Commit 02ff2522 authored by Po-Yen, Chen's avatar Po-Yen, Chen
Browse files

Merge branch 'develop' into feature/restruct-ckprofiler

parents acc47d12 4e6a5575
......@@ -54,3 +54,4 @@ add_subdirectory(softmax)
add_subdirectory(normalization)
add_subdirectory(data_type)
add_subdirectory(elementwise_normalization)
add_subdirectory(batchnorm_fwd)
add_gtest_executable(test_batchnorm_fwd_rank_4 batchnorm_fwd_rank_4.cpp)
target_link_libraries(test_batchnorm_fwd_rank_4 PRIVATE utility device_batchnorm_instance)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <vector>
#include <tuple>
#include <gtest/gtest.h>
#include "profiler/profile_batchnorm_forward_impl.hpp"
using F16 = ck::half_t;
using F32 = float;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F64 = double;
template <typename Tuple>
class TestBatchNormFwdRank4 : public ::testing::Test
{
private:
const double epsilon = std::numeric_limits<float>::epsilon();
const double averageFactor = 0.1;
protected:
using XDataType = std::tuple_element_t<0, Tuple>;
using YDataType = std::tuple_element_t<1, Tuple>;
using AccDataType = std::tuple_element_t<2, Tuple>;
using ScaleDataType = std::tuple_element_t<3, Tuple>;
using BiasDataType = std::tuple_element_t<4, Tuple>;
using MeanVarDataType = std::tuple_element_t<5, Tuple>;
std::vector<std::vector<size_t>> list_of_lengths = {
{128, 16, 3, 1024}, {128, 16, 6, 512}, {1, 1, 1, 1}, {4, 4, 4, 4}, {32, 32, 32, 32}};
std::vector<int> reduceDims;
template <int NumReduceDim>
void Run()
{
for(auto& inOutLengths : list_of_lengths)
{
bool pass = true;
EXPECT_FALSE(reduceDims.size() != NumReduceDim);
pass =
pass && ck::profiler::profile_batchnorm_forward_impl<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
4,
NumReduceDim>(true,
3,
false,
false,
inOutLengths,
reduceDims,
true,
true,
epsilon,
averageFactor);
pass =
pass && ck::profiler::profile_batchnorm_forward_impl<XDataType,
YDataType,
AccDataType,
ScaleDataType,
BiasDataType,
MeanVarDataType,
4,
NumReduceDim>(true,
3,
false,
false,
inOutLengths,
reduceDims,
false,
false,
epsilon,
averageFactor);
EXPECT_TRUE(pass);
}
}
};
using KernelTypes = ::testing::Types<std::tuple<F16, F16, F32, F16, F16, F32>,
std::tuple<F32, F32, F32, F32, F32, F32>,
std::tuple<BF16, BF16, F32, BF16, BF16, F32>,
std::tuple<I8, I8, F32, I8, I8, F32>,
std::tuple<F64, F64, F64, F64, F64, F64>>;
TYPED_TEST_SUITE(TestBatchNormFwdRank4, KernelTypes);
// nhwc
TYPED_TEST(TestBatchNormFwdRank4, nhwc)
{
this->reduceDims = {0, 1, 2};
this->template Run<3>();
}
// nchw
TYPED_TEST(TestBatchNormFwdRank4, nchw)
{
this->reduceDims = {0, 2, 3};
this->template Run<3>();
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment