Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
03cd2692
Commit
03cd2692
authored
Aug 31, 2023
by
Bartlomiej Wroblewski
Browse files
Merge remote-tracking branch 'origin/develop' into bwroblew/warp_wise_dpp8
parents
bf445c31
f5ec04f0
Changes
91
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
3367 additions
and
39 deletions
+3367
-39
include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp
...evice/impl/device_contraction_multiple_d_xdl_cshuffle.hpp
+4
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp
...n/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp
+9
-3
include/ck/tensor_operation/gpu/device/impl/device_grouped_contraction_multiple_d_xdl_cshuffle.hpp
...pl/device_grouped_contraction_multiple_d_xdl_cshuffle.hpp
+4
-0
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
...vice_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
+2
-0
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
.../impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
+4
-0
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
...sor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
+4
-0
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp
...tion/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp
+836
-0
include/ck/tensor_operation/gpu/device/impl/device_max_pool_bwd_impl.hpp
...or_operation/gpu/device/impl/device_max_pool_bwd_impl.hpp
+15
-6
include/ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp
...r_operation/gpu/element/binary_element_wise_operation.hpp
+7
-0
include/ck/tensor_operation/gpu/element/element_wise_operation.hpp
...k/tensor_operation/gpu/element/element_wise_operation.hpp
+45
-0
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
...or_operation/gpu/element/unary_element_wise_operation.hpp
+6
-0
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
+2
-1
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp
...ration/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp
+191
-22
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_splitk_cshuffle.hpp
...gpu/grid/gridwise_gemm_multiple_d_xdl_splitk_cshuffle.hpp
+1086
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_split_k_multiple_d_xdl_cshuffle_v2.hpp
...grid/gridwise_gemm_split_k_multiple_d_xdl_cshuffle_v2.hpp
+1076
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_streamk.hpp
...ensor_operation/gpu/grid/gridwise_gemm_xdlops_streamk.hpp
+2
-1
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v6r1.hpp
...tion/gpu/thread/threadwise_tensor_slice_transfer_v6r1.hpp
+2
-2
include/ck/utility/reduction_operator.hpp
include/ck/utility/reduction_operator.hpp
+60
-1
library/include/ck/library/reference_tensor_operation/cpu/reference_gemm.hpp
...library/reference_tensor_operation/cpu/reference_gemm.hpp
+2
-2
library/include/ck/library/reference_tensor_operation/cpu/reference_maxpool_bwd.hpp
.../reference_tensor_operation/cpu/reference_maxpool_bwd.hpp
+10
-1
No files found.
include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp
View file @
03cd2692
...
...
@@ -310,9 +310,13 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({{}},
{{}}))
>
;
using
EGridDesc_M_N
=
decltype
(
MakeEGridDescriptor_M_N
({},
{}));
using
ComputeDataType
=
ADataType
;
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
BDataType
,
ComputeDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp
View file @
03cd2692
...
...
@@ -20,7 +20,8 @@
namespace
ck
{
template
<
typename
GridwiseGemm
,
typename
ABDataType
,
typename
ADataType
,
typename
BDataType
,
typename
DsPointer
,
typename
EDataType
,
typename
AElementwiseOperation
,
...
...
@@ -36,8 +37,8 @@ __global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_gemm_multiple_d_xdl_cshuffle
(
const
A
B
DataType
*
__restrict__
p_a_grid
,
const
A
BDataType
*
__restrict__
p_b_grid
,
kernel_gemm_multiple_d_xdl_cshuffle
(
const
ADataType
*
__restrict__
p_a_grid
,
const
BDataType
*
__restrict__
p_b_grid
,
DsPointer
p_ds_grid
,
EDataType
*
__restrict__
p_e_grid
,
const
AElementwiseOperation
a_element_op
,
...
...
@@ -242,9 +243,13 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({},
{},
{}))
>
;
using
EGridDesc_M_N
=
decltype
(
MakeEGridDescriptor_M_N
<
ELayout
>
(
1
,
1
,
1
));
using
ComputeDataType
=
EDataType
;
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
BDataType
,
ComputeDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
...
...
@@ -442,6 +447,7 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
const
auto
kernel
=
kernel_gemm_multiple_d_xdl_cshuffle
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
BDataType
,
// TODO: distiguish A/B datatype
typename
GridwiseGemm
::
DsGridPointer
,
EDataType
,
AElementwiseOperation
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_contraction_multiple_d_xdl_cshuffle.hpp
View file @
03cd2692
...
...
@@ -355,9 +355,13 @@ struct DeviceGroupedContractionMultipleD_Xdl_CShuffle
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({{}},
{{}}))
>
;
using
EGridDesc_M_N
=
decltype
(
MakeEGridDescriptor_M_N
({},
{}));
using
ComputeDataType
=
ADataType
;
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
BDataType
,
ComputeDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
View file @
03cd2692
...
...
@@ -355,6 +355,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_cshuffle
<
ABDataType
,
// TODO: distinguish A/B datatype
ABDataType
,
// TODO: distinguish A/B datatype
ABDataType
,
// TODO: distinguish A/B datatype
AccDataType
,
CShuffleDataType
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
View file @
03cd2692
...
...
@@ -367,9 +367,13 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({},
{}))
>
;
using
EGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeEGridDescriptor_M_N
<
ELayout
>
({},
{}))
>
;
using
ComputeDataType
=
ADataType
;
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
BDataType
,
ComputeDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
View file @
03cd2692
...
...
@@ -228,9 +228,13 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({},
{},
{}))
>
;
using
EGridDesc_M_N
=
decltype
(
MakeEGridDescriptor_M_N
<
ELayout
>
(
1
,
1
,
1
));
using
ComputeDataType
=
ADataType
;
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
BDataType
,
ComputeDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp
0 → 100644
View file @
03cd2692
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_splitk_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
GridwiseGemm
,
typename
GemmDesc
,
GemmSpecialization
GemmSpec
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
DsDataType
,
typename
Block2ETileMap
,
typename
GroupedGemmBlock2ETileMap
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
InMemoryDataOperationEnum
EGlobalMemoryDataOperation
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_grouped_gemm_xdl_fixed_nk
(
const
void
CK_CONSTANT_ADDRESS_SPACE
*
gemm_descs_const
,
uint32_t
*
barrier_count
,
const
index_t
barrier_size_grp
,
const
index_t
group_count
,
const
index_t
grid_size_grp
,
const
index_t
KBatch
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
c_element_op
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
block_id
=
get_block_1d_id
();
const
auto
gemm_desc_ptr
=
reinterpret_cast
<
const
GemmDesc
*>
(
cast_pointer_to_generic_address_space
(
gemm_descs_const
));
const
index_t
group_id
=
block_id
/
grid_size_grp
;
if
(
group_id
>=
group_count
)
return
;
const
index_t
M
=
gemm_desc_ptr
[
group_id
].
M
;
const
index_t
N
=
gemm_desc_ptr
[
group_id
].
N
;
const
index_t
K
=
gemm_desc_ptr
[
group_id
].
K
;
if
(
M
*
N
*
K
==
0
)
return
;
const
auto
StrideA
=
gemm_desc_ptr
[
group_id
].
StrideA
;
const
auto
StrideB
=
gemm_desc_ptr
[
group_id
].
StrideB
;
const
auto
StrideDs
=
gemm_desc_ptr
[
group_id
].
StrideDs
;
const
auto
StrideE
=
gemm_desc_ptr
[
group_id
].
StrideE
;
const
auto
e_grid_desc_m_n
=
GridwiseGemm
::
template
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>(
M
,
N
,
StrideE
);
const
index_t
BlockStart
=
group_id
*
grid_size_grp
;
const
auto
local_b2e_tile_map
=
Block2ETileMap
{
e_grid_desc_m_n
,
KBatch
};
const
auto
local_grid_size
=
local_b2e_tile_map
.
CalculateGridSize
(
e_grid_desc_m_n
);
constexpr
auto
NumDTensor
=
DsDataType
::
Size
();
using
DsGridPointer
=
decltype
(
GridwiseGemm
::
MakeDsGridPointer
());
DsGridPointer
p_ds_grid_
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
gemm_desc_ptr
[
group_id
].
p_ds_grid
[
i
]);
});
index_t
id_off
=
0
;
index_t
id_local
=
get_block_1d_id
()
-
BlockStart
;
const
index_t
mn_blocks
=
local_grid_size
/
KBatch
;
while
(
id_local
<
local_grid_size
)
{
const
auto
block_2_etile_map
=
GroupedGemmBlock2ETileMap
(
local_b2e_tile_map
,
BlockStart
,
id_off
);
auto
barrier_count_finished
=
barrier_count
+
group_id
*
barrier_size_grp
+
id_local
%
mn_blocks
;
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
,
EGlobalMemoryDataOperation
,
GemmSpec
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
>(
gemm_desc_ptr
[
group_id
].
p_a_grid
,
gemm_desc_ptr
[
group_id
].
p_b_grid
,
p_ds_grid_
,
gemm_desc_ptr
[
group_id
].
p_e_grid
,
p_shared
,
barrier_count_finished
,
a_element_op
,
b_element_op
,
c_element_op
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
KBatch
,
block_2_etile_map
);
id_off
+=
grid_size_grp
;
id_local
+=
grid_size_grp
;
}
#else
ignore
=
gemm_descs_const
;
ignore
=
barrier_count
;
ignore
=
barrier_size_grp
;
ignore
=
group_count
;
ignore
=
grid_size_grp
;
ignore
=
KBatch
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
c_element_op
;
#endif
}
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
ck
::
index_t
NumPrefetch
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
KPerBlock
,
ck
::
index_t
AK1
,
ck
::
index_t
BK1
,
ck
::
index_t
MPerXDL
,
ck
::
index_t
NPerXDL
,
ck
::
index_t
MXdlPerWave
,
ck
::
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
ck
::
index_t
ABlockTransferSrcVectorDim
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
ABlockTransferDstScalarPerVector_K1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
ck
::
index_t
BBlockTransferSrcVectorDim
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferDstScalarPerVector_K1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
struct
DeviceGroupedGemm_Xdl_Fixed_NK
:
public
DeviceGroupedGemmFixedNK
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedGemm_Xdl_Fixed_NK
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_splitk_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
NumPrefetch
,
// NumGemmKPrefetchStage
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_K0_M_K1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
,
false
,
// AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_K0_N_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
template
<
typename
UnderlyingBlockToCTileMap
>
struct
OffsettedBlockToCTileMapMLoops
{
using
underlying_type
=
UnderlyingBlockToCTileMap
;
__host__
__device__
OffsettedBlockToCTileMapMLoops
(
UnderlyingBlockToCTileMap
block_to_ctile_map
,
index_t
block_start
,
index_t
id_off
=
0
)
{
block_to_ctile_map_
=
block_to_ctile_map
;
block_start_
=
block_start
;
id_off_
=
id_off
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
auto
idx_bot
=
block_to_ctile_map_
.
CalculateBottomIndex
(
make_multi_index
(
idx_top
[
Number
<
0
>
{}]
-
block_start_
+
id_off_
));
return
make_tuple
(
idx_bot
[
Number
<
0
>
{}],
idx_bot
[
Number
<
1
>
{}],
idx_bot
[
Number
<
2
>
{}]);
}
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
c_tile_idx
,
const
CTileDim
&
c_tile_dim
)
const
{
return
block_to_ctile_map_
.
ValidCTileIndex
(
c_tile_idx
,
c_tile_dim
);
}
template
<
typename
CGridDesc_M_N
>
__host__
bool
CheckValidity
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
return
block_to_ctile_map_
.
CheckValidity
(
c_grid_desc_m_n
);
}
template
<
typename
CGridDesc_M_N
>
__host__
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
return
block_to_ctile_map_
.
CalculateGridSize
(
c_grid_desc_m_n
);
}
UnderlyingBlockToCTileMap
block_to_ctile_map_
;
index_t
block_start_
;
index_t
id_off_
;
};
template
<
index_t
MPerBlock_
,
index_t
NPerBlock_
>
struct
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
()
=
default
;
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
(
const
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&
)
=
default
;
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
(
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&&
)
=
default
;
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&
operator
=
(
const
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&
)
=
default
;
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&
operator
=
(
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&&
)
=
default
;
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
(
index_t
M
,
index_t
N
,
index_t
KBatch
,
index_t
M01
=
8
)
:
M_
(
M
),
N_
(
N
),
KBatch_
(
KBatch
),
M01_
(
M01
)
{
}
template
<
typename
CGridDesc_M_N
>
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
KBatch
,
index_t
M01
=
8
)
:
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
(
c_grid_desc_m_n
.
GetLength
(
I0
),
c_grid_desc_m_n
.
GetLength
(
I1
),
KBatch
,
M01
)
{
}
__host__
__device__
constexpr
index_t
CalculateGridSize
(
index_t
M
,
index_t
N
)
const
{
const
auto
M0
=
math
::
integer_divide_ceil
(
M
,
MPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
N
,
NPerBlock
);
return
M0
*
N0
*
KBatch_
;
}
template
<
typename
CGridDesc_M_N
>
__host__
__device__
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
return
CalculateGridSize
(
c_grid_desc_m_n
.
GetLength
(
I0
),
c_grid_desc_m_n
.
GetLength
(
I1
));
}
template
<
typename
CGridDesc_M_N
>
__host__
bool
CheckValidity
(
const
CGridDesc_M_N
&
/* c_grid_desc_m_n */
)
const
{
return
true
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
auto
block_1d_id
=
idx_top
[
I0
];
const
auto
M0
=
math
::
integer_divide_ceil
(
M_
,
MPerBlock_
);
const
auto
N0
=
math
::
integer_divide_ceil
(
N_
,
NPerBlock_
);
block_1d_id
=
block_1d_id
%
(
M0
*
N0
*
KBatch_
);
// hide groups
const
index_t
idx_ksplit
=
block_1d_id
/
(
M0
*
N0
);
block_1d_id
=
block_1d_id
%
(
M0
*
N0
);
index_t
idx_N0
=
block_1d_id
%
N0
;
index_t
idx_M0
=
block_1d_id
/
N0
;
const
auto
M01_adapt
=
(
idx_M0
<
M0
-
M0
%
M01_
)
?
M01_
:
M0
%
M01_
;
index_t
idx_M00
=
idx_M0
/
M01_
;
index_t
idx_M01
=
idx_M0
%
M01_
;
index_t
idx_N0_M01_local
=
idx_N0
+
idx_M01
*
N0
;
return
make_tuple
(
idx_ksplit
,
idx_N0_M01_local
%
M01_adapt
+
idx_M00
*
M01_
,
idx_N0_M01_local
/
M01_adapt
);
}
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
/* c_tile_idx */
,
const
CTileDim
&
/* c_tile_dim */
)
const
{
return
true
;
// always valid provided that user gets grid size from CalculateGridSize()
}
private:
index_t
M_
;
index_t
N_
;
index_t
KBatch_
;
index_t
M01_
;
};
using
Block2ETileMap
=
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
<
MPerBlock
,
NPerBlock
>
;
using
GroupedGemmBlock2ETileMap
=
OffsettedBlockToCTileMapMLoops
<
Block2ETileMap
>
;
struct
GemmBiasTransKernelArg
{
// pointers
const
void
*
a_ptr_
;
const
void
*
b_ptr_
;
std
::
array
<
const
void
*
,
NumDTensor
>
ds_ptr_
;
void
*
e_ptr_
;
index_t
M_
,
N_
,
K_
;
index_t
StrideA_
,
StrideB_
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs_
;
index_t
StrideE_
;
};
// Argument
struct
Argument
:
public
BaseArgument
{
void
UpdateKBatch
(
index_t
k_batch
)
{
k_batch_
=
k_batch
;
if
(
k_batch_
<
1
)
{
throw
std
::
runtime_error
(
"wrong! k_batch must be > 0"
);
}
const
index_t
AverM
=
math
::
integer_divide_ceil
(
sum_of_m
,
group_count_
);
const
index_t
StrideE
=
gemm_desc_kernel_arg_
[
0
].
StrideE_
;
const
index_t
N
=
gemm_desc_kernel_arg_
[
0
].
N_
;
const
auto
e_grid_desc_m_n
=
GridwiseGemm
::
template
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>(
AverM
,
N
,
StrideE
);
const
auto
local_b2c_tile_map
=
Block2ETileMap
{
e_grid_desc_m_n
,
k_batch_
};
grid_size_grp_
=
local_b2c_tile_map
.
CalculateGridSize
(
e_grid_desc_m_n
);
grid_size_
=
grid_size_grp_
*
group_count_
;
}
Argument
(
std
::
vector
<
const
void
*>&
,
std
::
vector
<
const
void
*>&
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
,
std
::
vector
<
void
*>&
,
std
::
vector
<
GemmDesc
>&
gemm_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
c_element_op
)
:
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
grid_size_
=
0
;
k_batch_
=
1
;
grouped_gemm_kernel_args_dev
=
nullptr
;
group_count_
=
ck
::
type_convert
<
ck
::
index_t
>
(
gemm_descs
.
size
());
gemm_desc_kernel_arg_
.
reserve
(
group_count_
);
index_t
group_id
=
0
;
sum_of_m
=
gemm_descs
[
0
].
M_
;
const
index_t
AverM
=
math
::
integer_divide_ceil
(
sum_of_m
,
group_count_
);
const
index_t
N
=
gemm_descs
[
0
].
N_
;
const
index_t
K
=
gemm_descs
[
0
].
K_
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
if
(
sum_of_m
!=
gemm_descs
[
i
].
M_
||
N
!=
gemm_descs
[
i
].
N_
||
K
!=
gemm_descs
[
i
].
K_
)
{
throw
std
::
runtime_error
(
"wrong! M/N/K is not identical"
);
}
a_mtx_mraw_kraw_
.
emplace_back
(
sum_of_m
,
K
);
b_mtx_nraw_kraw_
.
emplace_back
(
N
,
K
);
const
index_t
StrideA
=
gemm_descs
[
i
].
stride_A_
;
const
index_t
StrideB
=
gemm_descs
[
i
].
stride_B_
;
const
index_t
StrideE
=
gemm_descs
[
i
].
stride_C_
;
// pointer
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
p_ds_grid
[
j
]
=
nullptr
;
});
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
// using DLayout = remove_cvref_t<tuple_element_t<j.value, DsLayout>>;
if
(
gemm_descs
[
i
].
stride_Ds_
.
size
()
!=
NumDTensor
)
{
throw
std
::
runtime_error
(
"wrong! gemm_descs[i].stride_Ds_.size() does not match NumDTensor"
);
}
StrideDs
[
j
]
=
gemm_descs
[
i
].
stride_Ds_
[
j
];
});
const
auto
e_grid_desc_m_n
=
GridwiseGemm
::
template
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>(
AverM
,
N
,
StrideE
);
// block-to-e-tile map
const
auto
local_b2c_tile_map
=
Block2ETileMap
{
e_grid_desc_m_n
,
k_batch_
};
grid_size_grp_
=
local_b2c_tile_map
.
CalculateGridSize
(
e_grid_desc_m_n
);
if
(
group_id
*
grid_size_grp_
!=
grid_size_
)
{
throw
std
::
runtime_error
(
"wrong! grid_size_grp_ is not identical!"
);
}
grid_size_
+=
grid_size_grp_
;
// check block-to-E-tile
if
(
!
local_b2c_tile_map
.
CheckValidity
(
e_grid_desc_m_n
))
{
throw
std
::
runtime_error
(
"wrong! block_2_etile_map validation failed"
);
}
if
(
!
GridwiseGemm
::
template
CheckValidity
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
GemmSpec
>(
AverM
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
1
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting"
);
}
gemm_desc_kernel_arg_
.
push_back
(
GemmBiasTransKernelArg
{
nullptr
,
nullptr
,
p_ds_grid
,
nullptr
,
AverM
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
});
group_id
++
;
}
const
auto
e_grid_desc_sum_m_n
=
GridwiseGemm
::
template
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>(
sum_of_m
,
gemm_desc_kernel_arg_
[
0
].
N_
,
gemm_desc_kernel_arg_
[
0
].
StrideE_
);
const
auto
local_b2c_tile_map
=
Block2ETileMap
{
e_grid_desc_sum_m_n
,
1
};
barrier_size_grp_
=
local_b2c_tile_map
.
CalculateGridSize
(
e_grid_desc_sum_m_n
);
}
// private:
index_t
group_count_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
c_element_op_
;
std
::
vector
<
GemmBiasTransKernelArg
>
gemm_desc_kernel_arg_
;
std
::
vector
<
Tuple
<
index_t
,
index_t
>>
a_mtx_mraw_kraw_
;
std
::
vector
<
Tuple
<
index_t
,
index_t
>>
b_mtx_nraw_kraw_
;
const
void
*
grouped_gemm_kernel_args_dev
;
index_t
grid_size_
;
index_t
grid_size_grp_
;
index_t
barrier_size_grp_
;
index_t
sum_of_m
;
index_t
k_batch_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
bool
has_main_k_block_loop
=
true
;
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
gemm_desc_kernel_arg_
.
size
();
i
++
)
{
const
auto
KPad
=
GridwiseGemm
::
CalculateKPadded
(
arg
.
gemm_desc_kernel_arg_
[
i
].
K_
,
arg
.
k_batch_
);
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
KPad
)
!=
has_main_k_block_loop
)
{
throw
std
::
runtime_error
(
"wrong! not all gemm has_main_k_block_loop"
);
}
}
if
(
arg
.
grouped_gemm_kernel_args_dev
==
nullptr
)
{
throw
std
::
runtime_error
(
"wrong! grouped_gemm_kernel_args_dev is nullpr"
);
}
float
ave_time
=
0
;
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop_
,
auto
e_global_memory_operation_
)
{
const
auto
kernel
=
kernel_grouped_gemm_xdl_fixed_nk
<
GridwiseGemm
,
GroupedGemmKernelArgument
<
NumDTensor
>
,
GemmSpec
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
DsDataType
,
Block2ETileMap
,
GroupedGemmBlock2ETileMap
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
e_global_memory_operation_
,
has_main_k_block_loop_
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
grid_size_
),
dim3
(
BlockSize
),
0
,
cast_pointer_to_constant_address_space
(
arg
.
grouped_gemm_kernel_args_dev
),
reinterpret_cast
<
uint32_t
*>
(
arg
.
p_workspace_
),
arg
.
barrier_size_grp_
,
arg
.
gemm_desc_kernel_arg_
.
size
(),
arg
.
grid_size_grp_
,
arg
.
k_batch_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
);
};
constexpr
auto
AtomicAdd
=
InMemoryDataOperationEnum
::
AtomicAdd
;
constexpr
auto
Set
=
InMemoryDataOperationEnum
::
Set
;
if
(
arg
.
k_batch_
>
1
)
{
if
(
has_main_k_block_loop
)
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
true
>
{},
integral_constant
<
InMemoryDataOperationEnum
,
AtomicAdd
>
{});
}
else
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
false
>
{},
integral_constant
<
InMemoryDataOperationEnum
,
AtomicAdd
>
{});
}
}
else
{
if
(
has_main_k_block_loop
)
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
true
>
{},
integral_constant
<
InMemoryDataOperationEnum
,
Set
>
{});
}
else
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
false
>
{},
integral_constant
<
InMemoryDataOperationEnum
,
Set
>
{});
}
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
ck
::
type_convert
<
ck
::
index_t
>
(
arg
.
gemm_desc_kernel_arg_
.
size
())
!=
arg
.
group_count_
)
{
return
false
;
}
bool
supported
=
true
;
// If we use padding we do not support vector loads for dimensions not divisible by vector
// load size.
if
constexpr
(
GemmSpec
!=
GemmSpecialization
::
Default
)
{
// [A|B]BlockTransferSrcVectorDim value define dimension in the block {K0,M,K1} layout,
// thus we have to adapt it to the {M,K} or {N,K} layout.
const
auto
a_raw_vector_dim
=
ABlockTransferSrcVectorDim
!=
1
?
1
:
0
;
const
auto
b_raw_vector_dim
=
BBlockTransferSrcVectorDim
!=
1
?
1
:
0
;
for
(
index_t
i
=
0
;
i
<
arg
.
group_count_
;
++
i
)
{
const
auto
a_vector_dim
=
arg
.
a_mtx_mraw_kraw_
[
i
].
At
(
Number
<
a_raw_vector_dim
>
{});
const
auto
b_vector_dim
=
arg
.
b_mtx_nraw_kraw_
[
i
].
At
(
Number
<
b_raw_vector_dim
>
{});
supported
=
supported
&
(
a_vector_dim
%
ABlockTransferSrcScalarPerVector
==
0
);
supported
=
supported
&
(
b_vector_dim
%
BBlockTransferSrcScalarPerVector
==
0
);
}
}
return
supported
;
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
std
::
vector
<
const
void
*>&
p_As
,
std
::
vector
<
const
void
*>&
p_Bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_Ds
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmDesc
>
gemm_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
c_element_op
)
{
return
Argument
{
p_As
,
p_Bs
,
p_Ds
,
p_Es
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
vector
<
const
void
*>&
p_As
,
std
::
vector
<
const
void
*>&
p_Bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_Ds
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmDesc
>&
gemm_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
c_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_As
,
p_Bs
,
p_Ds
,
p_Es
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedGemm_Xdl_Fixed_NK"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
MPerXDL
<<
", "
<<
NPerXDL
<<
", "
<<
MXdlPerWave
<<
", "
<<
NXdlPerWave
<<
", "
<<
ABlockTransferSrcScalarPerVector
<<
", "
<<
BBlockTransferSrcScalarPerVector
<<
", "
<<
CShuffleMXdlPerWavePerShuffle
<<
", "
<<
CShuffleNXdlPerWavePerShuffle
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
static
void
SetDeviceKernelArgs
(
Argument
&
arg
,
const
void
*
kernel_args
)
{
arg
.
grouped_gemm_kernel_args_dev
=
kernel_args
;
}
// polymorphic
void
SetDeviceKernelArgs
(
BaseArgument
*
p_arg
,
const
void
*
kernel_args
)
const
override
{
return
SetDeviceKernelArgs
(
*
dynamic_cast
<
Argument
*>
(
p_arg
),
kernel_args
);
}
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
p_arg
)
const
override
{
auto
arg
=
*
dynamic_cast
<
const
Argument
*>
(
p_arg
);
return
arg
.
group_count_
*
arg
.
barrier_size_grp_
*
sizeof
(
uint32_t
);
}
size_t
GetDeviceKernelArgSize
(
const
BaseArgument
*
p_arg
)
const
override
{
auto
arg
=
*
dynamic_cast
<
const
Argument
*>
(
p_arg
);
return
arg
.
group_count_
*
sizeof
(
GroupedGemmKernelArgument
<
NumDTensor
>
);
}
void
SetWorkSpacePointer
(
BaseArgument
*
p_arg
,
void
*
p_workspace
)
const
override
{
auto
p_arg_
=
dynamic_cast
<
Argument
*>
(
p_arg
);
p_arg_
->
p_workspace_
=
p_workspace
;
hip_check_error
(
hipMemset
(
p_workspace
,
0
,
GetWorkSpaceSize
(
p_arg
)));
}
static
void
SetKBatch
(
Argument
&
arg
,
index_t
k_batch
)
{
arg
.
UpdateKBatch
(
k_batch
);
}
// polymorphic
void
SetKBatch
(
BaseArgument
*
p_arg
,
index_t
k_batch
)
const
override
{
return
SetKBatch
(
*
dynamic_cast
<
Argument
*>
(
p_arg
),
k_batch
);
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_
inde
x_pool_bwd_impl.hpp
→
include/ck/tensor_operation/gpu/device/impl/device_
ma
x_pool_bwd_impl.hpp
View file @
03cd2692
...
...
@@ -8,7 +8,7 @@
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/device_
inde
x_pool_bwd.hpp"
#include "ck/tensor_operation/gpu/device/device_
ma
x_pool_bwd.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_put_element_1d.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_elementwise_1d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
...
...
@@ -25,7 +25,7 @@ template <typename DOutDataType,
typename
IndexDataType
,
typename
DInDataType
,
ck
::
index_t
InOutVectorSize
>
struct
Device
Inde
xPoolBwdImpl
:
public
Device
Inde
xPoolBwd
<
DOutDataType
,
IndexDataType
,
DInDataType
>
struct
Device
Ma
xPoolBwdImpl
:
public
Device
Ma
xPoolBwd
<
DOutDataType
,
IndexDataType
,
DInDataType
>
{
using
DInDataType_AutomicAddPreCast
=
conditional_t
<
is_same_v
<
DInDataType
,
float
>
||
is_same_v
<
DInDataType
,
double
>
,
...
...
@@ -91,7 +91,8 @@ struct DeviceIndexPoolBwdImpl : public DeviceIndexPoolBwd<DOutDataType, IndexDat
index_t
dout_length
,
index_t
din_length
,
const
std
::
vector
<
ck
::
index_t
>&
window_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
window_strides
)
const
std
::
vector
<
ck
::
index_t
>&
window_strides
,
const
std
::
vector
<
ck
::
index_t
>&
window_dilations
)
:
p_dout_
{
p_dout
},
p_indices_
{
p_indices
},
p_din_
{
p_din
},
...
...
@@ -102,7 +103,8 @@ struct DeviceIndexPoolBwdImpl : public DeviceIndexPoolBwd<DOutDataType, IndexDat
{
for
(
size_t
i
=
0
;
i
<
window_lengths
.
size
();
++
i
)
{
windowOverlap_
|=
window_lengths
.
at
(
i
)
>
window_strides
.
at
(
i
);
auto
eff
=
(
window_lengths
.
at
(
i
)
-
1
)
*
window_dilations
.
at
(
i
)
+
1
;
windowOverlap_
|=
eff
>
window_strides
.
at
(
i
);
}
}
...
...
@@ -228,6 +230,11 @@ struct DeviceIndexPoolBwdImpl : public DeviceIndexPoolBwd<DOutDataType, IndexDat
}
else
{
hip_check_error
(
hipMemsetAsync
(
arg
.
p_din_
,
0
,
arg
.
din_length_raw_
*
sizeof
(
DInDataType
),
stream_config
.
stream_id_
));
const
auto
put_kernel
=
kernel_put_element_1d
<
GridwisePutElementSet
,
InOutGrid1dDesc
,
DOutDataType
,
...
...
@@ -292,7 +299,8 @@ struct DeviceIndexPoolBwdImpl : public DeviceIndexPoolBwd<DOutDataType, IndexDat
index_t
dout_length
,
index_t
din_length
,
std
::
vector
<
ck
::
index_t
>
window_lengths
,
std
::
vector
<
ck
::
index_t
>
window_strides
)
override
std
::
vector
<
ck
::
index_t
>
window_strides
,
std
::
vector
<
ck
::
index_t
>
window_dilations
)
override
{
// Assume p_dout, p_indices, p_din are packed memory space, dout_length and din_length are
// physical size of the packed tensor
...
...
@@ -302,7 +310,8 @@ struct DeviceIndexPoolBwdImpl : public DeviceIndexPoolBwd<DOutDataType, IndexDat
dout_length
,
din_length
,
window_lengths
,
window_strides
);
window_strides
,
window_dilations
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
...
...
include/ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp
View file @
03cd2692
...
...
@@ -36,6 +36,13 @@ struct Add
y
=
x0
+
type_convert
<
half_t
>
(
x1
);
};
template
<
>
__host__
__device__
constexpr
void
operator
()
<
half_t
>
(
half_t
&
y
,
const
float
&
x0
,
const
float
&
x1
)
const
{
y
=
type_convert
<
half_t
>
(
x0
+
x1
);
};
template
<
>
__host__
__device__
constexpr
void
operator
()
<
half_t
>
(
half_t
&
y
,
const
float
&
x0
,
const
half_t
&
x1
)
const
...
...
include/ck/tensor_operation/gpu/element/element_wise_operation.hpp
View file @
03cd2692
...
...
@@ -195,6 +195,51 @@ struct AddMultiply
}
};
// C = A * B
// E = C x D0 + D1
struct
MultiplyAdd
{
template
<
typename
E
,
typename
C
,
typename
D0
,
typename
D1
>
__host__
__device__
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D0
&
d0
,
const
D1
&
d1
)
const
;
template
<
>
__host__
__device__
void
operator
()
<
half_t
,
half_t
,
half_t
,
half_t
>
(
half_t
&
e
,
const
half_t
&
c
,
const
half_t
&
d0
,
const
half_t
&
d1
)
const
{
const
half_t
y
=
(
c
*
d0
)
+
d1
;
e
=
y
;
}
template
<
>
__host__
__device__
void
operator
()
<
half_t
,
float
,
half_t
,
half_t
>
(
half_t
&
e
,
const
float
&
c
,
const
half_t
&
d0
,
const
half_t
&
d1
)
const
{
const
half_t
y
=
type_convert
<
half_t
>
(
c
)
*
d0
+
d1
;
e
=
y
;
}
template
<
>
__host__
__device__
void
operator
()
<
float
,
float
,
half_t
,
half_t
>
(
float
&
e
,
const
float
&
c
,
const
half_t
&
d0
,
const
half_t
&
d1
)
const
{
const
float
y
=
c
*
d0
+
d1
;
e
=
y
;
}
template
<
>
__host__
__device__
void
operator
()
<
half_t
,
float
,
float
,
float
>
(
half_t
&
e
,
const
float
&
c
,
const
float
&
d0
,
const
float
&
d1
)
const
{
const
float
y
=
c
*
d0
+
d1
;
e
=
y
;
}
};
// E = FastGelu(C + D0 + D1)
struct
AddAddFastGelu
{
...
...
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
View file @
03cd2692
...
...
@@ -39,6 +39,12 @@ struct PassThrough
y
=
x
;
}
template
<
>
__host__
__device__
void
operator
()
<
half_t
,
float
>
(
half_t
&
y
,
const
float
&
x
)
const
{
y
=
type_convert
<
half_t
>
(
x
);
}
template
<
>
__host__
__device__
void
operator
()
<
bhalf_t
,
bhalf_t
>
(
bhalf_t
&
y
,
const
bhalf_t
&
x
)
const
{
...
...
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
View file @
03cd2692
...
...
@@ -587,7 +587,8 @@ struct OffsettedBlockToCTileMap
{
using
underlying_type
=
UnderlyingBlockToCTileMap
;
OffsettedBlockToCTileMap
(
UnderlyingBlockToCTileMap
block_to_ctile_map
,
index_t
block_start
)
__host__
__device__
OffsettedBlockToCTileMap
(
UnderlyingBlockToCTileMap
block_to_ctile_map
,
index_t
block_start
)
{
block_to_ctile_map_
=
block_to_ctile_map
;
block_start_
=
block_start
;
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp
View file @
03cd2692
...
...
@@ -15,6 +15,9 @@
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
namespace
ck
{
// GEMM:
...
...
@@ -26,7 +29,9 @@ namespace ck {
// E = cde_op(C, D0, D1, ...)
// Assume:
// D0, D1, ... and E have the same layout
template
<
typename
ABDataType
,
// FIXME: don't assume A/B have same datatype
template
<
typename
ADataType
,
typename
BDataType
,
typename
ComputeDataType_
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
...
...
@@ -72,6 +77,8 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
using
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
...
...
@@ -92,15 +99,11 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
using
GridwiseGemmPipe
=
remove_cvref_t
<
decltype
(
GridwiseGemmPipeline_Selector
<
PipelineVer
,
NumGemmKPrefetchStage
,
LoopSched
>
())
>
;
// denorm test fix, required to work around fp16 mfma issue
// we convert fp16->fp32->bf16 and execute bf16 mfma instruction
// when mfma if fixed, remove this section and update
// ABDataTypeAdjusted -> ABDataType throughout this file
#if CK_WORKAROUND_DENORM_FIX
using
AB
DataType
Adjusted
=
conditional_t
<
is_same_v
<
AB
DataType
,
ck
::
half_t
>
,
ck
::
bhalf_t
,
AB
DataType
>
;
using
Compute
DataType
=
conditional_t
<
is_same_v
<
Compute
DataType
_
,
ck
::
half_t
>
,
ck
::
bhalf_t
,
Compute
DataType
_
>
;
#else
using
AB
DataType
Adjusted
=
AB
DataType
;
using
Compute
DataType
=
Compute
DataType
_
;
#endif
__host__
__device__
static
constexpr
auto
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()
...
...
@@ -170,7 +173,7 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
();
return
math
::
max
((
a_block_space_size_aligned
+
b_block_space_size_aligned
)
*
sizeof
(
AB
DataType
),
sizeof
(
Compute
DataType
),
c_block_size
*
sizeof
(
CShuffleDataType
));
}
...
...
@@ -313,8 +316,8 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
// check tensor size: cannot be larger than 2GB each
constexpr
long_index_t
TwoGB
=
(
long_index_t
{
1
}
<<
31
);
if
(
!
(
a_grid_desc_m_k
.
GetElementSpaceSize
()
*
sizeof
(
A
B
DataType
)
<=
TwoGB
&&
b_grid_desc_n_k
.
GetElementSpaceSize
()
*
sizeof
(
A
BDataType
)
<=
TwoGB
&&
if
(
!
(
a_grid_desc_m_k
.
GetElementSpaceSize
()
*
sizeof
(
ADataType
)
<=
TwoGB
&&
b_grid_desc_n_k
.
GetElementSpaceSize
()
*
sizeof
(
BDataType
)
<=
TwoGB
&&
e_grid_desc_m_n
.
GetElementSpaceSize
()
*
sizeof
(
EDataType
)
<=
TwoGB
))
{
return
false
;
...
...
@@ -332,14 +335,102 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
using
DsGridPointer
=
decltype
(
MakeDsGridPointer
());
template
<
typename
ALayout
,
GemmSpecialization
GemmSpec
>
__host__
__device__
static
auto
MakeAGridDescriptor_M_K
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
{
constexpr
auto
matrix_padder
=
ck
::
tensor_operation
::
device
::
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
I1
,
StrideA
));
}
}();
return
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
}
template
<
typename
BLayout
,
GemmSpecialization
GemmSpec
>
__host__
__device__
static
auto
MakeBGridDescriptor_N_K
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
constexpr
auto
matrix_padder
=
ck
::
tensor_operation
::
device
::
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
}();
return
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
}
template
<
typename
ELayout
,
GemmSpecialization
GemmSpec
>
__host__
__device__
static
auto
MakeEGridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideE
)
{
constexpr
auto
matrix_padder
=
ck
::
tensor_operation
::
device
::
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
const
auto
e_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
StrideE
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
I1
,
StrideE
));
}
}();
return
matrix_padder
.
PadCDescriptor_M_N
(
e_grid_desc_mraw_nraw
);
}
template
<
typename
DsLayout
,
GemmSpecialization
GemmSpec
>
__host__
__device__
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NumDTensor
>&
MRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
NRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
DsStride
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
MakeEGridDescriptor_M_N
<
DLayout
,
GemmSpec
>
(
MRaws
[
i
],
NRaws
[
i
],
DsStride
[
i
]);
},
Number
<
NumDTensor
>
{});
}
__device__
__host__
static
constexpr
auto
GetMPerBlock
()
{
return
MPerBlock
;
}
template
<
bool
HasMainKBlockLoop
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
Block2ETileMap
>
__device__
static
void
Run
(
const
A
B
DataType
*
__restrict__
p_a_grid
,
const
A
BDataType
*
__restrict__
p_b_grid
,
__device__
static
void
Run
(
const
ADataType
*
__restrict__
p_a_grid
,
const
BDataType
*
__restrict__
p_b_grid
,
DsGridPointer
p_ds_grid
,
EDataType
*
__restrict__
p_e_grid
,
void
*
__restrict__
p_shared
,
...
...
@@ -408,8 +499,8 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
Sequence
<
AK0PerBlock
,
MPerBlock
,
AK1
>
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
A
B
DataType
,
AB
DataType
Adjusted
,
ADataType
,
Compute
DataType
,
decltype
(
a_grid_desc_ak0_m_ak1
),
decltype
(
a_block_desc_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
...
...
@@ -439,8 +530,8 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
Sequence
<
BK0PerBlock
,
NPerBlock
,
BK1
>
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
A
BDataType
,
AB
DataType
Adjusted
,
BDataType
,
Compute
DataType
,
decltype
(
b_grid_desc_bk0_n_bk1
),
decltype
(
b_block_desc_bk0_n_bk1
),
BBlockTransferSrcAccessOrder
,
...
...
@@ -470,11 +561,11 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
// sanity check
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1
,
BK1
),
MfmaSelector
<
AB
DataType
Adjusted
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
MfmaSelector
<
Compute
DataType
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
auto
blockwise_gemm
=
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector
<
BlockSize
,
AB
DataType
Adjusted
,
Compute
DataType
,
AccDataType
,
decltype
(
a_block_desc_ak0_m_ak1
),
decltype
(
b_block_desc_bk0_n_bk1
),
...
...
@@ -492,11 +583,10 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
ABDataTypeAdjusted
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
static_cast
<
ComputeDataType
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
AB
DataType
Adjusted
*>
(
p_shared
)
+
a_block_space_size_aligned
,
static_cast
<
Compute
DataType
*>
(
p_shared
)
+
a_block_space_size_aligned
,
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
AK1
,
0
,
0
);
...
...
@@ -761,6 +851,85 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
});
}
}
template
<
bool
HasMainKBlockLoop
,
GemmSpecialization
GemmSpec
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
Block2ETileMap
>
__device__
static
void
Run
(
const
void
*
__restrict__
p_a_grid_
,
const
void
*
__restrict__
p_b_grid_
,
DsGridPointer
p_ds_grid
,
void
*
__restrict__
p_e_grid_
,
void
*
__restrict__
p_shared
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
,
const
index_t
M
,
const
index_t
N
,
const
index_t
K
,
const
index_t
StrideA
,
const
index_t
StrideB
,
const
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
const
index_t
StrideE
,
const
Block2ETileMap
&
block_2_etile_map
)
{
const
auto
p_a_grid
=
reinterpret_cast
<
const
ADataType
*>
(
p_a_grid_
);
const
auto
p_b_grid
=
reinterpret_cast
<
const
BDataType
*>
(
p_b_grid_
);
const
auto
p_e_grid
=
reinterpret_cast
<
EDataType
*>
(
p_e_grid_
);
// tensor descriptors for problem definiton
const
auto
a_grid_desc_m_k
=
MakeAGridDescriptor_M_K
<
ALayout
,
GemmSpec
>
(
M
,
K
,
StrideA
);
const
auto
b_grid_desc_n_k
=
MakeBGridDescriptor_N_K
<
BLayout
,
GemmSpec
>
(
K
,
N
,
StrideB
);
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
<
DsLayout
,
GemmSpec
>
({},
{},
{}))
>
;
DsGridDesc_M_N
ds_grid_desc_m_n
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsLayout
>>
;
ds_grid_desc_m_n
(
j
)
=
MakeEGridDescriptor_M_N
<
DLayout
,
GemmSpec
>
(
M
,
N
,
StrideDs
[
j
]);
});
const
auto
e_grid_desc_m_n
=
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>
(
M
,
N
,
StrideE
);
// tensor descriptors for block/thread-wise copy
const
auto
a_grid_desc_ak0_m_ak1
=
MakeDefaultAGridDescriptor_AK0_M_AK1
(
a_grid_desc_m_k
);
const
auto
b_grid_desc_bk0_n_bk1
=
MakeDefaultBGridDescriptor_BK0_N_BK1
(
b_grid_desc_n_k
);
using
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
DsGridDesc_M_N
{}))
>
;
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
ds_grid_desc_mblock_mperblock_nblock_nperblock
(
j
)
=
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
[
j
]);
});
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n
);
Run
<
HasMainKBlockLoop
>
(
p_a_grid
,
p_b_grid
,
p_ds_grid
,
p_e_grid
,
p_shared
,
a_element_op
,
b_element_op
,
cde_element_op
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
block_2_etile_map
);
}
};
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_splitk_cshuffle.hpp
0 → 100644
View file @
03cd2692
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
namespace
ck
{
// GEMM:
// input : A[M, K]
// input : B[N, K]
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// D0, D1, ... and E have the same layout
template
<
typename
ABDataType
,
// FIXME: don't assume A/B have same datatype
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1Value
,
index_t
BK1Value
,
index_t
MPerXdl
,
index_t
NPerXdl
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_KBatch_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_KBatch_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
,
PipelineVersion
PipelineVer
=
PipelineVersion
::
v1
>
struct
GridwiseGemmMultipleD_xdl_splitk_cshuffle
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
using
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
// K1 should be Number<...>
static
constexpr
auto
AK1
=
Number
<
AK1Value
>
{};
static
constexpr
auto
BK1
=
Number
<
BK1Value
>
{};
static
constexpr
auto
AK0PerBlock
=
Number
<
KPerBlock
/
AK1Value
>
{};
static
constexpr
auto
BK0PerBlock
=
Number
<
KPerBlock
/
BK1Value
>
{};
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
using
GridwiseGemmPipe
=
remove_cvref_t
<
decltype
(
GridwiseGemmPipeline_Selector
<
PipelineVer
,
NumGemmKPrefetchStage
,
LoopSched
>
())
>
;
// denorm test fix, required to work around fp16 mfma issue
// we convert fp16->fp32->bf16 and execute bf16 mfma instruction
// when mfma if fixed, remove this section and update
// ABDataTypeAdjusted -> ABDataType throughout this file
#if CK_WORKAROUND_DENORM_FIX
using
ABDataTypeAdjusted
=
conditional_t
<
is_same_v
<
ABDataType
,
ck
::
half_t
>
,
ck
::
bhalf_t
,
ABDataType
>
;
#else
using
ABDataTypeAdjusted
=
ABDataType
;
#endif
__host__
__device__
static
constexpr
auto
GetABlockDescriptor_KBatch_AK0PerBlock_MPerBlock_AK1
()
{
// A matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
I1
,
AK0PerBlock
,
Number
<
MPerBlock
>
{},
AK1
),
make_tuple
(
AK0PerBlock
*
Number
<
MPerBlock
+
ABlockLdsExtraM
>
{}
*
AK1
,
Number
<
MPerBlock
+
ABlockLdsExtraM
>
{}
*
AK1
,
AK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetBBlockDescriptor_KBatch_BK0PerBlock_NPerBlock_BK1
()
{
// B matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
I1
,
BK0PerBlock
,
Number
<
NPerBlock
>
{},
BK1
),
make_tuple
(
BK0PerBlock
*
Number
<
NPerBlock
+
BBlockLdsExtraN
>
{}
*
BK1
,
Number
<
NPerBlock
+
BBlockLdsExtraN
>
{}
*
BK1
,
BK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()
{
// A matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
AK0PerBlock
,
Number
<
MPerBlock
>
{},
AK1
),
make_tuple
(
Number
<
MPerBlock
+
ABlockLdsExtraM
>
{}
*
AK1
,
AK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()
{
// B matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
BK0PerBlock
,
Number
<
NPerBlock
>
{},
BK1
),
make_tuple
(
Number
<
NPerBlock
+
BBlockLdsExtraN
>
{}
*
BK1
,
BK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
()
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
>
{},
I1
,
Number
<
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
{}));
return
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
;
}
// ck::Tuple<const D0DataType*, const D1DataType*, ...>
static
constexpr
auto
MakeDsGridPointer
()
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
return
static_cast
<
const
DDataType
*>
(
nullptr
);
},
Number
<
NumDTensor
>
{});
}
__host__
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1
,
BK1
);
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
constexpr
auto
b_block_space_size_aligned
=
math
::
integer_least_multiple
(
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
(),
max_lds_align
);
// LDS allocation for C shuffle in LDS
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
constexpr
auto
c_block_size
=
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
();
return
math
::
max
((
a_block_space_size_aligned
+
b_block_space_size_aligned
)
*
sizeof
(
ABDataType
),
c_block_size
*
sizeof
(
CShuffleDataType
));
}
__host__
__device__
static
auto
CalculateMPadded
(
index_t
M
)
{
return
math
::
integer_least_multiple
(
M
,
MPerBlock
);
}
__host__
__device__
static
auto
CalculateNPadded
(
index_t
N
)
{
return
math
::
integer_least_multiple
(
N
,
NPerBlock
);
}
__host__
__device__
static
auto
CalculateKPadded
(
index_t
K
,
index_t
K_Batch
)
{
return
math
::
integer_least_multiple
(
K
,
KPerBlock
*
K_Batch
);
}
template
<
typename
ALayout
,
GemmSpecialization
GemmSpec
>
__host__
__device__
static
auto
MakeAGridDescriptor_KBatch_AK0_M_AK1
(
index_t
M
,
index_t
K
,
index_t
StrideA
,
index_t
KBatch
)
{
const
auto
a_grid_desc_m_k
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I1
,
StrideA
));
}
}();
const
auto
MPad
=
CalculateMPadded
(
M
);
const
auto
KPad
=
CalculateKPadded
(
K
,
KBatch
);
const
auto
a_grid_desc_m_kpad
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_pass_through_transform
(
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
AK0
=
KPad
/
(
KBatch
*
AK1
);
if
constexpr
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
{
// const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return
transform_tensor_descriptor
(
a_grid_desc_m_kpad
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
AK0
,
AK1
)),
make_right_pad_transform
(
M
,
MPad
-
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
else
{
return
transform_tensor_descriptor
(
a_grid_desc_m_kpad
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
}
template
<
typename
BLayout
,
GemmSpecialization
GemmSpec
>
__host__
__device__
static
auto
MakeBGridDescriptor_KBatch_BK0_N_BK1
(
index_t
K
,
index_t
N
,
index_t
StrideB
,
index_t
KBatch
)
{
const
auto
b_grid_desc_k_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
StrideB
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
I1
,
StrideB
));
}
}();
const
auto
NPad
=
CalculateNPadded
(
N
);
const
auto
KPad
=
CalculateKPadded
(
K
,
KBatch
);
const
auto
b_grid_desc_kpad_n
=
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_right_pad_transform
(
K
,
KPad
-
K
),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
BK0
=
KPad
/
(
KBatch
*
BK1
);
if
constexpr
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
{
// const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return
transform_tensor_descriptor
(
b_grid_desc_kpad_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
BK0
,
BK1
)),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
else
{
return
transform_tensor_descriptor
(
b_grid_desc_kpad_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
}
// E desc for destination in blockwise copy
template
<
typename
EGridDesc_M_N
>
__host__
__device__
static
constexpr
auto
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
EGridDesc_M_N
&
e_grid_desc_m_n
)
{
const
auto
M
=
e_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
e_grid_desc_m_n
.
GetLength
(
I1
);
const
auto
MBlock
=
M
/
MPerBlock
;
const
auto
NBlock
=
N
/
NPerBlock
;
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
transform_tensor_descriptor
(
e_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
return
e_grid_desc_mblock_mperblock_nblock_nperblock
;
}
// Ds desc for source in blockwise copy
template
<
typename
DsGridDesc_M_N
>
__host__
__device__
static
constexpr
auto
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
DsGridDesc_M_N
&
ds_grid_desc_m_n
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
[
i
]);
},
Number
<
NumDTensor
>
{});
}
// return block_id to E matrix tile idx (m0, n0) mapping
template
<
typename
EGridDesc_M_N
>
__host__
__device__
static
constexpr
auto
MakeDefaultBlock2ETileMap
(
const
EGridDesc_M_N
&
e_grid_desc_m_n
)
{
return
BlockToCTileMap_M00_N0_M01Adapt
<
MPerBlock
,
NPerBlock
,
EGridDesc_M_N
>
(
e_grid_desc_m_n
);
}
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
GemmSpecialization
GemmSpec
>
__host__
__device__
static
constexpr
bool
CheckValidity
(
const
index_t
M
,
const
index_t
N
,
const
index_t
K
,
const
index_t
StrideA
,
const
index_t
StrideB
,
const
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
const
index_t
StrideE
,
const
index_t
KBatch
)
{
const
auto
a_grid_desc_kbatch_ak0_m_ak1
=
MakeAGridDescriptor_KBatch_AK0_M_AK1
<
ALayout
,
GemmSpec
>
(
M
,
K
,
StrideA
,
KBatch
);
const
auto
b_grid_desc_kbatch_bk0_n_bk1
=
MakeBGridDescriptor_KBatch_BK0_N_BK1
<
BLayout
,
GemmSpec
>
(
K
,
N
,
StrideB
,
KBatch
);
ignore
=
StrideDs
;
const
auto
e_grid_desc_m_n
=
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>
(
M
,
N
,
StrideE
);
#if 0
// check tile size
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K % KPerBlock == 0))
{
return false;
}
#endif
// check gridwise gemm pipeline
const
auto
num_k_loop
=
K
/
KPerBlock
;
if
(
!
GridwiseGemmPipe
::
IsSupported
(
num_k_loop
))
{
return
false
;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
// check tensor size: cannot be larger than 2GB each
constexpr
long_index_t
TwoGB
=
(
long_index_t
{
1
}
<<
31
);
if
(
!
(
a_grid_desc_kbatch_ak0_m_ak1
.
GetElementSpaceSize
()
*
sizeof
(
ABDataType
)
<=
TwoGB
&&
b_grid_desc_kbatch_bk0_n_bk1
.
GetElementSpaceSize
()
*
sizeof
(
ABDataType
)
<=
TwoGB
&&
e_grid_desc_m_n
.
GetElementSpaceSize
()
*
sizeof
(
EDataType
)
<=
TwoGB
))
{
return
false
;
}
return
true
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
GridwiseGemmPipe
::
CalculateHasMainLoop
(
num_loop
);
}
using
DsGridPointer
=
decltype
(
MakeDsGridPointer
());
template
<
typename
ELayout
,
GemmSpecialization
GemmSpec
>
__host__
__device__
static
auto
MakeEGridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideE
)
{
constexpr
auto
matrix_padder
=
ck
::
tensor_operation
::
device
::
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
const
auto
e_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
StrideE
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
I1
,
StrideE
));
}
}();
return
matrix_padder
.
PadCDescriptor_M_N
(
e_grid_desc_mraw_nraw
);
}
template
<
typename
DsLayout
,
GemmSpecialization
GemmSpec
>
__host__
__device__
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NumDTensor
>&
MRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
NRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
DsStride
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
MakeEGridDescriptor_M_N
<
DLayout
,
GemmSpec
>
(
MRaws
[
i
],
NRaws
[
i
],
DsStride
[
i
]);
},
Number
<
NumDTensor
>
{});
}
__device__
__host__
static
constexpr
auto
GetMPerBlock
()
{
return
MPerBlock
;
}
template
<
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
EGlobalMemoryDataOperation
,
index_t
NumDTensor_
,
typename
DsDataType_
,
typename
AGridDesc_KBatch_AK0_M_AK1
,
typename
BGridDesc_KBatch_BK0_N_BK1
,
typename
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
CDEElementwiseOperation_
,
typename
Block2ETileMap
>
__device__
static
void
Run
(
const
ABDataType
*
__restrict__
p_a_grid
,
const
ABDataType
*
__restrict__
p_b_grid
,
DsGridPointer
p_ds_grid
,
EDataType
*
__restrict__
p_e_grid
,
void
*
__restrict__
p_shared
,
uint32_t
*
barrier_count_finished
,
const
index_t
KBatch
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation_
&
cde_element_op
,
const
AGridDesc_KBatch_AK0_M_AK1
&
a_grid_desc_kbatch_ak0_m_ak1
,
const
BGridDesc_KBatch_BK0_N_BK1
&
b_grid_desc_kbatch_bk0_n_bk1
,
const
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
&
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
const
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
&
e_grid_desc_mblock_mperblock_nblock_nperblock
,
const
Block2ETileMap
&
block_2_etile_map
)
{
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_kbatch_ak0_m_ak1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
,
b_grid_desc_kbatch_bk0_n_bk1
.
GetElementSpaceSize
());
const
auto
ds_grid_buf
=
generate_tuple
(
[
&
](
auto
i
)
{
return
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_ds_grid
[
i
],
ds_grid_desc_mblock_mperblock_nblock_nperblock
[
i
].
GetElementSpaceSize
());
},
Number
<
NumDTensor_
>
{});
auto
e_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_e_grid
,
e_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
// divide block work by [M, N]
const
auto
block_work_idx
=
block_2_etile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const
index_t
kbatch_id
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]);
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I1
]
*
MPerBlock
);
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I2
]
*
NPerBlock
);
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1
,
BK1
);
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_kbatch_ak0_m_ak1
=
GetABlockDescriptor_KBatch_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
constexpr
auto
b_block_desc_kbatch_bk0_n_bk1
=
GetBBlockDescriptor_KBatch_BK0PerBlock_NPerBlock_BK1
();
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
1
,
AK0PerBlock
,
MPerBlock
,
AK1
>
,
ABlockTransferThreadClusterLengths_KBatch_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABDataType
,
ABDataTypeAdjusted
,
decltype
(
a_grid_desc_kbatch_ak0_m_ak1
),
decltype
(
a_block_desc_kbatch_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
2
,
0
,
1
,
3
>
,
ABlockTransferSrcVectorDim
,
3
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
,
NumGemmKPrefetchStage
>
(
a_grid_desc_kbatch_ak0_m_ak1
,
make_multi_index
(
kbatch_id
,
0
,
m_block_data_idx_on_grid
,
0
),
a_element_op
,
a_block_desc_kbatch_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// B matrix blockwise copy
auto
b_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
1
,
BK0PerBlock
,
NPerBlock
,
BK1
>
,
BBlockTransferThreadClusterLengths_KBatch_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
ABDataType
,
ABDataTypeAdjusted
,
decltype
(
b_grid_desc_kbatch_bk0_n_bk1
),
decltype
(
b_block_desc_kbatch_bk0_n_bk1
),
BBlockTransferSrcAccessOrder
,
Sequence
<
2
,
0
,
1
,
3
>
,
BBlockTransferSrcVectorDim
,
3
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
1
,
1
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
,
NumGemmKPrefetchStage
>
(
b_grid_desc_kbatch_bk0_n_bk1
,
make_multi_index
(
kbatch_id
,
0
,
n_block_data_idx_on_grid
,
0
),
b_element_op
,
b_block_desc_kbatch_bk0_n_bk1
,
make_multi_index
(
0
,
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1
,
BK1
),
MfmaSelector
<
ABDataTypeAdjusted
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
auto
blockwise_gemm
=
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector
<
BlockSize
,
ABDataTypeAdjusted
,
AccDataType
,
decltype
(
a_block_desc_ak0_m_ak1
),
decltype
(
b_block_desc_bk0_n_bk1
),
MPerXdl
,
NPerXdl
,
MXdlPerWave
,
NXdlPerWave
,
KPack
,
LoopSched
>
();
#if 1
if
(
block_work_idx
[
I0
]
==
0
)
{
const
index_t
nThreadSize
=
CDEShuffleBlockTransferScalarPerVector_NPerBlock
;
const
index_t
numNThreads
=
NPerBlock
/
nThreadSize
;
const
index_t
numMThreads
=
BlockSize
/
numNThreads
;
const
index_t
mThreadSize
=
MPerBlock
/
numMThreads
;
const
index_t
m_tid
=
get_thread_local_1d_id
()
/
numNThreads
;
const
index_t
n_tid
=
get_thread_local_1d_id
()
%
numNThreads
;
auto
c_thread_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
mThreadSize
>
{},
I1
,
Number
<
nThreadSize
>
{}));
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
EDataType
,
c_thread_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
(),
true
>
e_thread_zero_buf
;
auto
c_thread_copy
=
ThreadwiseTensorSliceTransfer_v1r3
<
EDataType
,
EDataType
,
decltype
(
c_thread_desc_mblock_mperblock_nblock_nperblock
),
decltype
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
1
,
mThreadSize
,
1
,
nThreadSize
>
,
Sequence
<
0
,
1
,
2
,
3
>
,
3
,
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
e_grid_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
block_work_idx
[
I1
],
m_tid
*
mThreadSize
,
block_work_idx
[
I2
],
n_tid
*
nThreadSize
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
c_thread_copy
.
Run
(
c_thread_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
I0
,
I0
,
I0
,
I0
),
e_thread_zero_buf
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_buf
);
__syncthreads
();
if
(
threadIdx
.
x
==
0
)
{
atomicAdd
(
barrier_count_finished
,
1
);
}
}
#endif
auto
c_thread_buf
=
blockwise_gemm
.
GetCThreadBuffer
();
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
ABDataTypeAdjusted
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
ABDataTypeAdjusted
*>
(
p_shared
)
+
a_block_space_size_aligned
,
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
0
,
KPerBlock
/
AK1
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
0
,
KPerBlock
/
BK1
,
0
,
0
);
// gridwise GEMM pipeline
const
auto
gridwise_gemm_pipeline
=
GridwiseGemmPipeline_Selector
<
PipelineVer
,
NumGemmKPrefetchStage
,
LoopSched
>
();
const
index_t
num_k_block_main_loop
=
__builtin_amdgcn_readfirstlane
((
a_grid_desc_kbatch_ak0_m_ak1
.
GetLength
(
I1
)
*
a_grid_desc_kbatch_ak0_m_ak1
.
GetLength
(
I3
))
/
KPerBlock
);
gridwise_gemm_pipeline
.
template
Run
<
HasMainKBlockLoop
>(
a_grid_desc_kbatch_ak0_m_ak1
,
a_block_desc_kbatch_ak0_m_ak1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_buf
,
a_block_slice_copy_step
,
b_grid_desc_kbatch_bk0_n_bk1
,
b_block_desc_kbatch_bk0_n_bk1
,
b_blockwise_copy
,
b_grid_buf
,
b_block_buf
,
b_block_slice_copy_step
,
blockwise_gemm
,
c_thread_buf
,
num_k_block_main_loop
);
// shuffle C and write out
{
if
(
threadIdx
.
x
==
0
)
{
while
(
__atomic_load_n
(
barrier_count_finished
,
__ATOMIC_RELAXED
)
==
0
)
{}
}
__syncthreads
();
static_assert
(
MXdlPerWave
%
CShuffleMXdlPerWavePerShuffle
==
0
&&
NXdlPerWave
%
CShuffleNXdlPerWavePerShuffle
==
0
,
"wrong!"
);
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
// TODO: hacky, fix it!
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
=
blockwise_gemm
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I7
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
CShuffleDataType
*>
(
p_shared
),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleMXdlPerWavePerShuffle
>
{},
// M0 (MXdlPerWave) per shuffle
M1
,
// M1 = MWave
M2
,
// M2 * M3 * M4 = MPerXdl
M3
,
M4
)),
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleNXdlPerWavePerShuffle
>
{},
// N0 (NXdlPerWave) per shuffle
N1
,
// N1 = NWave
N2
))),
// N2 = NPerXdl
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
2
,
4
,
5
,
6
>
{},
Sequence
<>
{},
Sequence
<
1
,
3
,
7
>
{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// shuffle: threadwise copy C from VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
CShuffleDataType
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
],
m_thread_data_on_block_idx
[
I4
],
n_thread_data_on_block_idx
[
I2
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
// tuple of reference to C/Ds tensor descriptors
const
auto
c_ds_desc_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_desc_mblock_mperblock_nblock_nperblock
[
i
];
},
Number
<
NumDTensor_
>
{}));
// tuple of reference to C/Ds tensor descriptors
const
auto
c_ds_buf_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_buf
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_buf
[
i
];
},
Number
<
NumDTensor_
>
{}));
// tuple of starting index of C/Ds blockwise copy
const
auto
idx_c_ds_block_begin
=
container_concat
(
make_tuple
(
make_multi_index
(
0
,
0
,
0
,
0
)),
generate_tuple
(
[
&
](
auto
)
{
return
make_multi_index
(
block_work_idx
[
I1
],
0
,
block_work_idx
[
I2
],
0
);
},
Number
<
NumDTensor_
>
{}));
// space filling curve for threadwise C in VGPR before shuffle
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
NXdlPerWave
,
1
,
1
,
M2
,
1
,
M4
,
1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
M2
,
1
,
M4
,
1
>>
{};
// space filling curve for shuffled blockwise C/D/E
constexpr
auto
sfc_cde_block
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
static_assert
(
num_access
==
sfc_cde_block
.
GetNumOfAccess
(),
"wrong!"
);
// blockwise copy C/D/E between LDS and global
auto
cde_block_copy_lds_and_global
=
ThreadGroupTensorSliceTransfer_v7
<
ThisThreadBlock
,
decltype
(
container_concat
(
make_tuple
(
CShuffleDataType
{}),
DsDataType_
{})),
Tuple
<
EDataType
>
,
decltype
(
c_ds_desc_refs
),
decltype
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
)),
CDEElementwiseOperation_
,
Sequence
<
static_cast
<
index_t
>
(
EGlobalMemoryDataOperation
)
>
,
// FIXME: make
// Sequence support
// arbitray type
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
,
// BlockSliceLengths,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DimAccessOrder,
3
,
// index_t VectorDim,
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
sequence_merge_t
<
Sequence
<
true
>
,
uniform_sequence_gen_t
<
NumDTensor_
,
false
>>
,
// ThreadTransferSrcResetCoordinateAfterRunFlags
Sequence
<
false
>>
// ThreadTransferDstResetCoordinateAfterRunFlags
{
c_ds_desc_refs
,
idx_c_ds_block_begin
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
make_tuple
(
make_multi_index
(
block_work_idx
[
I1
],
0
,
block_work_idx
[
I2
],
0
)),
cde_element_op
};
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
access_id
)
{
// make sure it's safe to write to LDS
block_sync_lds
();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
sfc_c_vgpr
.
GetIndexTupleOfNumber
(
access_id
),
c_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_shuffle_block_buf
);
// make sure it's safe to read from LDS
block_sync_lds
();
// each block copy its data from LDS to global
cde_block_copy_lds_and_global
.
Run
(
c_ds_desc_refs
,
c_ds_buf_refs
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
tie
(
e_grid_buf
));
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
cde_lds_and_global_step
=
sfc_cde_block
.
GetForwardStep
(
access_id
);
// move on Ds
static_for
<
0
,
NumDTensor_
,
1
>
{}([
&
](
auto
i
)
{
cde_block_copy_lds_and_global
.
MoveSrcSliceWindow
(
c_ds_desc_refs
,
i
+
I1
,
cde_lds_and_global_step
);
});
// move on E
cde_block_copy_lds_and_global
.
MoveDstSliceWindow
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
I0
,
cde_lds_and_global_step
);
}
});
if
(
threadIdx
.
x
==
0
)
{
index_t
k_id_finished_t
=
atomicAdd
(
barrier_count_finished
,
1
);
if
(
k_id_finished_t
==
KBatch
)
{
*
barrier_count_finished
=
0
;
}
}
}
}
template
<
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
EGlobalMemoryDataOperation
,
GemmSpecialization
GemmSpec
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
Block2ETileMap
>
__device__
static
void
Run
(
const
void
*
__restrict__
p_a_grid_
,
const
void
*
__restrict__
p_b_grid_
,
DsGridPointer
p_ds_grid
,
void
*
__restrict__
p_e_grid_
,
void
*
__restrict__
p_shared
,
uint32_t
*
barrier_count_finished
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
,
const
index_t
M
,
const
index_t
N
,
const
index_t
K
,
const
index_t
StrideA
,
const
index_t
StrideB
,
const
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
const
index_t
StrideE
,
const
index_t
KBatch
,
const
Block2ETileMap
&
block_2_etile_map
)
{
const
auto
p_a_grid
=
reinterpret_cast
<
const
ABDataType
*>
(
p_a_grid_
);
const
auto
p_b_grid
=
reinterpret_cast
<
const
ABDataType
*>
(
p_b_grid_
);
const
auto
p_e_grid
=
reinterpret_cast
<
EDataType
*>
(
p_e_grid_
);
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
<
DsLayout
,
GemmSpec
>
({},
{},
{}))
>
;
DsGridDesc_M_N
ds_grid_desc_m_n
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsLayout
>>
;
ds_grid_desc_m_n
(
j
)
=
MakeEGridDescriptor_M_N
<
DLayout
,
GemmSpec
>
(
M
,
N
,
StrideDs
[
j
]);
});
const
auto
e_grid_desc_m_n
=
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>
(
M
,
N
,
StrideE
);
// tensor descriptors for block/thread-wise copy
const
auto
a_grid_desc_kbatch_ak0_m_ak1
=
MakeAGridDescriptor_KBatch_AK0_M_AK1
<
ALayout
,
GemmSpec
>
(
M
,
K
,
StrideA
,
KBatch
);
const
auto
b_grid_desc_kbatch_bk0_n_bk1
=
MakeBGridDescriptor_KBatch_BK0_N_BK1
<
BLayout
,
GemmSpec
>
(
K
,
N
,
StrideB
,
KBatch
);
using
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
DsGridDesc_M_N
{}))
>
;
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
ds_grid_desc_mblock_mperblock_nblock_nperblock
(
j
)
=
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
[
j
]);
});
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n
);
const
auto
block_work_idx
=
block_2_etile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
const
index_t
kbatch_id
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]);
if
(
kbatch_id
==
KBatch
-
1
)
{
Run
<
HasMainKBlockLoop
,
EGlobalMemoryDataOperation
,
NumDTensor
,
DsDataType
>
(
p_a_grid
,
p_b_grid
,
p_ds_grid
,
p_e_grid
,
p_shared
,
barrier_count_finished
,
KBatch
,
a_element_op
,
b_element_op
,
cde_element_op
,
a_grid_desc_kbatch_ak0_m_ak1
,
b_grid_desc_kbatch_bk0_n_bk1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
block_2_etile_map
);
}
else
{
Run
<
HasMainKBlockLoop
,
EGlobalMemoryDataOperation
,
0
,
Tuple
<>>
(
p_a_grid
,
p_b_grid
,
p_ds_grid
,
p_e_grid
,
p_shared
,
barrier_count_finished
,
KBatch
,
a_element_op
,
b_element_op
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
a_grid_desc_kbatch_ak0_m_ak1
,
b_grid_desc_kbatch_bk0_n_bk1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
block_2_etile_map
);
}
}
};
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_gemm_split_k_multiple_d_xdl_cshuffle_v2.hpp
0 → 100644
View file @
03cd2692
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
namespace
ck
{
// GEMM:
// input : A[M, K]
// input : B[N, K]
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// D0, D1, ... and E have the same layout
template
<
typename
ADataType
,
// FIXME: don't assume A/B have same datatype
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
ComputeType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1Value
,
index_t
BK1Value
,
index_t
MPerXdl
,
index_t
NPerXdl
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_KBatch_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_KBatch_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
,
PipelineVersion
PipelineVer
=
PipelineVersion
::
v1
>
struct
GridwiseGemmMultipleD_xdl_splitk_cshuffle
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
using
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
// K1 should be Number<...>
static
constexpr
auto
AK1
=
Number
<
AK1Value
>
{};
static
constexpr
auto
BK1
=
Number
<
BK1Value
>
{};
static
constexpr
auto
AK0PerBlock
=
Number
<
KPerBlock
/
AK1Value
>
{};
static
constexpr
auto
BK0PerBlock
=
Number
<
KPerBlock
/
BK1Value
>
{};
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
using
GridwiseGemmPipe
=
remove_cvref_t
<
decltype
(
GridwiseGemmPipeline_Selector
<
PipelineVer
,
NumGemmKPrefetchStage
,
LoopSched
>
())
>
;
__host__
__device__
static
constexpr
auto
GetABlockDescriptor_KBatch_AK0PerBlock_MPerBlock_AK1
()
{
// A matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
I1
,
AK0PerBlock
,
Number
<
MPerBlock
>
{},
AK1
),
make_tuple
(
AK0PerBlock
*
Number
<
MPerBlock
+
ABlockLdsExtraM
>
{}
*
AK1
,
Number
<
MPerBlock
+
ABlockLdsExtraM
>
{}
*
AK1
,
AK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetBBlockDescriptor_KBatch_BK0PerBlock_NPerBlock_BK1
()
{
// B matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
I1
,
BK0PerBlock
,
Number
<
NPerBlock
>
{},
BK1
),
make_tuple
(
BK0PerBlock
*
Number
<
NPerBlock
+
BBlockLdsExtraN
>
{}
*
BK1
,
Number
<
NPerBlock
+
BBlockLdsExtraN
>
{}
*
BK1
,
BK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()
{
// A matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
AK0PerBlock
,
Number
<
MPerBlock
>
{},
AK1
),
make_tuple
(
Number
<
MPerBlock
+
ABlockLdsExtraM
>
{}
*
AK1
,
AK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()
{
// B matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
BK0PerBlock
,
Number
<
NPerBlock
>
{},
BK1
),
make_tuple
(
Number
<
NPerBlock
+
BBlockLdsExtraN
>
{}
*
BK1
,
BK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
()
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
>
{},
I1
,
Number
<
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
{}));
return
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
;
}
// ck::Tuple<const D0DataType*, const D1DataType*, ...>
static
constexpr
auto
MakeDsGridPointer
()
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
return
static_cast
<
const
DDataType
*>
(
nullptr
);
},
Number
<
NumDTensor
>
{});
}
__host__
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1
,
BK1
);
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
constexpr
auto
b_block_space_size_aligned
=
math
::
integer_least_multiple
(
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
(),
max_lds_align
);
// LDS allocation for C shuffle in LDS
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
constexpr
auto
c_block_size
=
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
();
return
math
::
max
(
a_block_space_size_aligned
*
sizeof
(
ADataType
)
+
b_block_space_size_aligned
*
sizeof
(
BDataType
),
c_block_size
*
sizeof
(
CShuffleDataType
));
}
__host__
__device__
static
auto
CalculateMPadded
(
index_t
M
)
{
return
math
::
integer_least_multiple
(
M
,
MPerBlock
);
}
__host__
__device__
static
auto
CalculateNPadded
(
index_t
N
)
{
return
math
::
integer_least_multiple
(
N
,
NPerBlock
);
}
__host__
__device__
static
auto
CalculateKPadded
(
index_t
K
,
index_t
K_Batch
)
{
return
math
::
integer_least_multiple
(
K
,
KPerBlock
*
K_Batch
);
}
template
<
typename
ALayout
,
GemmSpecialization
GemmSpec
>
__host__
__device__
static
auto
MakeAGridDescriptor_KBatch_AK0_M_AK1
(
index_t
M
,
index_t
K
,
index_t
StrideA
,
index_t
KBatch
)
{
const
auto
a_grid_desc_m_k
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I1
,
StrideA
));
}
}();
const
auto
MPad
=
CalculateMPadded
(
M
);
const
auto
KPad
=
CalculateKPadded
(
K
,
KBatch
);
const
auto
a_grid_desc_m_kpad
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_pass_through_transform
(
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
AK0
=
KPad
/
(
KBatch
*
AK1
);
if
constexpr
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
{
// const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return
transform_tensor_descriptor
(
a_grid_desc_m_kpad
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
AK0
,
AK1
)),
make_right_pad_transform
(
M
,
MPad
-
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
else
{
return
transform_tensor_descriptor
(
a_grid_desc_m_kpad
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
}
template
<
typename
BLayout
,
GemmSpecialization
GemmSpec
>
__host__
__device__
static
auto
MakeBGridDescriptor_KBatch_BK0_N_BK1
(
index_t
K
,
index_t
N
,
index_t
StrideB
,
index_t
KBatch
)
{
const
auto
b_grid_desc_k_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
StrideB
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
I1
,
StrideB
));
}
}();
const
auto
NPad
=
CalculateNPadded
(
N
);
const
auto
KPad
=
CalculateKPadded
(
K
,
KBatch
);
const
auto
b_grid_desc_kpad_n
=
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_right_pad_transform
(
K
,
KPad
-
K
),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
BK0
=
KPad
/
(
KBatch
*
BK1
);
if
constexpr
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
{
// const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return
transform_tensor_descriptor
(
b_grid_desc_kpad_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
BK0
,
BK1
)),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
else
{
return
transform_tensor_descriptor
(
b_grid_desc_kpad_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
}
// E desc for destination in blockwise copy
template
<
typename
EGridDesc_M_N
>
__host__
__device__
static
constexpr
auto
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
EGridDesc_M_N
&
e_grid_desc_m_n
)
{
const
auto
M
=
e_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
e_grid_desc_m_n
.
GetLength
(
I1
);
const
auto
MBlock
=
M
/
MPerBlock
;
const
auto
NBlock
=
N
/
NPerBlock
;
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
transform_tensor_descriptor
(
e_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
return
e_grid_desc_mblock_mperblock_nblock_nperblock
;
}
// Ds desc for source in blockwise copy
template
<
typename
DsGridDesc_M_N
>
__host__
__device__
static
constexpr
auto
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
DsGridDesc_M_N
&
ds_grid_desc_m_n
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
[
i
]);
},
Number
<
NumDTensor
>
{});
}
// return block_id to E matrix tile idx (m0, n0) mapping
template
<
typename
EGridDesc_M_N
>
__host__
__device__
static
constexpr
auto
MakeDefaultBlock2ETileMap
(
const
EGridDesc_M_N
&
e_grid_desc_m_n
)
{
return
BlockToCTileMap_M00_N0_M01Adapt
<
MPerBlock
,
NPerBlock
,
EGridDesc_M_N
>
(
e_grid_desc_m_n
);
}
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
GemmSpecialization
GemmSpec
>
__host__
__device__
static
constexpr
bool
CheckValidity
(
const
index_t
M
,
const
index_t
N
,
const
index_t
K
,
const
index_t
StrideA
,
const
index_t
StrideB
,
const
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
const
index_t
StrideE
,
const
index_t
KBatch
)
{
const
auto
a_grid_desc_kbatch_ak0_m_ak1
=
MakeAGridDescriptor_KBatch_AK0_M_AK1
<
ALayout
,
GemmSpec
>
(
M
,
K
,
StrideA
,
KBatch
);
const
auto
b_grid_desc_kbatch_bk0_n_bk1
=
MakeBGridDescriptor_KBatch_BK0_N_BK1
<
BLayout
,
GemmSpec
>
(
K
,
N
,
StrideB
,
KBatch
);
ignore
=
StrideDs
;
const
auto
e_grid_desc_m_n
=
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>
(
M
,
N
,
StrideE
);
#if 0
// check tile size
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K % KPerBlock == 0))
{
return false;
}
#endif
// check gridwise gemm pipeline
const
auto
num_k_loop
=
K
/
KPerBlock
;
if
(
!
GridwiseGemmPipe
::
IsSupported
(
num_k_loop
))
{
return
false
;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
// check tensor size: cannot be larger than 2GB each
constexpr
long_index_t
TwoGB
=
(
long_index_t
{
1
}
<<
31
);
if
(
!
(
a_grid_desc_kbatch_ak0_m_ak1
.
GetElementSpaceSize
()
*
sizeof
(
ADataType
)
<=
TwoGB
&&
b_grid_desc_kbatch_bk0_n_bk1
.
GetElementSpaceSize
()
*
sizeof
(
BDataType
)
<=
TwoGB
&&
e_grid_desc_m_n
.
GetElementSpaceSize
()
*
sizeof
(
EDataType
)
<=
TwoGB
))
{
return
false
;
}
return
true
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
GridwiseGemmPipe
::
CalculateHasMainLoop
(
num_loop
);
}
using
DsGridPointer
=
decltype
(
MakeDsGridPointer
());
template
<
typename
ELayout
,
GemmSpecialization
GemmSpec
>
__host__
__device__
static
auto
MakeEGridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideE
)
{
constexpr
auto
matrix_padder
=
ck
::
tensor_operation
::
device
::
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
const
auto
e_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
StrideE
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ELayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
I1
,
StrideE
));
}
}();
return
matrix_padder
.
PadCDescriptor_M_N
(
e_grid_desc_mraw_nraw
);
}
template
<
typename
DsLayout
,
GemmSpecialization
GemmSpec
>
__host__
__device__
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NumDTensor
>&
MRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
NRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
DsStride
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
MakeEGridDescriptor_M_N
<
DLayout
,
GemmSpec
>
(
MRaws
[
i
],
NRaws
[
i
],
DsStride
[
i
]);
},
Number
<
NumDTensor
>
{});
}
__device__
__host__
static
constexpr
auto
GetMPerBlock
()
{
return
MPerBlock
;
}
template
<
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
EGlobalMemoryDataOperation
,
index_t
NumDTensor_
,
typename
DsDataType_
,
typename
AGridDesc_KBatch_AK0_M_AK1
,
typename
BGridDesc_KBatch_BK0_N_BK1
,
typename
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
CDEElementwiseOperation_
,
typename
Block2ETileMap
>
__device__
static
void
Run
(
const
ADataType
*
__restrict__
p_a_grid
,
const
BDataType
*
__restrict__
p_b_grid
,
DsGridPointer
p_ds_grid
,
EDataType
*
__restrict__
p_e_grid
,
void
*
__restrict__
p_shared
,
uint32_t
*
barrier_count_finished
,
const
index_t
KBatch
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation_
&
cde_element_op
,
const
AGridDesc_KBatch_AK0_M_AK1
&
a_grid_desc_kbatch_ak0_m_ak1
,
const
BGridDesc_KBatch_BK0_N_BK1
&
b_grid_desc_kbatch_bk0_n_bk1
,
const
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
&
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
const
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
&
e_grid_desc_mblock_mperblock_nblock_nperblock
,
const
Block2ETileMap
&
block_2_etile_map
)
{
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_kbatch_ak0_m_ak1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
,
b_grid_desc_kbatch_bk0_n_bk1
.
GetElementSpaceSize
());
const
auto
ds_grid_buf
=
generate_tuple
(
[
&
](
auto
i
)
{
return
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_ds_grid
[
i
],
ds_grid_desc_mblock_mperblock_nblock_nperblock
[
i
].
GetElementSpaceSize
());
},
Number
<
NumDTensor_
>
{});
auto
e_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_e_grid
,
e_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
// divide block work by [M, N]
const
auto
block_work_idx
=
block_2_etile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const
index_t
kbatch_id
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]);
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I1
]
*
MPerBlock
);
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I2
]
*
NPerBlock
);
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1
,
BK1
);
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_kbatch_ak0_m_ak1
=
GetABlockDescriptor_KBatch_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
constexpr
auto
b_block_desc_kbatch_bk0_n_bk1
=
GetBBlockDescriptor_KBatch_BK0PerBlock_NPerBlock_BK1
();
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
1
,
AK0PerBlock
,
MPerBlock
,
AK1
>
,
ABlockTransferThreadClusterLengths_KBatch_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ADataType
,
ComputeType
,
decltype
(
a_grid_desc_kbatch_ak0_m_ak1
),
decltype
(
a_block_desc_kbatch_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
2
,
0
,
1
,
3
>
,
ABlockTransferSrcVectorDim
,
3
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
,
NumGemmKPrefetchStage
>
(
a_grid_desc_kbatch_ak0_m_ak1
,
make_multi_index
(
kbatch_id
,
0
,
m_block_data_idx_on_grid
,
0
),
a_element_op
,
a_block_desc_kbatch_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// B matrix blockwise copy
auto
b_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
1
,
BK0PerBlock
,
NPerBlock
,
BK1
>
,
BBlockTransferThreadClusterLengths_KBatch_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BDataType
,
ComputeType
,
decltype
(
b_grid_desc_kbatch_bk0_n_bk1
),
decltype
(
b_block_desc_kbatch_bk0_n_bk1
),
BBlockTransferSrcAccessOrder
,
Sequence
<
2
,
0
,
1
,
3
>
,
BBlockTransferSrcVectorDim
,
3
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
1
,
1
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
,
NumGemmKPrefetchStage
>
(
b_grid_desc_kbatch_bk0_n_bk1
,
make_multi_index
(
kbatch_id
,
0
,
n_block_data_idx_on_grid
,
0
),
b_element_op
,
b_block_desc_kbatch_bk0_n_bk1
,
make_multi_index
(
0
,
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1
,
BK1
),
MfmaSelector
<
ComputeType
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
auto
blockwise_gemm
=
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector
<
BlockSize
,
ComputeType
,
AccDataType
,
decltype
(
a_block_desc_ak0_m_ak1
),
decltype
(
b_block_desc_bk0_n_bk1
),
MPerXdl
,
NPerXdl
,
MXdlPerWave
,
NXdlPerWave
,
KPack
,
LoopSched
>
();
#if 1
if
(
block_work_idx
[
I0
]
==
0
)
{
const
index_t
nThreadSize
=
CDEShuffleBlockTransferScalarPerVector_NPerBlock
;
const
index_t
numNThreads
=
NPerBlock
/
nThreadSize
;
const
index_t
numMThreads
=
BlockSize
/
numNThreads
;
const
index_t
mThreadSize
=
MPerBlock
/
numMThreads
;
const
index_t
m_tid
=
get_thread_local_1d_id
()
/
numNThreads
;
const
index_t
n_tid
=
get_thread_local_1d_id
()
%
numNThreads
;
auto
c_thread_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
mThreadSize
>
{},
I1
,
Number
<
nThreadSize
>
{}));
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
EDataType
,
c_thread_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
(),
true
>
e_thread_zero_buf
;
auto
c_thread_copy
=
ThreadwiseTensorSliceTransfer_v1r3
<
EDataType
,
EDataType
,
decltype
(
c_thread_desc_mblock_mperblock_nblock_nperblock
),
decltype
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
1
,
mThreadSize
,
1
,
nThreadSize
>
,
Sequence
<
0
,
1
,
2
,
3
>
,
3
,
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
e_grid_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
block_work_idx
[
I1
],
m_tid
*
mThreadSize
,
block_work_idx
[
I2
],
n_tid
*
nThreadSize
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
c_thread_copy
.
Run
(
c_thread_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
I0
,
I0
,
I0
,
I0
),
e_thread_zero_buf
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_buf
);
__syncthreads
();
if
(
threadIdx
.
x
==
0
)
{
atomicAdd
(
barrier_count_finished
,
1
);
}
}
#endif
auto
c_thread_buf
=
blockwise_gemm
.
GetCThreadBuffer
();
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
ComputeType
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
ComputeType
*>
(
p_shared
)
+
a_block_space_size_aligned
,
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
0
,
KPerBlock
/
AK1
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
0
,
KPerBlock
/
BK1
,
0
,
0
);
// gridwise GEMM pipeline
const
auto
gridwise_gemm_pipeline
=
GridwiseGemmPipeline_Selector
<
PipelineVer
,
NumGemmKPrefetchStage
,
LoopSched
>
();
const
index_t
num_k_block_main_loop
=
__builtin_amdgcn_readfirstlane
((
a_grid_desc_kbatch_ak0_m_ak1
.
GetLength
(
I1
)
*
a_grid_desc_kbatch_ak0_m_ak1
.
GetLength
(
I3
))
/
KPerBlock
);
gridwise_gemm_pipeline
.
template
Run
<
HasMainKBlockLoop
>(
a_grid_desc_kbatch_ak0_m_ak1
,
a_block_desc_kbatch_ak0_m_ak1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_buf
,
a_block_slice_copy_step
,
b_grid_desc_kbatch_bk0_n_bk1
,
b_block_desc_kbatch_bk0_n_bk1
,
b_blockwise_copy
,
b_grid_buf
,
b_block_buf
,
b_block_slice_copy_step
,
blockwise_gemm
,
c_thread_buf
,
num_k_block_main_loop
);
// shuffle C and write out
{
if
(
threadIdx
.
x
==
0
)
{
while
(
__atomic_load_n
(
barrier_count_finished
,
__ATOMIC_RELAXED
)
==
0
)
{}
}
__syncthreads
();
static_assert
(
MXdlPerWave
%
CShuffleMXdlPerWavePerShuffle
==
0
&&
NXdlPerWave
%
CShuffleNXdlPerWavePerShuffle
==
0
,
"wrong!"
);
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
// TODO: hacky, fix it!
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
=
blockwise_gemm
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I7
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
CShuffleDataType
*>
(
p_shared
),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleMXdlPerWavePerShuffle
>
{},
// M0 (MXdlPerWave) per shuffle
M1
,
// M1 = MWave
M2
,
// M2 * M3 * M4 = MPerXdl
M3
,
M4
)),
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleNXdlPerWavePerShuffle
>
{},
// N0 (NXdlPerWave) per shuffle
N1
,
// N1 = NWave
N2
))),
// N2 = NPerXdl
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
2
,
4
,
5
,
6
>
{},
Sequence
<>
{},
Sequence
<
1
,
3
,
7
>
{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// shuffle: threadwise copy C from VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
CShuffleDataType
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
],
m_thread_data_on_block_idx
[
I4
],
n_thread_data_on_block_idx
[
I2
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
// tuple of reference to C/Ds tensor descriptors
const
auto
c_ds_desc_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_desc_mblock_mperblock_nblock_nperblock
[
i
];
},
Number
<
NumDTensor_
>
{}));
// tuple of reference to C/Ds tensor descriptors
const
auto
c_ds_buf_refs
=
concat_tuple_of_reference
(
tie
(
c_shuffle_block_buf
),
generate_tie
(
[
&
](
auto
i
)
->
const
auto
&
// return type should be reference
{
return
ds_grid_buf
[
i
];
},
Number
<
NumDTensor_
>
{}));
// tuple of starting index of C/Ds blockwise copy
const
auto
idx_c_ds_block_begin
=
container_concat
(
make_tuple
(
make_multi_index
(
0
,
0
,
0
,
0
)),
generate_tuple
(
[
&
](
auto
)
{
return
make_multi_index
(
block_work_idx
[
I1
],
0
,
block_work_idx
[
I2
],
0
);
},
Number
<
NumDTensor_
>
{}));
// space filling curve for threadwise C in VGPR before shuffle
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
NXdlPerWave
,
1
,
1
,
M2
,
1
,
M4
,
1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
M2
,
1
,
M4
,
1
>>
{};
// space filling curve for shuffled blockwise C/D/E
constexpr
auto
sfc_cde_block
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
static_assert
(
num_access
==
sfc_cde_block
.
GetNumOfAccess
(),
"wrong!"
);
// blockwise copy C/D/E between LDS and global
auto
cde_block_copy_lds_and_global
=
ThreadGroupTensorSliceTransfer_v7
<
ThisThreadBlock
,
decltype
(
container_concat
(
make_tuple
(
CShuffleDataType
{}),
DsDataType_
{})),
Tuple
<
EDataType
>
,
decltype
(
c_ds_desc_refs
),
decltype
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
)),
CDEElementwiseOperation_
,
Sequence
<
static_cast
<
index_t
>
(
EGlobalMemoryDataOperation
)
>
,
// FIXME: make
// Sequence support
// arbitray type
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
,
// BlockSliceLengths,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DimAccessOrder,
3
,
// index_t VectorDim,
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
sequence_merge_t
<
Sequence
<
true
>
,
uniform_sequence_gen_t
<
NumDTensor_
,
false
>>
,
// ThreadTransferSrcResetCoordinateAfterRunFlags
Sequence
<
false
>>
// ThreadTransferDstResetCoordinateAfterRunFlags
{
c_ds_desc_refs
,
idx_c_ds_block_begin
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
make_tuple
(
make_multi_index
(
block_work_idx
[
I1
],
0
,
block_work_idx
[
I2
],
0
)),
cde_element_op
};
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
access_id
)
{
// make sure it's safe to write to LDS
block_sync_lds
();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
sfc_c_vgpr
.
GetIndexTupleOfNumber
(
access_id
),
c_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_shuffle_block_buf
);
// make sure it's safe to read from LDS
block_sync_lds
();
// each block copy its data from LDS to global
cde_block_copy_lds_and_global
.
Run
(
c_ds_desc_refs
,
c_ds_buf_refs
,
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
tie
(
e_grid_buf
));
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
cde_lds_and_global_step
=
sfc_cde_block
.
GetForwardStep
(
access_id
);
// move on Ds
static_for
<
0
,
NumDTensor_
,
1
>
{}([
&
](
auto
i
)
{
cde_block_copy_lds_and_global
.
MoveSrcSliceWindow
(
c_ds_desc_refs
,
i
+
I1
,
cde_lds_and_global_step
);
});
// move on E
cde_block_copy_lds_and_global
.
MoveDstSliceWindow
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
),
I0
,
cde_lds_and_global_step
);
}
});
if
(
threadIdx
.
x
==
0
)
{
index_t
k_id_finished_t
=
atomicAdd
(
barrier_count_finished
,
1
);
if
(
k_id_finished_t
==
KBatch
)
{
*
barrier_count_finished
=
0
;
}
}
}
}
template
<
bool
HasMainKBlockLoop
,
InMemoryDataOperationEnum
EGlobalMemoryDataOperation
,
GemmSpecialization
GemmSpec
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
Block2ETileMap
>
__device__
static
void
Run
(
const
void
*
__restrict__
p_a_grid_
,
const
void
*
__restrict__
p_b_grid_
,
DsGridPointer
p_ds_grid
,
void
*
__restrict__
p_e_grid_
,
void
*
__restrict__
p_shared
,
uint32_t
*
barrier_count_finished
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
,
const
index_t
M
,
const
index_t
N
,
const
index_t
K
,
const
index_t
StrideA
,
const
index_t
StrideB
,
const
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
const
index_t
StrideE
,
const
index_t
KBatch
,
const
Block2ETileMap
&
block_2_etile_map
)
{
const
auto
p_a_grid
=
reinterpret_cast
<
const
ADataType
*>
(
p_a_grid_
);
const
auto
p_b_grid
=
reinterpret_cast
<
const
BDataType
*>
(
p_b_grid_
);
const
auto
p_e_grid
=
reinterpret_cast
<
EDataType
*>
(
p_e_grid_
);
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
<
DsLayout
,
GemmSpec
>
({},
{},
{}))
>
;
DsGridDesc_M_N
ds_grid_desc_m_n
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsLayout
>>
;
ds_grid_desc_m_n
(
j
)
=
MakeEGridDescriptor_M_N
<
DLayout
,
GemmSpec
>
(
M
,
N
,
StrideDs
[
j
]);
});
const
auto
e_grid_desc_m_n
=
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>
(
M
,
N
,
StrideE
);
// tensor descriptors for block/thread-wise copy
const
auto
a_grid_desc_kbatch_ak0_m_ak1
=
MakeAGridDescriptor_KBatch_AK0_M_AK1
<
ALayout
,
GemmSpec
>
(
M
,
K
,
StrideA
,
KBatch
);
const
auto
b_grid_desc_kbatch_bk0_n_bk1
=
MakeBGridDescriptor_KBatch_BK0_N_BK1
<
BLayout
,
GemmSpec
>
(
K
,
N
,
StrideB
,
KBatch
);
using
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
DsGridDesc_M_N
{}))
>
;
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
ds_grid_desc_mblock_mperblock_nblock_nperblock
(
j
)
=
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
[
j
]);
});
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n
);
const
auto
block_work_idx
=
block_2_etile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
const
index_t
kbatch_id
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]);
if
(
kbatch_id
==
KBatch
-
1
)
{
Run
<
HasMainKBlockLoop
,
EGlobalMemoryDataOperation
,
NumDTensor
,
DsDataType
>
(
p_a_grid
,
p_b_grid
,
p_ds_grid
,
p_e_grid
,
p_shared
,
barrier_count_finished
,
KBatch
,
a_element_op
,
b_element_op
,
cde_element_op
,
a_grid_desc_kbatch_ak0_m_ak1
,
b_grid_desc_kbatch_bk0_n_bk1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
block_2_etile_map
);
}
else
{
Run
<
HasMainKBlockLoop
,
EGlobalMemoryDataOperation
,
0
,
Tuple
<>>
(
p_a_grid
,
p_b_grid
,
p_ds_grid
,
p_e_grid
,
p_shared
,
barrier_count_finished
,
KBatch
,
a_element_op
,
b_element_op
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
a_grid_desc_kbatch_ak0_m_ak1
,
b_grid_desc_kbatch_bk0_n_bk1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
block_2_etile_map
);
}
}
};
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_streamk.hpp
View file @
03cd2692
...
...
@@ -37,7 +37,8 @@ __global__ void
index_t
StrideC
,
typename
GridwiseGemm
::
Block2CTileMap
block_mapping
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
constexpr
index_t
shared_size
=
GridwiseGemm
::
GetSharedMemoryNumberOfByte
();
__shared__
uint8_t
p_shared
[
shared_size
];
...
...
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v6r1.hpp
View file @
03cd2692
...
...
@@ -104,13 +104,13 @@ struct ThreadwiseTensorSliceTransfer_v6r1
// apply pointwise operation
static_for
<
0
,
ScalarPerVector
,
1
>
{}([
&
](
auto
i
)
{
Src
Data
v
;
Dst
Data
v
;
// apply element-wise operation
element_op_
(
v
,
src_vector_container
.
template
AsType
<
SrcData
>()[
i
]);
// apply type convert
dst_vector_container
.
template
AsType
<
DstData
>()(
i
)
=
type_convert
<
DstData
>
(
v
)
;
dst_vector_container
.
template
AsType
<
DstData
>()(
i
)
=
v
;
});
const
bool
is_dst_valid
=
...
...
include/ck/utility/reduction_operator.hpp
View file @
03cd2692
...
...
@@ -116,7 +116,15 @@ struct Max
template
<
typename
T
>
__host__
__device__
static
constexpr
T
GetIdentityValue
()
{
return
NumericLimits
<
T
>::
Lowest
();
if
constexpr
(
is_same_v
<
T
,
bhalf_t
>
)
{
float
val
=
NumericLimits
<
float
>::
Lowest
();
return
type_convert
<
bhalf_t
>
(
val
);
}
else
{
return
NumericLimits
<
T
>::
Lowest
();
}
};
__host__
__device__
static
constexpr
bool
...
...
@@ -138,6 +146,15 @@ struct Max
a
=
b
;
}
__host__
__device__
inline
constexpr
void
operator
()(
bhalf_t
&
a
,
bhalf_t
b
)
const
{
float
a_
=
type_convert
<
float
>
(
a
);
float
b_
=
type_convert
<
float
>
(
b
);
if
(
a_
<
b_
)
a
=
b
;
}
template
<
typename
T
>
__host__
__device__
inline
constexpr
void
operator
()(
T
&
a
,
T
b
,
bool
&
changed
)
const
{
...
...
@@ -152,6 +169,18 @@ struct Max
changed
=
true
;
}
}
__host__
__device__
inline
constexpr
void
operator
()(
bhalf_t
&
a
,
bhalf_t
b
,
bool
&
changed
)
const
{
float
a_
=
type_convert
<
float
>
(
a
);
float
b_
=
type_convert
<
float
>
(
b
);
if
(
a_
<
b_
)
{
a
=
b
;
changed
=
true
;
}
}
};
struct
Min
...
...
@@ -159,6 +188,15 @@ struct Min
template
<
typename
T
>
__host__
__device__
static
constexpr
T
GetIdentityValue
()
{
if
constexpr
(
is_same_v
<
T
,
bhalf_t
>
)
{
float
val
=
NumericLimits
<
float
>::
Max
();
return
type_convert
<
bhalf_t
>
(
val
);
}
else
{
return
NumericLimits
<
T
>::
Max
();
}
return
NumericLimits
<
T
>::
Max
();
};
...
...
@@ -181,6 +219,15 @@ struct Min
a
=
b
;
}
__host__
__device__
inline
constexpr
void
operator
()(
bhalf_t
&
a
,
bhalf_t
b
)
const
{
float
a_
=
type_convert
<
float
>
(
a
);
float
b_
=
type_convert
<
float
>
(
b
);
if
(
a_
>
b_
)
a
=
b
;
}
template
<
typename
T
>
__host__
__device__
inline
constexpr
void
operator
()(
T
&
a
,
T
b
,
bool
&
changed
)
const
{
...
...
@@ -195,6 +242,18 @@ struct Min
changed
=
true
;
}
}
__host__
__device__
inline
constexpr
void
operator
()(
bhalf_t
&
a
,
bhalf_t
b
,
bool
&
changed
)
const
{
float
a_
=
type_convert
<
float
>
(
a
);
float
b_
=
type_convert
<
float
>
(
b
);
if
(
a_
>
b_
)
{
a
=
b
;
changed
=
true
;
}
}
};
struct
AMax
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_gemm.hpp
View file @
03cd2692
...
...
@@ -92,11 +92,11 @@ struct ReferenceGemm : public device::BaseOperator
ck
::
type_convert
<
AccDataType
>
(
v_a
)
*
ck
::
type_convert
<
AccDataType
>
(
v_b
);
}
Acc
DataType
v_c
;
C
DataType
v_c
;
arg
.
c_element_op_
(
v_c
,
v_acc
);
arg
.
c_m_n_
(
m
,
n
)
=
ck
::
type_convert
<
CDataType
>
(
v_c
)
;
arg
.
c_m_n_
(
m
,
n
)
=
v_c
;
};
make_ParallelTensorFunctor
(
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_maxpool_bwd.hpp
View file @
03cd2692
...
...
@@ -53,7 +53,16 @@ struct ReferenceMaxPoolBwd : public device::BaseOperator
{
int
index
=
arg
.
indices_
.
mData
[
i
];
if
(
index
>=
0
&&
index
<
din_length
)
buf
[
index
]
+=
ck
::
type_convert
<
ConputeDataType
>
(
arg
.
dout_
.
mData
[
i
]);
{
if
constexpr
(
is_same_v
<
ConputeDataType
,
bhalf_t
>
)
{
float
buf_val
=
ck
::
type_convert
<
float
>
(
buf
[
index
]);
buf_val
+=
ck
::
type_convert
<
float
>
(
arg
.
dout_
.
mData
[
i
]);
buf
[
index
]
=
ck
::
type_convert
<
ConputeDataType
>
(
buf_val
);
}
else
buf
[
index
]
+=
ck
::
type_convert
<
ConputeDataType
>
(
arg
.
dout_
.
mData
[
i
]);
}
}
for
(
int
i
=
0
;
i
<
din_length
;
++
i
)
...
...
Prev
1
2
3
4
5
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment