index_t WaveSize = get_warp_size();
static constexpr index_t A_K0 = ATileDesc{}.GetLength(I0);
static constexpr index_t B_K0 = BTileDesc{}.GetLength(I0);
static constexpr index_t A_K1 = ATileDesc{}.GetLength(I2);
static constexpr index_t B_K1 = BTileDesc{}.GetLength(I2);
static constexpr auto xdlops_gemm = XdlopsGemm<FloatAB, MPerXDL, NPerXDL, KPack, TransposeC>{};
static constexpr index_t KPerThread = KPerBlock / xdlops_gemm.K0PerXdlops;
static constexpr index_t KRepeat = KPerThread / KPack;
static constexpr index_t MWaves = MPerBlock / (MRepeat * MPerXDL);
static constexpr index_t NWaves = NPerBlock / (NRepeat * NPerXDL);
static_assert(KPerThread % KPack == 0,
"Wrong KPack setting; try increasing KPerThread or decreasing KPack");
StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr,
FloatAcc,
MRepeat * NRepeat,
xdlops_gemm.GetRegSizePerXdlops(),
true>
c_thread_buf_;
__host__ __device__ constexpr auto& GetCThreadBuffer() { return c_thread_buf_; }
__device__ static auto GetWaveIdx()
{
const index_t thread_id = ThisThreadBlock::GetThreadId();
constexpr auto threadid_to_wave_idx_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(MWaves, NWaves, WaveSize))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
return threadid_to_wave_idx_adaptor.CalculateBottomIndex(make_multi_index(thread_id));
}
__device__ static auto CalculateAThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto xdlops_a_idx = xdlops_gemm.CalculateAThreadOriginDataIndex();
return make_tuple(0, waveId_m, xdlops_a_idx[I1], KPack * xdlops_a_idx[I0]);
}
__device__ static auto CalculateBThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_n = wave_idx[I1];
const auto xdlops_b_idx = xdlops_gemm.CalculateBThreadOriginDataIndex();
return make_tuple(0, waveId_n, xdlops_b_idx[I1], KPack * xdlops_b_idx[I0]);
}
template <index_t m0, index_t n0, index_t xdlops_i, index_t blk_i>
__device__ static auto
CalculateCThreadOriginDataIndex(Number<m0>, Number<n0>, Number<xdlops_i>, Number<blk_i>)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto waveId_n = wave_idx[I1];
const auto blk_idx = xdlops_gemm.GetBeginOfThreadBlk(xdlops_i, blk_i);
constexpr auto mrepeat_mwave_mperxdl_to_m_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(MRepeat, MWaves, MPerXDL))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
constexpr auto nrepeat_nwave_nperxdl_to_n_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(NRepeat, NWaves, NPerXDL))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
const index_t c_thread_m = mrepeat_mwave_mperxdl_to_m_adaptor.CalculateBottomIndex(
make_tuple(m0, waveId_m, blk_idx[I0]))[I0];
const index_t c_thread_n = nrepeat_nwave_nperxdl_to_n_adaptor.CalculateBottomIndex(
make_tuple(n0, waveId_n, blk_idx[I1]))[I0];
return make_tuple(c_thread_m, c_thread_n);
}
template <index_t m0, index_t n0, index_t xdlops_i, index_t blk_i>
__device__ static auto
CalculateCThreadOriginDataIndex8D(Number<m0>, Number<n0>, Number<xdlops_i>, Number<blk_i>)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto waveId_n = wave_idx[I1];
const auto blk_idx = xdlops_gemm.GetBeginOfThreadBlk4D(xdlops_i, blk_i);
return make_tuple(
m0, n0, waveId_m, waveId_n, blk_idx[I0], blk_idx[I1], blk_idx[I2], blk_idx[I3]);
}
using Tuple4 = decltype(CalculateAThreadOriginDataIndex());
__host__ __device__
BlockwiseGemmXdlops_pipeline_v1(Tuple4 a_origin = CalculateAThreadOriginDataIndex(),
Tuple4 b_origin = CalculateBThreadOriginDataIndex())
: a_thread_copy_(a_origin), b_thread_copy_(b_origin)
{
static_assert(AMmaTileDesc::IsKnownAtCompileTime() && BMmaTileDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
static_assert(ThisThreadBlock::GetNumOfThread() == MWaves * NWaves * WaveSize,
"ThisThreadBlock::GetNumOfThread() != MWaves * NWaves * WaveSize\n");
static_assert(MPerBlock % (MPerXDL * MRepeat) == 0 && NPerBlock % (NPerXDL * NRepeat) == 0,
"wrong!");
}
// transposed XDL output supporting C_xdl' = B_xdl' * A_xdl'
__host__ __device__ static constexpr auto GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4()
{
constexpr auto c_m0_m1_m2_n_tblk_lens = xdlops_gemm.GetCM0M1M2NThreadBlkLengths();
constexpr auto M0 = c_m0_m1_m2_n_tblk_lens[I0];
constexpr auto M1 = c_m0_m1_m2_n_tblk_lens[I1];
constexpr auto M2 = c_m0_m1_m2_n_tblk_lens[I2];
constexpr auto N = c_m0_m1_m2_n_tblk_lens[I3];
return make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, I1, I1, N, M0, M1, M2));
}
// XDL output supporting C_xdl = A_xdl * B_xdl
__host__ __device__ static constexpr auto GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_m0_m1_m2_n_tblk_lens = xdlops_gemm.GetCM0M1M2NThreadBlkLengths();
constexpr auto M0 = c_m0_m1_m2_n_tblk_lens[I0];
constexpr auto M1 = c_m0_m1_m2_n_tblk_lens[I1];
constexpr auto M2 = c_m0_m1_m2_n_tblk_lens[I2];
constexpr auto N = c_m0_m1_m2_n_tblk_lens[I3];
return make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, I1, I1, M0, M1, M2, N));
}
__host__ __device__ static constexpr auto GetCThreadDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_m0_m1_m2_n_tblk_lens = xdlops_gemm.GetCM0M1M2NThreadBlkLengths();
constexpr auto M0 = c_m0_m1_m2_n_tblk_lens[I0];
constexpr auto M1 = c_m0_m1_m2_n_tblk_lens[I1];
constexpr auto M2 = c_m0_m1_m2_n_tblk_lens[I2];
constexpr auto N = c_m0_m1_m2_n_tblk_lens[I3];
return make_naive_tensor_descriptor_packed(
make_tuple(I1, Number<MRepeat>{}, Number<NRepeat>{}, I1, I1, M0, M1, M2, N));
}
// transposed XDL output supporting C_xdl' = B_xdl' * A_xdl'
__host__ __device__ static constexpr auto GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4()
{
constexpr auto c_block_desc_m0_n0_m1_n1_m2_n2 =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<NRepeat>{},
Number<MWaves>{},
Number<NWaves>{},
Number<MPerXDL>{},
Number<NPerXDL>{}));
return xdlops_gemm.MakeCDescriptor_M0_N0_M1_N1_M2_N2_N3_N4(c_block_desc_m0_n0_m1_n1_m2_n2);
}
// XDL output supporting C_xdl = A_xdl * B_xdl
__host__ __device__ static constexpr auto GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_block_desc_m0_n0_m1_n1_m2_n2 =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<NRepeat>{},
Number<MWaves>{},
Number<NWaves>{},
Number<MPerXDL>{},
Number<NPerXDL>{}));
return xdlops_gemm.MakeCDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_block_desc_m0_n0_m1_n1_m2_n2);
}
__host__ __device__ static constexpr auto GetCBlockDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_block_desc_g_m0_n0_m1_n1_m2_n2 =
make_naive_tensor_descriptor_packed(make_tuple(I1,
Number<MRepeat>{},
Number<NRepeat>{},
Number<MWaves>{},
Number<NWaves>{},
Number<MPerXDL>{},
Number<NPerXDL>{}));
return xdlops_gemm.MakeCDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(
c_block_desc_g_m0_n0_m1_n1_m2_n2);
}
template <typename CGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const auto c_grid_desc_m0_n0_m1_n1_m2_n2 = transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(M / (MWaves * MPerXDL), MWaves, MPerXDL)),
make_unmerge_transform(make_tuple(N / (NWaves * NPerXDL), NWaves, NPerXDL))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2, 4>{}, Sequence<1, 3, 5>{}));
return xdlops_gemm.MakeCDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m0_n0_m1_n1_m2_n2);
}
template <typename CGridDesc_G_M_N>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(const CGridDesc_G_M_N& c_grid_desc_g_m_n)
{
const auto G = c_grid_desc_g_m_n.GetLength(I0);
const auto M = c_grid_desc_g_m_n.GetLength(I1);
const auto N = c_grid_desc_g_m_n.GetLength(I2);
const auto c_grid_desc_g_m0_n0_m1_n1_m2_n2 = transform_tensor_descriptor(
c_grid_desc_g_m_n,
make_tuple(make_pass_through_transform(G),
make_unmerge_transform(make_tuple(M / (MWaves * MPerXDL), MWaves, MPerXDL)),
make_unmerge_transform(make_tuple(N / (NWaves * NPerXDL), NWaves, NPerXDL))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 3, 5>{}, Sequence<2, 4, 6>{}));
return xdlops_gemm.MakeCDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(
c_grid_desc_g_m0_n0_m1_n1_m2_n2);
}
static constexpr AMmaTileDesc a_block_desc_m0_m1_m2_k;
static constexpr BMmaTileDesc b_block_desc_n0_n1_n2_k;
template <bool HasMainLoop,
typename AGridDesc,
typename ABlockDesc,
typename ABlockTransfer,
typename AGridBuffer,
typename ABlockBuffer,
typename ABlockTransferStep,
typename BGridDesc,
typename BBlockDesc,
typename BBlockTransfer,
typename BGridBuffer,
typename BBlockBuffer,
typename BBlockTransferStep,
typename CThreadBuffer>
__device__ void Run(const AGridDesc& a_grid_desc,
const ABlockDesc& a_block_desc,
ABlockTransfer& a_blockwise_copy,
const AGridBuffer& a_grid_buf,
ABlockBuffer& a_block_buf,
const ABlockTransferStep& a_block_copy_step,
const BGridDesc& b_grid_desc,
const BBlockDesc& b_block_desc,
BBlockTransfer& b_blockwise_copy,
const BGridBuffer& b_grid_buf,
BBlockBuffer& b_block_buf,
const BBlockTransferStep& b_block_copy_step,
CThreadBuffer& c_thread_buf,
index_t num_loop) const
{
auto a_thread_read_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAB>(
a_thread_desc_.GetElementSpaceSize());
auto a_thread_compute_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAB>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_read_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAB>(
b_thread_desc_.GetElementSpaceSize());
auto b_thread_compute_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAB>(
b_thread_desc_.GetElementSpaceSize());
// preload data into LDS
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf);
// Wait all wave produce this K-loop data
block_sync_lds();
// preload data into VGPR, 1 kpack of K-loop
static_for<0, MRepeat, 1>{}([&](auto m0) {
// read A
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, I0, I0, I0),
a_thread_read_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
// read B
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, I0),
b_block_buf,
b_thread_desc_,
make_tuple(I0, I0, I0, I0),
b_thread_read_buf);
});
});
// Initialize C
c_thread_buf.Clear();
// main body
if constexpr(HasMainLoop)
{
index_t i = 0;
do
{
a_blockwise_copy.RunRead(a_grid_desc, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc, b_grid_buf);
// Here only KRepeat-1 times read (1~KRepeat) & compute (0~KRepat-1) of this k-loop
static_for<1, KRepeat, 1>{}([&](auto k) { // k=1,2 instead of kpack*1, ...
// Switch read/compute VGPR buffer
a_thread_compute_buf = a_thread_read_buf;
b_thread_compute_buf = b_thread_read_buf;
/* Read N+1 */
static_for<0, MRepeat, 1>{}([&](auto m0) {
// read A
a_thread_copy_.Run(
a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(I0, I0, I0, I0),
a_thread_read_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
// read B
b_thread_copy_.Run(
b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(I0, I0, I0, I0),
b_thread_read_buf);
/* Compute N */
vector_type<FloatAB, KPack> a_thread_vec;
vector_type<FloatAB, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<FloatAB>()(ik) =
a_thread_compute_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(0, 0, 0, ik))>{}];
b_thread_vec.template AsType<FloatAB>()(ik) =
b_thread_compute_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(0, 0, 0, ik))>{}];
});
using mfma_input_type =
typename vector_type<FloatAB, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.template Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
// Wait all wave consume this k-loop data
block_sync_lds();
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc, a_block_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc, b_block_copy_step);
a_blockwise_copy.RunWrite(a_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc, b_block_buf);
++i;
// Wait all wave produce next k-loop data
block_sync_lds();
// switch read/compute VGPR buffer
a_thread_compute_buf = a_thread_read_buf;
b_thread_compute_buf = b_thread_read_buf;
// Here 1 time read(idx=0) of next K-loop & compute(idx=KRepeat) this K-loop
static_for<0, MRepeat, 1>{}([&](auto m0) {
// read A
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, I0, I0, I0),
a_thread_read_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
// read B
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, I0),
b_block_buf,
b_thread_desc_,
make_tuple(I0, I0, I0, I0),
b_thread_read_buf);
/* Compute N */
vector_type<FloatAB, KPack> a_thread_vec;
vector_type<FloatAB, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<FloatAB>()(ik) = a_thread_compute_buf
[Number<a_thread_desc_.CalculateOffset(make_tuple(0, 0, 0, ik))>{}];
b_thread_vec.template AsType<FloatAB>()(ik) = b_thread_compute_buf
[Number<b_thread_desc_.CalculateOffset(make_tuple(0, 0, 0, ik))>{}];
});
using mfma_input_type =
typename vector_type<FloatAB, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.template Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
} while(i < (num_loop - 1));
}
// tail
{
// Here only KRepeat-1 times read & compute
static_for<1, KRepeat, 1>{}([&](auto k) { // k=1,2 instead of kpack*1, ...
// switch read/compute VGPR buffer
a_thread_compute_buf = a_thread_read_buf;
b_thread_compute_buf = b_thread_read_buf;
/* Read N+1 */
static_for<0, MRepeat, 1>{}([&](auto m0) {
// read A
a_thread_copy_.Run(
a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(I0, I0, I0, I0),
a_thread_read_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
// read B
b_thread_copy_.Run(
b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(I0, I0, I0, I0),
b_thread_read_buf);
/* Compute N */
vector_type<FloatAB, KPack> a_thread_vec;
vector_type<FloatAB, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto ik) {
a_thread_vec.template AsType<FloatAB>()(ik) = a_thread_compute_buf
[Number<a_thread_desc_.CalculateOffset(make_tuple(0, 0, 0, ik))>{}];
b_thread_vec.template AsType<FloatAB>()(ik) = b_thread_compute_buf
[Number<b_thread_desc_.CalculateOffset(make_tuple(0, 0, 0, ik))>{}];
});
using mfma_input_type =
typename vector_type<FloatAB, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.template Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
/* Final Compute issue */
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, NRepeat, 1>{}([&](auto n0) {
vector_type<FloatAB, KPack> a_thread_vec;
vector_type<FloatAB, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto i) {
a_thread_vec.template AsType<FloatAB>()(i) = a_thread_compute_buf
[Number<a_thread_desc_.CalculateOffset(make_tuple(0, 0, 0, i))>{}];
b_thread_vec.template AsType<FloatAB>()(i) = b_thread_compute_buf
[Number<b_thread_desc_.CalculateOffset(make_tuple(0, 0, 0, i))>{}];
});
using mfma_input_type =
typename vector_type<FloatAB, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.template Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
}
}
protected:
// A[M0, M1, M2, KPack]
static constexpr auto a_thread_desc_ =
make_naive_tensor_descriptor_packed(make_tuple(I1, I1, I1, Number<KPack>{}));
// B[N0, N1, N2, KPack]
static constexpr auto b_thread_desc_ =
make_naive_tensor_descriptor_packed(make_tuple(I1, I1, I1, Number<KPack>{}));
// C[M, N, NumRegXdlops]
static constexpr auto c_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, xdlops_gemm.GetRegSizePerXdlops()));
using AThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatAB,
FloatAB,
decltype(a_block_desc_m0_m1_m2_k),
decltype(a_thread_desc_),
Sequence<1, 1, 1, KPack>,
Sequence<0, 1, 2, 3>,
3,
A_K1,
A_K1>;
using BThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatAB,
FloatAB,
decltype(b_block_desc_n0_n1_n2_k),
decltype(b_thread_desc_),
Sequence<1, 1, 1, KPack>,
Sequence<0, 1, 2, 3>,
3,
B_K1,
B_K1>;
AThreadCopy a_thread_copy_;
BThreadCopy b_thread_copy_;
};
} // namespace ck
...@@ -9,7 +9,7 @@ ...@@ -9,7 +9,7 @@
#include "ck/tensor_description/tensor_descriptor_helper.hpp" #include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp" #include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp" #include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_v1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp" #include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp" #include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp" #include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
...@@ -356,6 +356,26 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1 ...@@ -356,6 +356,26 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
} }
} }
template <typename ABlockDesc_AK0_M_AK1>
__host__ __device__ static constexpr auto
MakeAMmaTileDescriptor_M0_M1_M2_K(const ABlockDesc_AK0_M_AK1&)
{
constexpr index_t MWaves = MPerBlock / (MXdlPerWave * MPerXdl);
return MakeGemmMmaTileDescriptor_MN0_MN1_MN2_K<MXdlPerWave, MWaves, MPerXdl>(
ABlockDesc_AK0_M_AK1{});
}
template <typename BBlockDesc_BK0_N_BK1>
__host__ __device__ static constexpr auto
MakeBMmaTileDescriptor_N0_N1_N2_K(const BBlockDesc_BK0_N_BK1&)
{
constexpr index_t NWaves = NPerBlock / (NXdlPerWave * NPerXdl);
return MakeGemmMmaTileDescriptor_MN0_MN1_MN2_K<NXdlPerWave, NWaves, NPerXdl>(
BBlockDesc_BK0_N_BK1{});
}
__host__ __device__ static auto __host__ __device__ static auto
MakeCGridDescriptor_M_N(index_t M, index_t MPad, index_t N, index_t NPad, index_t StrideC) MakeCGridDescriptor_M_N(index_t M, index_t MPad, index_t N, index_t NPad, index_t StrideC)
{ {
...@@ -813,20 +833,36 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1 ...@@ -813,20 +833,36 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
math::max(math::lcm(AK1Number, BK1Number), math::max(math::lcm(AK1Number, BK1Number),
MfmaSelector<ComputeType, MPerXdl, NPerXdl>::selected_mfma.k_per_blk); MfmaSelector<ComputeType, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector< // auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
// BlockSize,
// ComputeType,
// FloatGemmAcc,
// decltype(a_block_desc_ak0_m_ak1),
// decltype(b_block_desc_bk0_n_bk1),
// MPerXdl,
// NPerXdl,
// MXdlPerWave,
// NXdlPerWave,
// KPack,
// LoopSched>();
auto blockwise_gemm_pipeline = BlockwiseGemmXdlops_pipeline_v1<
BlockSize, BlockSize,
ComputeType, ComputeType,
FloatGemmAcc, FloatGemmAcc,
decltype(a_block_desc_ak0_m_ak1), decltype(a_block_desc_ak0_m_ak1),
decltype(b_block_desc_bk0_n_bk1), decltype(b_block_desc_bk0_n_bk1),
decltype(MakeAMmaTileDescriptor_M0_M1_M2_K(a_block_desc_ak0_m_ak1)),
decltype(MakeBMmaTileDescriptor_N0_N1_N2_K(b_block_desc_bk0_n_bk1)),
MPerBlock,
NPerBlock,
KPerBlock,
MPerXdl, MPerXdl,
NPerXdl, NPerXdl,
MXdlPerWave, MXdlPerWave,
NXdlPerWave, NXdlPerWave,
KPack, KPack>{}; // TransposeC
LoopSched>();
auto c_thread_buf = blockwise_gemm.GetCThreadBuffer(); auto c_thread_buf = blockwise_gemm_pipeline.GetCThreadBuffer();
// LDS allocation for A and B: be careful of alignment // LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size_aligned = math::integer_least_multiple( constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
...@@ -844,27 +880,26 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1 ...@@ -844,27 +880,26 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
// gridwise GEMM pipeline // gridwise GEMM pipeline
static_assert(std::is_default_constructible_v<GridwiseGemmPipe>); static_assert(std::is_default_constructible_v<GridwiseGemmPipe>);
const auto gridwise_gemm_pipeline = GridwiseGemmPipe{}; // const auto gridwise_gemm_pipeline = GridwiseGemmPipe{};
const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane( const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane(
(a_grid_desc_ak0_m_ak1.GetLength(I0) * a_grid_desc_ak0_m_ak1.GetLength(I2)) / (a_grid_desc_ak0_m_ak1.GetLength(I0) * a_grid_desc_ak0_m_ak1.GetLength(I2)) /
KPerBlock); KPerBlock);
gridwise_gemm_pipeline.template Run<HasMainKBlockLoop>(a_grid_desc_ak0_m_ak1, blockwise_gemm_pipeline.template Run<HasMainKBlockLoop>(a_grid_desc_ak0_m_ak1,
a_block_desc_ak0_m_ak1, a_block_desc_ak0_m_ak1,
a_blockwise_copy, a_blockwise_copy,
a_grid_buf, a_grid_buf,
a_block_buf, a_block_buf,
a_block_slice_copy_step, a_block_slice_copy_step,
b_grid_desc_bk0_n_bk1, b_grid_desc_bk0_n_bk1,
b_block_desc_bk0_n_bk1, b_block_desc_bk0_n_bk1,
b_blockwise_copy, b_blockwise_copy,
b_grid_buf, b_grid_buf,
b_block_buf, b_block_buf,
b_block_slice_copy_step, b_block_slice_copy_step,
blockwise_gemm, c_thread_buf,
c_thread_buf, num_k_block_main_loop);
num_k_block_main_loop);
// shuffle C and write out // shuffle C and write out
{ {
...@@ -877,12 +912,12 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1 ...@@ -877,12 +912,12 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
// TODO: hacky, fix it! // TODO: hacky, fix it!
constexpr auto c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2 = constexpr auto c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2 =
blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(); blockwise_gemm_pipeline.GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
// TODO: hacky, fix it! // TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths // c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp = constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp =
blockwise_gemm.GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(); blockwise_gemm_pipeline.GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
constexpr auto M0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I0); constexpr auto M0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I0);
constexpr auto N0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I1); constexpr auto N0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I1);
...@@ -922,7 +957,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1 ...@@ -922,7 +957,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
// calculate origin of thread output tensor on global memory // calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index // blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block = const auto c_thread_mtx_on_block =
blockwise_gemm.CalculateCThreadOriginDataIndex(I0, I0, I0, I0); blockwise_gemm_pipeline.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0]; const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1]; const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1];
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment