Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
00af2988
Commit
00af2988
authored
Dec 01, 2022
by
Po-Yen, Chen
Browse files
Merge branch 'develop' into feature/restruct-ckprofiler
parents
9a2607d6
ad541ad6
Changes
51
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1562 additions
and
786 deletions
+1562
-786
include/ck/tensor_operation/gpu/grid/batchnorm_multiblock/gridwise_multiblock_welford_second_half_multiblock_reduce_first_half.hpp
...lock_welford_second_half_multiblock_reduce_first_half.hpp
+19
-38
include/ck/tensor_operation/gpu/grid/gridwise_batchnorm_backward_blockwise_welford.hpp
...pu/grid/gridwise_batchnorm_backward_blockwise_welford.hpp
+31
-49
include/ck/tensor_operation/gpu/grid/gridwise_multiblock_welford_first_half.hpp
...ation/gpu/grid/gridwise_multiblock_welford_first_half.hpp
+0
-258
library/include/ck/library/reference_tensor_operation/cpu/reference_batchnorm_backward.hpp
...nce_tensor_operation/cpu/reference_batchnorm_backward.hpp
+412
-0
library/include/ck/library/reference_tensor_operation/cpu/reference_batchnorm_backward_nhwc_c.hpp
...sor_operation/cpu/reference_batchnorm_backward_nhwc_c.hpp
+0
-319
library/include/ck/library/tensor_operation_instance/device_operation_instance_factory.hpp
..._operation_instance/device_operation_instance_factory.hpp
+13
-5
library/include/ck/library/tensor_operation_instance/gpu/batchnorm_backward.hpp
...rary/tensor_operation_instance/gpu/batchnorm_backward.hpp
+124
-0
library/include/ck/library/tensor_operation_instance/gpu/quantization/grouped_convolution_bias_forward_perchannel_quantization.hpp
...uped_convolution_bias_forward_perchannel_quantization.hpp
+114
-0
library/include/ck/library/tensor_operation_instance/gpu/quantization/grouped_convolution_bias_forward_perlayer_quantization.hpp
...rouped_convolution_bias_forward_perlayer_quantization.hpp
+3
-3
library/include/ck/library/tensor_operation_instance/gpu/quantization/grouped_convolution_forward_perchannel_quantization.hpp
...n/grouped_convolution_forward_perchannel_quantization.hpp
+113
-0
library/include/ck/library/tensor_operation_instance/gpu/quantization/grouped_convolution_forward_perlayer_quantization.hpp
...ion/grouped_convolution_forward_perlayer_quantization.hpp
+0
-0
library/src/tensor_operation_instance/gpu/batchnorm/CMakeLists.txt
...rc/tensor_operation_instance/gpu/batchnorm/CMakeLists.txt
+4
-0
library/src/tensor_operation_instance/gpu/batchnorm/device_batchnorm_backward_bf16_instance.cpp
...gpu/batchnorm/device_batchnorm_backward_bf16_instance.cpp
+146
-0
library/src/tensor_operation_instance/gpu/batchnorm/device_batchnorm_backward_f16_instance.cpp
.../gpu/batchnorm/device_batchnorm_backward_f16_instance.cpp
+147
-0
library/src/tensor_operation_instance/gpu/batchnorm/device_batchnorm_backward_f32_instance.cpp
.../gpu/batchnorm/device_batchnorm_backward_f32_instance.cpp
+145
-0
library/src/tensor_operation_instance/gpu/batchnorm/device_batchnorm_backward_f64_instance.cpp
.../gpu/batchnorm/device_batchnorm_backward_f64_instance.cpp
+145
-0
library/src/tensor_operation_instance/gpu/quantization/CMakeLists.txt
...tensor_operation_instance/gpu/quantization/CMakeLists.txt
+4
-2
library/src/tensor_operation_instance/gpu/quantization/device_conv2d_xdl_bias_perchannel_quantization_int8_instance.cpp
...conv2d_xdl_bias_perchannel_quantization_int8_instance.cpp
+74
-0
library/src/tensor_operation_instance/gpu/quantization/device_conv2d_xdl_bias_perlayer_quantization_int8_instance.cpp
...e_conv2d_xdl_bias_perlayer_quantization_int8_instance.cpp
+68
-0
library/src/tensor_operation_instance/gpu/quantization/device_conv2d_xdl_bias_quant_int8_instance.cpp
...antization/device_conv2d_xdl_bias_quant_int8_instance.cpp
+0
-112
No files found.
include/ck/tensor_operation/gpu/grid/batchnorm_multiblock/gridwise_multiblock_welford_second_half_multiblock_reduce_first_half.hpp
View file @
00af2988
...
...
@@ -17,7 +17,7 @@ template <typename GridwiseWelfordSecondHalfReduceFirstHalf_,
typename
DyDataType
,
typename
AccDataType
,
typename
ScaleDataType
,
typename
B
iasDataType
,
typename
DscaleDb
iasDataType
,
typename
MeanVarDataType
,
typename
DyElementwiseOp
,
typename
XYGridDesc_M_K
,
...
...
@@ -45,8 +45,8 @@ __global__ void kernel_welford_second_half_reduce_first_half(
MeanVarDataType
*
const
__restrict__
p_out_welford_inv_variance
,
const
XDataType
*
const
__restrict__
p_x
,
const
DyDataType
*
const
__restrict__
p_dy
,
S
caleDataType
*
const
__restrict__
p_reduce_dscale
,
B
iasDataType
*
const
__restrict__
p_reduce_dbias
)
Ds
caleD
biasD
ataType
*
const
__restrict__
p_reduce_dscale
,
DscaleDb
iasDataType
*
const
__restrict__
p_reduce_dbias
)
{
GridwiseWelfordSecondHalfReduceFirstHalf_
::
Run
(
x_grid_desc_m_k
,
dy_grid_desc_m_k
,
...
...
@@ -76,7 +76,7 @@ template <typename XDataType,
typename
DyDataType
,
typename
AccDataType
,
typename
ScaleDataType
,
typename
B
iasDataType
,
typename
DscaleDb
iasDataType
,
typename
MeanVarDataType
,
typename
DyElementwiseOp
,
typename
XYGridDesc_M_K
,
...
...
@@ -174,8 +174,8 @@ struct GridwiseWelfordSecondHalfReduceFirstHalf
MeanVarDataType
*
const
__restrict__
p_out_welford_inv_variance
,
const
XDataType
*
const
__restrict__
p_x
,
const
DyDataType
*
const
__restrict__
p_dy
,
S
caleDataType
*
const
__restrict__
p_reduce_dscale
,
B
iasDataType
*
const
__restrict__
p_reduce_dbias
)
Ds
caleD
biasD
ataType
*
const
__restrict__
p_reduce_dscale
,
DscaleDb
iasDataType
*
const
__restrict__
p_reduce_dbias
)
{
__shared__
AccDataType
p_reduce_work_buffer
[
BlockSize
];
...
...
@@ -511,28 +511,9 @@ struct GridwiseWelfordSecondHalfReduceFirstHalf
BlockwiseReduce
::
Reduce
(
reduce_work_buf
,
reduce_dbias_thread_buf
(
I
));
});
auto
threadwise_dscale_store
=
auto
threadwise_dscale_
dbias_
store
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
ScaleDataType
,
decltype
(
thread_buffer_desc_m_1
),
DscaleDbiasGridDesc_M_G
,
PassThroughOp
,
ThreadBufferLengths_M_1
,
Sequence
<
0
,
1
>
,
1
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
(
dscale_dbias_grid_desc_m_g
,
make_multi_index
(
blkgroup_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
block_local_id
),
PassThroughOp
{});
auto
threadwise_dbias_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
BiasDataType
,
DscaleDbiasDataType
,
decltype
(
thread_buffer_desc_m_1
),
DscaleDbiasGridDesc_M_G
,
PassThroughOp
,
...
...
@@ -557,17 +538,17 @@ struct GridwiseWelfordSecondHalfReduceFirstHalf
if
(
thread_k_cluster_id
==
0
)
{
threadwise_dscale_store
.
Run
(
thread_buffer_desc_m_1
,
make_tuple
(
I0
,
I0
),
reduce_dscale_thread_buf
,
dscale_dbias_grid_desc_m_g
,
reduce_dscale_global_buf
);
threadwise_dbias_store
.
Run
(
thread_buffer_desc_m_1
,
make_tuple
(
I0
,
I0
),
reduce_dbias_thread_buf
,
dscale_dbias_grid_desc_m_g
,
reduce_dbias_global_buf
);
threadwise_dscale_
dbias_
store
.
Run
(
thread_buffer_desc_m_1
,
make_tuple
(
I0
,
I0
),
reduce_dscale_thread_buf
,
dscale_dbias_grid_desc_m_g
,
reduce_dscale_global_buf
);
threadwise_
dscale_
dbias_store
.
Run
(
thread_buffer_desc_m_1
,
make_tuple
(
I0
,
I0
),
reduce_dbias_thread_buf
,
dscale_dbias_grid_desc_m_g
,
reduce_dbias_global_buf
);
};
};
};
...
...
include/ck/tensor_operation/gpu/grid/gridwise_batchnorm_backward_blockwise_welford.hpp
View file @
00af2988
...
...
@@ -21,7 +21,7 @@ template <typename GridwiseBatchrNormBackwardWithBlockwiseWelford_,
typename
DxDataType
,
typename
AccDataType
,
typename
ScaleDataType
,
typename
B
iasDataType
,
typename
DscaleDb
iasDataType
,
typename
MeanVarDataType
,
typename
DyElementwiseOp
,
typename
XYGridDesc_M_K
,
...
...
@@ -33,7 +33,7 @@ __global__ void kernel_batchnorm_backward_with_blockwise_welford(
const
XYGridDesc_M_K
dy_grid_desc_m_k
,
const
XYGridDesc_M_K
dx_grid_desc_m_k
,
const
ScaleBiasGridDesc_M
scale_grid_desc_m
,
const
ScaleBiasGridDesc_M
bias_grid_desc_m
,
const
ScaleBiasGridDesc_M
dscale_d
bias_grid_desc_m
,
const
MeanVarGridDesc_M
mean_var_grid_desc_m
,
const
GetReduceCountPerThreadFunctor
get_reduce_count_per_thread
,
long_index_t
reduce_size
,
...
...
@@ -47,14 +47,14 @@ __global__ void kernel_batchnorm_backward_with_blockwise_welford(
const
MeanVarDataType
*
const
__restrict__
p_savedInvVar
,
const
DyElementwiseOp
dy_elementwise_op
,
DxDataType
*
const
__restrict__
p_dx
,
S
caleDataType
*
const
__restrict__
p_dscale
,
B
iasDataType
*
const
__restrict__
p_dbias
)
Ds
caleD
biasD
ataType
*
const
__restrict__
p_dscale
,
DscaleDb
iasDataType
*
const
__restrict__
p_dbias
)
{
GridwiseBatchrNormBackwardWithBlockwiseWelford_
::
Run
(
x_grid_desc_m_k
,
dy_grid_desc_m_k
,
dx_grid_desc_m_k
,
scale_grid_desc_m
,
bias_grid_desc_m
,
dscale_d
bias_grid_desc_m
,
mean_var_grid_desc_m
,
get_reduce_count_per_thread
,
reduce_size
,
...
...
@@ -77,7 +77,7 @@ template <typename XDataType,
typename
DxDataType
,
typename
AccDataType
,
typename
ScaleDataType
,
typename
B
iasDataType
,
typename
DscaleDb
iasDataType
,
typename
MeanVarDataType
,
typename
DyElementwiseOp
,
typename
XYGridDesc_M_K
,
...
...
@@ -93,8 +93,8 @@ template <typename XDataType,
index_t
XSrcVectorSize
,
index_t
DySrcVectorSize
,
index_t
DxDstVectorSize
,
index_t
ScaleSrc
Dst
VectorSize
,
index_t
B
iasDstVectorSize
,
index_t
ScaleSrcVectorSize
,
index_t
DscaleDb
iasDstVectorSize
,
index_t
MeanVarSrcVectorSize
>
struct
GridwiseBatchNormBackwardWithBlockwiseWelford
{
...
...
@@ -165,7 +165,7 @@ struct GridwiseBatchNormBackwardWithBlockwiseWelford
const
XYGridDesc_M_K
dy_grid_desc_m_k
,
const
XYGridDesc_M_K
dx_grid_desc_m_k
,
const
ScaleBiasGridDesc_M
scale_grid_desc_m
,
const
ScaleBiasGridDesc_M
bias_grid_desc_m
,
const
ScaleBiasGridDesc_M
dscale_d
bias_grid_desc_m
,
const
MeanVarGridDesc_M
mean_var_grid_desc_m
,
const
GetReduceCountPerThreadFunctor
get_reduce_count_per_thread
,
long_index_t
reduce_size
,
...
...
@@ -179,8 +179,8 @@ struct GridwiseBatchNormBackwardWithBlockwiseWelford
const
MeanVarDataType
*
const
__restrict__
p_savedInvVar
,
const
DyElementwiseOp
dy_elementwise_op
,
DxDataType
*
const
__restrict__
p_dx
,
S
caleDataType
*
const
__restrict__
p_dscale
,
B
iasDataType
*
const
__restrict__
p_dbias
)
Ds
caleD
biasD
ataType
*
const
__restrict__
p_dscale
,
DscaleDb
iasDataType
*
const
__restrict__
p_dbias
)
{
using
ck
::
math
::
sqrt
;
...
...
@@ -253,7 +253,7 @@ struct GridwiseBatchNormBackwardWithBlockwiseWelford
XSrcVectorSize
,
1
,
true
>
(
x
_grid_desc_m_k
,
dy
_grid_desc_m_k
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSliceSize
));
...
...
@@ -271,7 +271,7 @@ struct GridwiseBatchNormBackwardWithBlockwiseWelford
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
(
d
y
_grid_desc_m_k
,
d
x
_grid_desc_m_k
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSliceSize
),
...
...
@@ -285,45 +285,27 @@ struct GridwiseBatchNormBackwardWithBlockwiseWelford
ThreadBufferLengths_M
,
Sequence
<
0
>
,
0
,
ScaleSrc
Dst
VectorSize
,
ScaleSrcVectorSize
,
1
,
true
>
(
scale_grid_desc_m
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
));
auto
threadwise_dscale_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
ScaleDataType
,
decltype
(
thread_buffer_desc_m
),
ScaleBiasGridDesc_M
,
PassThroughOp
,
ThreadBufferLengths_M
,
Sequence
<
0
>
,
0
,
ScaleSrcDstVectorSize
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
(
scale_grid_desc_m
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
),
PassThroughOp
{});
auto
threadwise_dbias_store
=
auto
threadwise_dscale_dbias_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
B
iasDataType
,
DscaleDb
iasDataType
,
decltype
(
thread_buffer_desc_m
),
ScaleBiasGridDesc_M
,
PassThroughOp
,
ThreadBufferLengths_M
,
Sequence
<
0
>
,
0
,
B
iasDstVectorSize
,
DscaleDb
iasDstVectorSize
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
(
bias_grid_desc_m
,
dscale_d
bias_grid_desc_m
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
),
PassThroughOp
{});
...
...
@@ -344,10 +326,10 @@ struct GridwiseBatchNormBackwardWithBlockwiseWelford
p_scale
,
scale_grid_desc_m
.
GetElementSpaceSize
());
auto
dscale_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_dscale
,
scale_grid_desc_m
.
GetElementSpaceSize
());
p_dscale
,
d
scale_
dbias_
grid_desc_m
.
GetElementSpaceSize
());
auto
dbias_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_dbias
,
bias_grid_desc_m
.
GetElementSpaceSize
());
p_dbias
,
dscale_d
bias_grid_desc_m
.
GetElementSpaceSize
());
// clang-format off
// Step 1: calculating mean and inv-variance using welford method (if savedMean/savedInvVar not available), where inv-variance = 1/sqrt(epsilon+variance)
...
...
@@ -487,17 +469,17 @@ struct GridwiseBatchNormBackwardWithBlockwiseWelford
if
(
thread_k_cluster_id
==
0
)
{
threadwise_dscale_store
.
Run
(
thread_buffer_desc_m
,
make_tuple
(
I0
),
dscale_thread_buf
,
scale
_grid_desc_m
,
dscale_global_buf
);
threadwise_dbias_store
.
Run
(
thread_buffer_desc_m
,
make_tuple
(
I0
),
dbias_thread_buf
,
bias_grid_desc_m
,
dbias_global_buf
);
threadwise_dscale_
dbias_
store
.
Run
(
thread_buffer_desc_m
,
make_tuple
(
I0
),
dscale_thread_buf
,
dscale_dbias
_grid_desc_m
,
dscale_global_buf
);
threadwise_
dscale_
dbias_store
.
Run
(
thread_buffer_desc_m
,
make_tuple
(
I0
),
dbias_thread_buf
,
dscale_d
bias_grid_desc_m
,
dbias_global_buf
);
};
// clang-format off
...
...
include/ck/tensor_operation/gpu/grid/gridwise_multiblock_welford_first_half.hpp
deleted
100644 → 0
View file @
9a2607d6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/utility/math.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_welford.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_welford.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace
ck
{
template
<
typename
GridwiseMultiblockWelfordFirstHalf_
,
typename
XDataType
,
typename
MeanVarDataType
,
typename
XGridDesc_M_K
,
typename
MeanVarCountGridDesc_M_G
,
typename
GetReduceCountPerThreadFunctor
>
__global__
void
kernel_multiblock_welford_first_half
(
const
XGridDesc_M_K
x_grid_desc_m_k
,
const
MeanVarCountGridDesc_M_G
mean_var_count_grid_desc_m_g
,
const
GetReduceCountPerThreadFunctor
get_reduce_count_per_thread
,
index_t
num_k_block_tile_iteration
,
const
XDataType
*
const
__restrict__
p_x
,
MeanVarDataType
*
const
p_welford_mean
,
MeanVarDataType
*
const
p_welford_variance
,
int32_t
*
const
p_welford_count
)
{
GridwiseMultiblockWelfordFirstHalf_
::
Run
(
x_grid_desc_m_k
,
mean_var_count_grid_desc_m_g
,
get_reduce_count_per_thread
,
num_k_block_tile_iteration
,
p_x
,
p_welford_mean
,
p_welford_variance
,
p_welford_count
);
};
template
<
typename
XDataType
,
typename
AccDataType
,
typename
MeanVarDataType
,
typename
XGridDesc_M_K
,
typename
MeanVarCountGridDesc_M_G
,
typename
GetReduceCountPerThreadFunctor
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
index_t
KThreadClusterSize
,
index_t
MThreadSliceSize
,
index_t
KThreadSliceSize
,
index_t
XSrcCountSrcVectorDim
,
index_t
XSrcCountSrcVectorSize
>
struct
GridwiseMultiblockWelfordFirstHalf
{
static_assert
((
XSrcCountSrcVectorDim
==
0
&&
MThreadSliceSize
%
XSrcCountSrcVectorSize
==
0
)
||
(
XSrcCountSrcVectorDim
==
1
&&
KThreadSliceSize
%
XSrcCountSrcVectorSize
==
0
),
"Invalid thread slice sizes and/or vector sizes configuration, please check!"
);
static
constexpr
bool
reorder_thread_cluster
=
(
XSrcCountSrcVectorDim
==
0
);
using
ThreadClusterLengths_M_K
=
Sequence
<
MThreadClusterSize
,
KThreadClusterSize
>
;
using
ThreadBufferDimAccessOrder
=
typename
conditional
<
reorder_thread_cluster
,
Sequence
<
1
,
0
>
,
Sequence
<
0
,
1
>>::
type
;
using
ThreadClusterArrangeOrder
=
typename
conditional
<
reorder_thread_cluster
,
Sequence
<
1
,
0
>
,
Sequence
<
0
,
1
>>::
type
;
static
constexpr
auto
thread_cluster_desc
=
make_cluster_descriptor
(
ThreadClusterLengths_M_K
{},
ThreadClusterArrangeOrder
{});
using
ThreadReduceSrcDesc_M_K
=
decltype
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSliceSize
>
{})));
using
ThreadReduceDstDesc_M
=
decltype
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{})));
using
ThreadwiseWelford
=
ThreadwiseWelford
<
AccDataType
,
ThreadReduceSrcDesc_M_K
,
ThreadReduceDstDesc_M
>
;
using
BlockwiseWelford
=
BlockwiseWelford
<
AccDataType
,
BlockSize
,
ThreadClusterLengths_M_K
,
ThreadClusterArrangeOrder
,
false
>
;
using
PassThroughOp
=
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
index_t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
__device__
static
void
Run
(
const
XGridDesc_M_K
&
x_grid_desc_m_k
,
const
MeanVarCountGridDesc_M_G
&
mean_var_count_grid_desc_m_g
,
const
GetReduceCountPerThreadFunctor
&
get_reduce_count_per_thread
,
index_t
num_k_block_tile_iteration
,
const
XDataType
*
const
__restrict__
p_x
,
MeanVarDataType
*
const
p_welford_mean
,
MeanVarDataType
*
const
p_welford_variance
,
int32_t
*
const
p_welford_count
)
{
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
x_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
welford_mean_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
AccDataType
,
MThreadSliceSize
,
true
>
welford_var_thread_buf
;
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
int32_t
,
MThreadSliceSize
,
true
>
welford_count_thread_buf
;
const
index_t
blkgroup_size
=
mean_var_count_grid_desc_m_g
.
GetLength
(
I1
);
const
index_t
thread_local_id
=
get_thread_local_1d_id
();
const
index_t
block_global_id
=
get_block_1d_id
();
const
index_t
blkgroup_id
=
block_global_id
/
blkgroup_size
;
const
index_t
block_local_id
=
block_global_id
%
blkgroup_size
;
const
auto
thread_cluster_idx
=
thread_cluster_desc
.
CalculateBottomIndex
(
make_multi_index
(
thread_local_id
));
const
auto
thread_m_cluster_id
=
thread_cluster_idx
[
I0
];
const
auto
thread_k_cluster_id
=
thread_cluster_idx
[
I1
];
using
ThreadBufferLengths_M_K
=
Sequence
<
MThreadSliceSize
,
KThreadSliceSize
>
;
using
ThreadBufferLengths_M_1
=
Sequence
<
MThreadSliceSize
,
1
>
;
constexpr
auto
thread_buffer_desc_m_k
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSliceSize
>
{}));
constexpr
auto
thread_buffer_desc_m_1
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
1
>
{}));
const
index_t
reduceSizePerBlock
=
K_BlockTileSize
*
num_k_block_tile_iteration
;
auto
threadwise_x_load
=
ThreadwiseTensorSliceTransfer_v2
<
XDataType
,
AccDataType
,
XGridDesc_M_K
,
decltype
(
thread_buffer_desc_m_k
),
ThreadBufferLengths_M_K
,
ThreadBufferDimAccessOrder
,
XSrcCountSrcVectorDim
,
XSrcCountSrcVectorSize
,
1
,
true
>
(
x_grid_desc_m_k
,
make_multi_index
(
blkgroup_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
block_local_id
*
reduceSizePerBlock
+
thread_k_cluster_id
*
KThreadSliceSize
));
auto
threadwise_welford_mean_var_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
MeanVarDataType
,
decltype
(
thread_buffer_desc_m_1
),
MeanVarCountGridDesc_M_G
,
PassThroughOp
,
ThreadBufferLengths_M_1
,
Sequence
<
0
,
1
>
,
1
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
(
mean_var_count_grid_desc_m_g
,
make_multi_index
(
blkgroup_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
block_local_id
),
PassThroughOp
{});
auto
threadwise_welford_count_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
int32_t
,
int32_t
,
decltype
(
thread_buffer_desc_m_1
),
MeanVarCountGridDesc_M_G
,
PassThroughOp
,
ThreadBufferLengths_M_1
,
Sequence
<
0
,
1
>
,
1
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
(
mean_var_count_grid_desc_m_g
,
make_multi_index
(
blkgroup_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
block_local_id
),
PassThroughOp
{});
constexpr
auto
thread_copy_fwd_step_m_k
=
make_multi_index
(
0
,
K_BlockTileSize
);
const
auto
x_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_x
,
x_grid_desc_m_k
.
GetElementSpaceSize
());
auto
welford_mean_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_welford_mean
,
mean_var_count_grid_desc_m_g
.
GetElementSpaceSize
());
auto
welford_var_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_welford_variance
,
mean_var_count_grid_desc_m_g
.
GetElementSpaceSize
());
auto
welford_count_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_welford_count
,
mean_var_count_grid_desc_m_g
.
GetElementSpaceSize
());
auto
threadwise_welford
=
ThreadwiseWelford
();
threadwise_welford
.
max_count_
=
get_reduce_count_per_thread
(
block_local_id
,
thread_k_cluster_id
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
welford_mean_thread_buf
(
I
)
=
type_convert
<
AccDataType
>
(
0.0
f
);
welford_var_thread_buf
(
I
)
=
type_convert
<
AccDataType
>
(
0.0
f
);
});
for
(
index_t
reducedTiles
=
0
;
reducedTiles
<
num_k_block_tile_iteration
;
++
reducedTiles
)
{
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
x_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
x_thread_buf
);
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
threadwise_welford
.
Run
(
x_thread_buf
,
welford_mean_thread_buf
,
welford_var_thread_buf
);
}
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
if
constexpr
(
I
>
0
)
block_sync_lds
();
welford_count_thread_buf
(
I
)
=
threadwise_welford
.
cur_count_
;
BlockwiseWelford
::
Run
(
welford_mean_thread_buf
(
I
),
welford_var_thread_buf
(
I
),
welford_count_thread_buf
(
I
));
});
if
(
thread_k_cluster_id
==
0
)
{
threadwise_welford_mean_var_store
.
Run
(
thread_buffer_desc_m_1
,
make_tuple
(
I0
,
I0
),
welford_mean_thread_buf
,
mean_var_count_grid_desc_m_g
,
welford_mean_global_val_buf
);
threadwise_welford_mean_var_store
.
Run
(
thread_buffer_desc_m_1
,
make_tuple
(
I0
,
I0
),
welford_var_thread_buf
,
mean_var_count_grid_desc_m_g
,
welford_var_global_val_buf
);
threadwise_welford_count_store
.
Run
(
thread_buffer_desc_m_1
,
make_tuple
(
I0
,
I0
),
welford_count_thread_buf
,
mean_var_count_grid_desc_m_g
,
welford_count_global_val_buf
);
};
}
};
}
// namespace ck
library/include/ck/library/reference_tensor_operation/cpu/reference_batchnorm_backward.hpp
0 → 100644
View file @
00af2988
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <array>
#include <algorithm>
#include <thread>
#include "ck/utility/math_v2.hpp"
#include "ck/utility/ignore.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/tensor_operation/gpu/device/device_batchnorm_backward.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
host
{
template
<
typename
XDataType
,
typename
DxDataType
,
typename
DyDataType
,
typename
AccDataType
,
typename
ScaleDataType
,
typename
DscaleDbiasDataType
,
typename
MeanVarDataType
,
typename
DyElementwiseOp
,
index_t
Rank
,
index_t
NumBatchNormReduceDim
>
struct
ReferenceBatchNormBwd
:
public
device
::
DeviceBatchNormBwd
<
XDataType
,
DxDataType
,
DyDataType
,
AccDataType
,
ScaleDataType
,
DscaleDbiasDataType
,
MeanVarDataType
,
DyElementwiseOp
,
Rank
,
NumBatchNormReduceDim
>
{
static_assert
(
Rank
<=
6
,
"Bigger Rank size is not supported!"
);
static
constexpr
index_t
NumInvariantDim
=
Rank
-
NumBatchNormReduceDim
;
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
const
std
::
array
<
index_t
,
Rank
>
xyLengths
,
const
std
::
array
<
index_t
,
Rank
>
xStrides
,
const
std
::
array
<
index_t
,
Rank
>
dxStrides
,
const
std
::
array
<
index_t
,
Rank
>
dyStrides
,
const
std
::
array
<
int
,
NumBatchNormReduceDim
>
reduceDims
,
const
std
::
array
<
index_t
,
NumInvariantDim
>
bnScaleBiasMeanVarLengths
,
const
std
::
array
<
index_t
,
NumInvariantDim
>
bnScaleStrides
,
const
std
::
array
<
index_t
,
NumInvariantDim
>
bnDscaleDbiasStrides
,
const
std
::
array
<
index_t
,
NumInvariantDim
>
bnMeanVarStrides
,
const
XDataType
*
p_x
,
const
DyDataType
*
p_dy
,
const
ScaleDataType
*
p_scale
,
const
MeanVarDataType
*
p_savedMean
,
const
MeanVarDataType
*
p_savedInvVar
,
double
epsilon
,
const
DyElementwiseOp
dy_elementwise_op
,
DxDataType
*
p_dx
,
DscaleDbiasDataType
*
p_dscale
,
DscaleDbiasDataType
*
p_dbias
)
:
reduceDims_
(
reduceDims
),
bnScaleBiasMeanVarLengths_
(
bnScaleBiasMeanVarLengths
),
bnScaleStrides_
(
bnScaleStrides
),
bnDscaleDbiasStrides_
(
bnDscaleDbiasStrides
),
bnMeanVarStrides_
(
bnMeanVarStrides
),
p_x_
(
p_x
),
p_dy_
(
p_dy
),
p_scale_
(
p_scale
),
p_savedMean_
(
p_savedMean
),
p_savedInvVar_
(
p_savedInvVar
),
dy_elementwise_op_
(
dy_elementwise_op
),
p_dx_
(
p_dx
),
p_dscale_
(
p_dscale
),
p_dbias_
(
p_dbias
)
{
using
ck
::
host_common
::
get_index_set
;
if
(
std
::
any_of
(
reduceDims
.
begin
(),
reduceDims
.
end
(),
[](
int
d
)
{
return
d
<
0
||
d
>=
Rank
;
}))
throw
std
::
runtime_error
(
"Invalid reduce dimensions!"
);
// get invariant_dims[] and invariant_lengths[]
for
(
int
dim
=
0
,
i
=
0
;
dim
<
Rank
;
dim
++
)
if
(
std
::
none_of
(
reduceDims
.
begin
(),
reduceDims
.
end
(),
[
&
](
int
d
)
{
return
d
==
dim
;
}))
{
invariantDims_
[
i
]
=
dim
;
invariant_lengths_
[
i
]
=
xyLengths
[
dim
];
i
++
;
};
// get reduce_lengths_[]
for
(
int
j
=
0
,
i
=
0
;
j
<
NumBatchNormReduceDim
;
j
++
)
{
int
dim
=
reduceDims
[
j
];
reduce_lengths_
[
i
++
]
=
xyLengths
[
dim
];
};
for
(
int
i
=
0
;
i
<
NumInvariantDim
;
i
++
)
if
(
invariant_lengths_
[
i
]
!=
bnScaleBiasMeanVarLengths_
[
i
])
throw
std
::
runtime_error
(
"Invalid lengths parameters!"
);
for
(
int
j
=
0
,
i
=
0
;
j
<
NumInvariantDim
;
j
++
)
{
int
dim
=
invariantDims_
[
j
];
x_invariant_strides_
[
i
]
=
xStrides
[
dim
];
dy_invariant_strides_
[
i
]
=
dyStrides
[
dim
];
dx_invariant_strides_
[
i
]
=
dxStrides
[
dim
];
i
++
;
};
for
(
int
j
=
0
,
i
=
0
;
j
<
NumBatchNormReduceDim
;
j
++
)
{
int
dim
=
reduceDims_
[
j
];
x_reduce_strides_
[
i
]
=
xStrides
[
dim
];
dy_reduce_strides_
[
i
]
=
dyStrides
[
dim
];
dx_reduce_strides_
[
i
]
=
dxStrides
[
dim
];
i
++
;
};
reduceSize_
=
std
::
accumulate
(
reduce_lengths_
.
begin
(),
reduce_lengths_
.
end
(),
1
,
std
::
multiplies
<
size_t
>
{});
invariant_index_set_
=
get_index_set
<
NumInvariantDim
>
(
invariant_lengths_
);
reduce_index_set_
=
get_index_set
<
NumBatchNormReduceDim
>
(
reduce_lengths_
);
epsilon_
=
type_convert
<
AccDataType
>
(
epsilon
);
haveSavedMeanInvVar_
=
(
p_savedMean
!=
nullptr
&&
p_savedInvVar
!=
nullptr
);
}
std
::
array
<
int
,
NumBatchNormReduceDim
>
reduceDims_
;
std
::
array
<
int
,
NumInvariantDim
>
invariantDims_
;
std
::
array
<
index_t
,
NumInvariantDim
>
invariant_lengths_
;
std
::
array
<
index_t
,
NumBatchNormReduceDim
>
reduce_lengths_
;
const
std
::
array
<
index_t
,
NumInvariantDim
>
bnScaleBiasMeanVarLengths_
;
const
std
::
array
<
index_t
,
NumInvariantDim
>
bnScaleStrides_
;
const
std
::
array
<
index_t
,
NumInvariantDim
>
bnDscaleDbiasStrides_
;
const
std
::
array
<
index_t
,
NumInvariantDim
>
bnMeanVarStrides_
;
std
::
array
<
index_t
,
NumInvariantDim
>
x_invariant_strides_
;
std
::
array
<
index_t
,
NumInvariantDim
>
dy_invariant_strides_
;
std
::
array
<
index_t
,
NumInvariantDim
>
dx_invariant_strides_
;
std
::
array
<
index_t
,
NumBatchNormReduceDim
>
x_reduce_strides_
;
std
::
array
<
index_t
,
NumBatchNormReduceDim
>
dy_reduce_strides_
;
std
::
array
<
index_t
,
NumBatchNormReduceDim
>
dx_reduce_strides_
;
const
XDataType
*
p_x_
;
const
DyDataType
*
p_dy_
;
const
ScaleDataType
*
p_scale_
;
const
MeanVarDataType
*
p_savedMean_
;
const
MeanVarDataType
*
p_savedInvVar_
;
const
DyElementwiseOp
dy_elementwise_op_
;
DxDataType
*
p_dx_
;
DscaleDbiasDataType
*
p_dscale_
;
DscaleDbiasDataType
*
p_dbias_
;
bool
haveSavedMeanInvVar_
;
std
::
vector
<
std
::
array
<
index_t
,
NumInvariantDim
>>
invariant_index_set_
;
std
::
vector
<
std
::
array
<
index_t
,
NumBatchNormReduceDim
>>
reduce_index_set_
;
AccDataType
epsilon_
;
size_t
reduceSize_
;
};
struct
Invoker
:
public
device
::
BaseInvoker
{
float
Run
(
const
Argument
&
arg
)
{
using
ck
::
host_common
::
get_offset_from_index
;
auto
thread_reduce_func
=
[
&
](
auto
invariant_index
)
{
size_t
x_invariant_offset
=
get_offset_from_index
<
NumInvariantDim
>
(
arg
.
x_invariant_strides_
,
invariant_index
);
size_t
dy_invariant_offset
=
get_offset_from_index
<
NumInvariantDim
>
(
arg
.
dy_invariant_strides_
,
invariant_index
);
size_t
dx_invariant_offset
=
get_offset_from_index
<
NumInvariantDim
>
(
arg
.
dx_invariant_strides_
,
invariant_index
);
AccDataType
mean
=
type_convert
<
AccDataType
>
(
0.0
f
);
AccDataType
variance
=
type_convert
<
AccDataType
>
(
0.0
f
);
AccDataType
invVar
;
int32_t
curr_count
=
0
;
if
(
arg
.
haveSavedMeanInvVar_
)
{
size_t
mean_invVar_invariant_offset
=
get_offset_from_index
<
NumInvariantDim
>
(
arg
.
bnMeanVarStrides_
,
invariant_index
);
mean
=
type_convert
<
AccDataType
>
(
arg
.
p_savedMean_
[
mean_invVar_invariant_offset
]);
invVar
=
type_convert
<
AccDataType
>
(
arg
.
p_savedInvVar_
[
mean_invVar_invariant_offset
]);
}
else
{
// compute mean, variance using welford method
for
(
const
auto
&
reduce_index
:
arg
.
reduce_index_set_
)
{
size_t
x_reduce_offset
=
get_offset_from_index
<
NumBatchNormReduceDim
>
(
arg
.
x_reduce_strides_
,
reduce_index
);
auto
x_offset
=
x_invariant_offset
+
x_reduce_offset
;
curr_count
++
;
AccDataType
x
=
type_convert
<
AccDataType
>
(
arg
.
p_x_
[
x_offset
]);
AccDataType
delta
=
x
-
mean
;
mean
+=
delta
/
curr_count
;
AccDataType
delta2
=
x
-
mean
;
variance
+=
delta
*
delta2
;
};
// actual variance
variance
=
variance
/
curr_count
;
// inv-variance defined as 1/sqrt(epsilon+variance)
invVar
=
type_convert
<
AccDataType
>
(
1.0
f
)
/
ck
::
math
::
sqrt
(
arg
.
epsilon_
+
variance
);
};
AccDataType
dbias
=
type_convert
<
AccDataType
>
(
0.0
f
);
// Sum on reduced dimensions of dy
AccDataType
dscale
=
type_convert
<
AccDataType
>
(
0.0
f
);
// Sum on reduced dimensions of dy * norm_x
// 1) calculate dy * (x - mean) * inv-variance
// 2) calculate sum(dy) on reduced dimensions
// 3) calculate sum(dy * norm_x) on reduced dimensions
for
(
const
auto
&
reduce_index
:
arg
.
reduce_index_set_
)
{
size_t
x_reduce_offset
=
get_offset_from_index
<
NumBatchNormReduceDim
>
(
arg
.
x_reduce_strides_
,
reduce_index
);
size_t
dy_reduce_offset
=
get_offset_from_index
<
NumBatchNormReduceDim
>
(
arg
.
dy_reduce_strides_
,
reduce_index
);
auto
x_offset
=
x_invariant_offset
+
x_reduce_offset
;
auto
dy_offset
=
dy_invariant_offset
+
dy_reduce_offset
;
AccDataType
x
=
type_convert
<
AccDataType
>
(
arg
.
p_x_
[
x_offset
]);
AccDataType
norm_x
=
(
x
-
mean
)
*
invVar
;
AccDataType
dy
=
type_convert
<
AccDataType
>
(
arg
.
p_dy_
[
dy_offset
]);
arg
.
dy_elementwise_op_
(
dy
,
dy
);
dbias
+=
dy
;
dscale
+=
norm_x
*
dy
;
};
size_t
dscale_offset
=
get_offset_from_index
<
NumInvariantDim
>
(
arg
.
bnDscaleDbiasStrides_
,
invariant_index
);
size_t
dbias_offset
=
get_offset_from_index
<
NumInvariantDim
>
(
arg
.
bnDscaleDbiasStrides_
,
invariant_index
);
arg
.
p_dscale_
[
dscale_offset
]
=
type_convert
<
DscaleDbiasDataType
>
(
dscale
);
arg
.
p_dbias_
[
dbias_offset
]
=
type_convert
<
DscaleDbiasDataType
>
(
dbias
);
size_t
scale_offset
=
get_offset_from_index
<
NumInvariantDim
>
(
arg
.
bnScaleStrides_
,
invariant_index
);
AccDataType
scale
=
type_convert
<
AccDataType
>
(
arg
.
p_scale_
[
scale_offset
]);
AccDataType
multiplier
=
type_convert
<
AccDataType
>
(
1.0
f
)
/
type_convert
<
AccDataType
>
(
arg
.
reduceSize_
)
*
invVar
*
scale
;
// 1) calculate tmp = dscale * (x - mean) * inv-variance
// 2) calculate dx = 1/reduceSize * inv-variance * scale * (reduceSize * dy - dbias
// - tmp)
for
(
const
auto
&
reduce_index
:
arg
.
reduce_index_set_
)
{
size_t
x_reduce_offset
=
get_offset_from_index
<
NumBatchNormReduceDim
>
(
arg
.
x_reduce_strides_
,
reduce_index
);
size_t
dy_reduce_offset
=
get_offset_from_index
<
NumBatchNormReduceDim
>
(
arg
.
dy_reduce_strides_
,
reduce_index
);
size_t
dx_reduce_offset
=
get_offset_from_index
<
NumBatchNormReduceDim
>
(
arg
.
dx_reduce_strides_
,
reduce_index
);
auto
x_offset
=
x_invariant_offset
+
x_reduce_offset
;
auto
dy_offset
=
dy_invariant_offset
+
dy_reduce_offset
;
auto
dx_offset
=
dx_invariant_offset
+
dx_reduce_offset
;
AccDataType
x
=
type_convert
<
AccDataType
>
(
arg
.
p_x_
[
x_offset
]);
AccDataType
norm_x
=
(
x
-
mean
)
*
invVar
;
AccDataType
dy
=
type_convert
<
AccDataType
>
(
arg
.
p_dy_
[
dy_offset
]);
arg
.
dy_elementwise_op_
(
dy
,
dy
);
AccDataType
tmpVal
=
norm_x
*
dscale
;
AccDataType
dx
=
multiplier
*
(
type_convert
<
AccDataType
>
(
arg
.
reduceSize_
)
*
dy
-
dbias
-
tmpVal
);
arg
.
p_dx_
[
dx_offset
]
=
type_convert
<
DxDataType
>
(
dx
);
};
};
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
();
std
::
size_t
work_per_thread
=
(
arg
.
invariant_index_set_
.
size
()
+
num_thread
-
1
)
/
num_thread
;
std
::
vector
<
joinable_thread
>
threads
(
num_thread
);
for
(
std
::
size_t
it
=
0
;
it
<
num_thread
;
++
it
)
{
std
::
size_t
i_begin
=
it
*
work_per_thread
;
std
::
size_t
i_end
=
std
::
min
(
static_cast
<
size_t
>
((
it
+
1
)
*
work_per_thread
),
arg
.
invariant_index_set_
.
size
());
auto
f
=
[
=
]
{
for
(
std
::
size_t
i
=
i_begin
;
i
<
i_end
;
++
i
)
{
thread_reduce_func
(
arg
.
invariant_index_set_
[
i
]);
}
};
threads
[
it
]
=
joinable_thread
(
f
);
}
return
(
0.0
f
);
};
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/*stream_config*/
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
};
};
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
p_arg
)
override
{
(
void
)
p_arg
;
return
(
true
);
};
std
::
unique_ptr
<
device
::
BaseArgument
>
MakeArgumentPointer
(
const
std
::
array
<
index_t
,
Rank
>
xyLengths
,
const
std
::
array
<
index_t
,
Rank
>
xStrides
,
const
std
::
array
<
index_t
,
Rank
>
dxStrides
,
const
std
::
array
<
index_t
,
Rank
>
dyStrides
,
const
std
::
array
<
int
,
NumBatchNormReduceDim
>
reduceDims
,
const
std
::
array
<
index_t
,
NumInvariantDim
>
bnScaleBiasMeanVarLengths
,
const
std
::
array
<
index_t
,
NumInvariantDim
>
bnScaleStrides
,
const
std
::
array
<
index_t
,
NumInvariantDim
>
bnDscaleDbiasStrides
,
const
std
::
array
<
index_t
,
NumInvariantDim
>
bnMeanVarStrides
,
const
void
*
p_x
,
const
void
*
p_dy
,
const
void
*
p_scale
,
const
void
*
p_savedMean
,
const
void
*
p_savedInvVar
,
double
epsilon
,
const
DyElementwiseOp
dy_elementwise_op
,
void
*
p_dx
,
void
*
p_dscale
,
void
*
p_dbias
)
override
{
return
std
::
make_unique
<
Argument
>
(
xyLengths
,
xStrides
,
dxStrides
,
dyStrides
,
reduceDims
,
bnScaleBiasMeanVarLengths
,
bnScaleStrides
,
bnDscaleDbiasStrides
,
bnMeanVarStrides
,
static_cast
<
const
XDataType
*>
(
p_x
),
static_cast
<
const
DyDataType
*>
(
p_dy
),
static_cast
<
const
ScaleDataType
*>
(
p_scale
),
static_cast
<
const
MeanVarDataType
*>
(
p_savedMean
),
static_cast
<
const
MeanVarDataType
*>
(
p_savedInvVar
),
epsilon
,
dy_elementwise_op
,
static_cast
<
DxDataType
*>
(
p_dx
),
static_cast
<
DscaleDbiasDataType
*>
(
p_dscale
),
static_cast
<
DscaleDbiasDataType
*>
(
p_dbias
));
};
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
();
};
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"Reference_BatchNorm_Backward"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace host
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/reference_tensor_operation/cpu/reference_batchnorm_backward_nhwc_c.hpp
deleted
100644 → 0
View file @
9a2607d6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include <algorithm>
#include "ck/tensor_operation/gpu/device/device_batchnorm_backward.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
host
{
template
<
typename
XDataType
,
typename
DyDataType
,
typename
DxDataType
,
typename
AccDataType
,
typename
ScaleDataType
,
typename
BiasDataType
,
typename
MeanVarDataType
,
typename
DyElementwiseOp
>
struct
ReferenceBatchNormBwd_Input_N_H_W_C_Output_C
:
public
device
::
DeviceBatchNormBwd
<
4
,
3
,
DyElementwiseOp
>
{
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
const
std
::
array
<
index_t
,
4
>
xyLengths
,
const
std
::
array
<
index_t
,
4
>
xStrides
,
const
std
::
array
<
index_t
,
4
>
dyStrides
,
const
std
::
array
<
index_t
,
4
>
dxStrides
,
const
std
::
array
<
int
,
3
>
reduceDims
,
const
std
::
array
<
ck
::
index_t
,
1
>
bnScaleBiasMeanVarLengths
,
const
std
::
array
<
ck
::
index_t
,
1
>
bnScaleStrides
,
const
std
::
array
<
ck
::
index_t
,
1
>
bnBiasStrides
,
const
std
::
array
<
ck
::
index_t
,
1
>
bnMeanVarStrides
,
const
XDataType
*
p_x
,
const
DyDataType
*
p_dy
,
const
ScaleDataType
*
p_scale
,
const
MeanVarDataType
*
p_savedMean
,
const
MeanVarDataType
*
p_savedInvVar
,
double
epsilon
,
const
DyElementwiseOp
dy_elementwise_op
,
DxDataType
*
p_dx
,
ScaleDataType
*
p_dscale
,
BiasDataType
*
p_dbias
)
:
p_x_
(
p_x
),
p_dy_
(
p_dy
),
p_scale_
(
p_scale
),
p_savedMean_
(
p_savedMean
),
p_savedInvVar_
(
p_savedInvVar
),
epsilon_
(
epsilon
),
dy_elementwise_op_
(
dy_elementwise_op
),
p_dx_
(
p_dx
),
p_dscale_
(
p_dscale
),
p_dbias_
(
p_dbias
)
{
ignore
=
xStrides
;
ignore
=
dyStrides
;
ignore
=
dxStrides
;
ignore
=
bnScaleStrides
;
ignore
=
bnBiasStrides
;
ignore
=
bnMeanVarStrides
;
if
(
xyLengths
.
size
()
!=
4
||
bnScaleBiasMeanVarLengths
.
size
()
!=
1
||
bnScaleBiasMeanVarLengths
[
0
]
!=
xyLengths
[
3
])
throw
std
::
runtime_error
(
"Invalid tensor dimensions!"
);
if
(
reduceDims
[
0
]
!=
0
||
reduceDims
[
1
]
!=
1
||
reduceDims
[
2
]
!=
2
)
throw
std
::
runtime_error
(
"Invalid reduce dimensions!"
);
n_
=
xyLengths
[
0
];
h_
=
xyLengths
[
1
];
w_
=
xyLengths
[
2
];
c_
=
xyLengths
[
3
];
haveSavedMeanInvVar_
=
(
p_savedMean
!=
nullptr
&&
p_savedInvVar
!=
nullptr
);
}
const
XDataType
*
p_x_
;
const
DyDataType
*
p_dy_
;
const
ScaleDataType
*
p_scale_
;
const
MeanVarDataType
*
p_savedMean_
;
const
MeanVarDataType
*
p_savedInvVar_
;
double
epsilon_
;
const
DyElementwiseOp
dy_elementwise_op_
;
DxDataType
*
p_dx_
;
ScaleDataType
*
p_dscale_
;
BiasDataType
*
p_dbias_
;
bool
haveSavedMeanInvVar_
;
index_t
n_
,
h_
,
w_
,
c_
;
};
struct
Invoker
:
public
device
::
BaseInvoker
{
float
Run
(
const
Argument
&
arg
)
{
auto
thread_reduce_func
=
[
&
](
auto
iC
)
{
AccDataType
reduceSize
=
type_convert
<
AccDataType
>
(
arg
.
n_
)
*
type_convert
<
AccDataType
>
(
arg
.
h_
)
*
type_convert
<
AccDataType
>
(
arg
.
w_
);
index_t
offset_C
=
iC
;
AccDataType
mean
;
AccDataType
invVar
;
if
(
arg
.
haveSavedMeanInvVar_
)
{
mean
=
arg
.
p_savedMean_
[
offset_C
];
invVar
=
arg
.
p_savedInvVar_
[
offset_C
];
}
else
{
AccDataType
meansquare
;
meansquare
=
type_convert
<
AccDataType
>
(
0.0
f
);
mean
=
type_convert
<
AccDataType
>
(
0.0
f
);
// compute mean, meanquare, variance, inv-variance
for
(
index_t
iN
=
0
;
iN
<
arg
.
n_
;
iN
++
)
{
index_t
offset_N
=
iN
*
arg
.
h_
*
arg
.
w_
*
arg
.
c_
;
for
(
index_t
iH
=
0
;
iH
<
arg
.
h_
;
iH
++
)
{
index_t
offset_H
=
iH
*
arg
.
w_
*
arg
.
c_
;
for
(
index_t
iW
=
0
;
iW
<
arg
.
w_
;
iW
++
)
{
index_t
offset_W
=
iW
*
arg
.
c_
;
auto
offset
=
offset_N
+
offset_H
+
offset_W
+
offset_C
;
AccDataType
x
=
type_convert
<
AccDataType
>
(
arg
.
p_x_
[
offset
]);
mean
+=
x
;
meansquare
+=
x
*
x
;
};
}
};
mean
=
mean
/
reduceSize
;
meansquare
=
meansquare
/
reduceSize
;
AccDataType
variance
=
meansquare
-
mean
*
mean
;
invVar
=
type_convert
<
AccDataType
>
(
1.0
f
)
/
std
::
sqrt
(
type_convert
<
AccDataType
>
(
arg
.
epsilon_
)
+
variance
);
};
AccDataType
dbias
=
type_convert
<
AccDataType
>
(
0.0
f
);
// Sum on NHW of dy
AccDataType
dscale
=
type_convert
<
AccDataType
>
(
0.0
f
);
// Sum on NHW of dy * norm_x
// 1) calculate dy * (x - mean) * inv-variance
// 2) calculate sum(dy) on NHW dimensions
// 3) calculate sum(dy * norm_x) on NHW dimensions
for
(
index_t
iN
=
0
;
iN
<
arg
.
n_
;
iN
++
)
{
index_t
offset_N
=
iN
*
arg
.
h_
*
arg
.
w_
*
arg
.
c_
;
for
(
index_t
iH
=
0
;
iH
<
arg
.
h_
;
iH
++
)
{
index_t
offset_H
=
iH
*
arg
.
w_
*
arg
.
c_
;
for
(
index_t
iW
=
0
;
iW
<
arg
.
w_
;
iW
++
)
{
index_t
offset_W
=
iW
*
arg
.
c_
;
auto
offset
=
offset_N
+
offset_H
+
offset_W
+
offset_C
;
AccDataType
x
=
type_convert
<
AccDataType
>
(
arg
.
p_x_
[
offset
]);
AccDataType
norm_x
=
(
x
-
mean
)
*
invVar
;
AccDataType
dy
=
type_convert
<
AccDataType
>
(
arg
.
p_dy_
[
offset
]);
arg
.
dy_elementwise_op_
(
dy
,
dy
);
dbias
+=
dy
;
dscale
+=
norm_x
*
dy
;
};
}
};
arg
.
p_dscale_
[
offset_C
]
=
type_convert
<
ScaleDataType
>
(
dscale
);
arg
.
p_dbias_
[
offset_C
]
=
type_convert
<
BiasDataType
>
(
dbias
);
AccDataType
scale
=
type_convert
<
AccDataType
>
(
arg
.
p_scale_
[
offset_C
]);
AccDataType
multiplier
=
type_convert
<
AccDataType
>
(
1.0
f
)
/
reduceSize
*
invVar
*
scale
;
// 1) calculate tmp = dscale * (x - mean) * inv-variance
// 2) calculate dx = 1/nhw * inv-variance * scale * (nhw * dy - dbias - tmp)
for
(
index_t
iN
=
0
;
iN
<
arg
.
n_
;
iN
++
)
{
index_t
offset_N
=
iN
*
arg
.
h_
*
arg
.
w_
*
arg
.
c_
;
for
(
index_t
iH
=
0
;
iH
<
arg
.
h_
;
iH
++
)
{
index_t
offset_H
=
iH
*
arg
.
w_
*
arg
.
c_
;
for
(
index_t
iW
=
0
;
iW
<
arg
.
w_
;
iW
++
)
{
index_t
offset_W
=
iW
*
arg
.
c_
;
auto
offset
=
offset_N
+
offset_H
+
offset_W
+
offset_C
;
AccDataType
x
=
type_convert
<
AccDataType
>
(
arg
.
p_x_
[
offset
]);
AccDataType
norm_x
=
(
x
-
mean
)
*
invVar
;
AccDataType
dy
=
type_convert
<
AccDataType
>
(
arg
.
p_dy_
[
offset
]);
arg
.
dy_elementwise_op_
(
dy
,
dy
);
AccDataType
tmpVal
=
norm_x
*
dscale
;
AccDataType
dx
=
multiplier
*
(
reduceSize
*
dy
-
dbias
-
tmpVal
);
arg
.
p_dx_
[
offset
]
=
type_convert
<
XDataType
>
(
dx
);
};
}
};
};
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
();
std
::
size_t
work_per_thread
=
(
arg
.
c_
+
num_thread
-
1
)
/
num_thread
;
std
::
vector
<
joinable_thread
>
threads
(
num_thread
);
for
(
std
::
size_t
it
=
0
;
it
<
num_thread
;
++
it
)
{
std
::
size_t
ic_begin
=
it
*
work_per_thread
;
std
::
size_t
ic_end
=
std
::
min
(
static_cast
<
int
>
((
it
+
1
)
*
work_per_thread
),
arg
.
c_
);
auto
f
=
[
=
]
{
for
(
std
::
size_t
ic
=
ic_begin
;
ic
<
ic_end
;
++
ic
)
{
thread_reduce_func
(
ic
);
}
};
threads
[
it
]
=
joinable_thread
(
f
);
}
return
(
0.0
f
);
};
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/*stream_config*/
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
};
};
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
p_arg
)
override
{
(
void
)
p_arg
;
return
(
true
);
};
std
::
unique_ptr
<
device
::
BaseArgument
>
MakeArgumentPointer
(
const
std
::
array
<
index_t
,
4
>
xyLengths
,
const
std
::
array
<
index_t
,
4
>
xStrides
,
const
std
::
array
<
index_t
,
4
>
dyStrides
,
const
std
::
array
<
index_t
,
4
>
dxStrides
,
const
std
::
array
<
int
,
3
>
reduceDims
,
const
std
::
array
<
ck
::
index_t
,
1
>
bnScaleBiasMeanVarLengths
,
const
std
::
array
<
ck
::
index_t
,
1
>
bnScaleStrides
,
const
std
::
array
<
ck
::
index_t
,
1
>
bnBiasStrides
,
const
std
::
array
<
ck
::
index_t
,
1
>
bnMeanVarStrides
,
const
void
*
p_x
,
const
void
*
p_dy
,
const
void
*
p_scale
,
const
void
*
p_savedMean
,
const
void
*
p_savedInvVar
,
double
epsilon
,
const
DyElementwiseOp
dy_elementwise_op
,
void
*
p_dx
,
void
*
p_dscale
,
void
*
p_dbias
)
override
{
return
std
::
make_unique
<
Argument
>
(
xyLengths
,
xStrides
,
dyStrides
,
dxStrides
,
reduceDims
,
bnScaleBiasMeanVarLengths
,
bnScaleStrides
,
bnBiasStrides
,
bnMeanVarStrides
,
static_cast
<
const
XDataType
*>
(
p_x
),
static_cast
<
const
DyDataType
*>
(
p_dy
),
static_cast
<
const
ScaleDataType
*>
(
p_scale
),
static_cast
<
const
MeanVarDataType
*>
(
p_savedMean
),
static_cast
<
const
MeanVarDataType
*>
(
p_savedInvVar
),
epsilon
,
dy_elementwise_op
,
static_cast
<
DxDataType
*>
(
p_dx
),
static_cast
<
ScaleDataType
*>
(
p_dscale
),
static_cast
<
BiasDataType
*>
(
p_dbias
));
};
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
();
};
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"Reference_BatchNorm_Backward_NHWC_C<"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace host
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/device_operation_instance_factory.hpp
View file @
00af2988
...
...
@@ -26,9 +26,9 @@ using Empty_Tuple = ck::Tuple<>;
using
F16_Tuple
=
ck
::
Tuple
<
F16
>
;
using
F16_F16_Tuple
=
ck
::
Tuple
<
F16
,
F16
>
;
using
F32_Tuple
=
ck
::
Tuple
<
F32
>
;
using
I32_Tuple
=
ck
::
Tuple
<
I32
>
;
using
F32_Tuple
=
ck
::
Tuple
<
F32
>
;
using
I32_Tuple
=
ck
::
Tuple
<
I32
>
;
using
I32_
F32_
Tuple
=
ck
::
Tuple
<
I32
,
F32
>
;
// GEMM layout
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
...
...
@@ -78,8 +78,9 @@ using NHWGK = ck::tensor_layout::convolution::NHWGK;
using
NDHWGK
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
//
using
GK
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
GK_TUPLE
=
ck
::
Tuple
<
GK
>
;
using
GK
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
GK_Tuple
=
ck
::
Tuple
<
GK
>
;
using
GK_GK_Tuple
=
ck
::
Tuple
<
GK
,
GK
>
;
// pointwise functor
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
...
...
@@ -97,6 +98,13 @@ template <typename Activation>
using
Add_Activation_Mul_Clamp
=
ck
::
tensor_operation
::
element_wise
::
Add_Activation_Mul_Clamp
<
Activation
>
;
template
<
typename
Activation
>
using
Activation_Mul2_Clamp
=
ck
::
tensor_operation
::
element_wise
::
Activation_Mul2_Clamp
<
Activation
>
;
template
<
typename
Activation
>
using
Add_Activation_Mul2_Clamp
=
ck
::
tensor_operation
::
element_wise
::
Add_Activation_Mul2_Clamp
<
Activation
>
;
template
<
typename
DeviceOp
,
typename
Tag
=
void
>
struct
DeviceOperationInstanceFactory
;
...
...
library/include/ck/library/tensor_operation_instance/gpu/batchnorm_backward.hpp
0 → 100644
View file @
00af2988
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_batchnorm_backward.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// FP16
void
add_device_batchnorm_backward_rank_4_3_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchNormBwd
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
PassThrough
,
4
,
3
>>>&
);
// FP32
void
add_device_batchnorm_backward_rank_4_3_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchNormBwd
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
4
,
3
>>>&
);
// BF16
void
add_device_batchnorm_backward_rank_4_3_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchNormBwd
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
PassThrough
,
4
,
3
>>>&
);
// FP64
void
add_device_batchnorm_backward_rank_4_3_f64_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchNormBwd
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
PassThrough
,
4
,
3
>>>&
);
template
<
typename
XDataType
,
typename
DxDataType
,
typename
DyDataType
,
typename
AccDataType
,
typename
ScaleDataType
,
typename
DscaleDbiasDataType
,
typename
MeanVarDataType
,
typename
DyElementwiseOp
,
index_t
Rank
,
index_t
NumReduceDim
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceBatchNormBwd
<
XDataType
,
DxDataType
,
DyDataType
,
AccDataType
,
ScaleDataType
,
DscaleDbiasDataType
,
MeanVarDataType
,
DyElementwiseOp
,
Rank
,
NumReduceDim
>>
{
using
DeviceOp
=
DeviceBatchNormBwd
<
XDataType
,
DxDataType
,
DyDataType
,
AccDataType
,
ScaleDataType
,
DscaleDbiasDataType
,
MeanVarDataType
,
DyElementwiseOp
,
Rank
,
NumReduceDim
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
if
constexpr
(
is_same_v
<
XDataType
,
F16
>
&&
is_same_v
<
DxDataType
,
F32
>
&&
is_same_v
<
DyDataType
,
F32
>
&&
is_same_v
<
AccDataType
,
F32
>
&&
is_same_v
<
ScaleDataType
,
F16
>
&&
is_same_v
<
DscaleDbiasDataType
,
F32
>
&&
is_same_v
<
MeanVarDataType
,
F32
>
)
{
if
constexpr
(
Rank
==
4
&&
NumReduceDim
==
3
&&
is_same_v
<
DyElementwiseOp
,
PassThrough
>
)
{
add_device_batchnorm_backward_rank_4_3_f16_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
XDataType
,
F32
>
&&
is_same_v
<
DxDataType
,
F32
>
&&
is_same_v
<
DyDataType
,
F32
>
&&
is_same_v
<
AccDataType
,
F32
>
&&
is_same_v
<
ScaleDataType
,
F32
>
&&
is_same_v
<
DscaleDbiasDataType
,
F32
>
&&
is_same_v
<
MeanVarDataType
,
F32
>
)
{
if
constexpr
(
Rank
==
4
&&
NumReduceDim
==
3
&&
is_same_v
<
DyElementwiseOp
,
PassThrough
>
)
{
add_device_batchnorm_backward_rank_4_3_f32_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
XDataType
,
BF16
>
&&
is_same_v
<
DxDataType
,
F32
>
&&
is_same_v
<
DyDataType
,
F32
>
&&
is_same_v
<
AccDataType
,
F32
>
&&
is_same_v
<
ScaleDataType
,
BF16
>
&&
is_same_v
<
DscaleDbiasDataType
,
F32
>
&&
is_same_v
<
MeanVarDataType
,
F32
>
)
{
if
constexpr
(
Rank
==
4
&&
NumReduceDim
==
3
&&
is_same_v
<
DyElementwiseOp
,
PassThrough
>
)
{
add_device_batchnorm_backward_rank_4_3_bf16_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
XDataType
,
F64
>
&&
is_same_v
<
DxDataType
,
F64
>
&&
is_same_v
<
DyDataType
,
F64
>
&&
is_same_v
<
AccDataType
,
F64
>
&&
is_same_v
<
ScaleDataType
,
F64
>
&&
is_same_v
<
DscaleDbiasDataType
,
F64
>
&&
is_same_v
<
MeanVarDataType
,
F64
>
)
{
if
constexpr
(
Rank
==
4
&&
NumReduceDim
==
3
&&
is_same_v
<
DyElementwiseOp
,
PassThrough
>
)
{
add_device_batchnorm_backward_rank_4_3_f64_instances
(
op_ptrs
);
}
}
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/quantization/grouped_convolution_bias_forward_perchannel_quantization.hpp
0 → 100644
View file @
00af2988
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
void
add_device_conv2d_bias_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
2
,
GNHWC
,
GKYXC
,
GK_GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Activation_Mul2_Clamp
<
PassThrough
>>>>&
instances
);
void
add_device_conv2d_bias_relu_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
2
,
GNHWC
,
GKYXC
,
GK_GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Activation_Mul2_Clamp
<
Relu
>>>>&
instances
);
template
<
ck
::
index_t
NumDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
DsLayout
,
typename
OutLayout
,
typename
InDataType
,
typename
WeiDataType
,
typename
DsDataType
,
typename
OutDataType
,
typename
Activation
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
DsLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
DsDataType
,
OutDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Add_Activation_Mul2_Clamp
<
Activation
>>>
{
using
DeviceOp
=
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
DsLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
DsDataType
,
OutDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Add_Activation_Mul2_Clamp
<
Activation
>>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
if
constexpr
(
NumDimSpatial
==
2
&&
is_same_v
<
InLayout
,
GNHWC
>
&&
is_same_v
<
WeiLayout
,
GKYXC
>
&&
is_same_v
<
DsLayout
,
GK_GK_Tuple
>
&&
is_same_v
<
OutLayout
,
GNHWK
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
DsDataType
,
I32_F32_Tuple
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
if
constexpr
(
is_same_v
<
Activation
,
PassThrough
>
)
add_device_conv2d_bias_perchannel_quantization_int8_instances
(
op_ptrs
);
else
if
constexpr
(
is_same_v
<
Activation
,
Relu
>
)
add_device_conv2d_bias_relu_perchannel_quantization_int8_instances
(
op_ptrs
);
}
}
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_bias_forward_perlayer_quantization.hpp
→
library/include/ck/library/tensor_operation_instance/gpu/
quantization/
grouped_convolution_bias_forward_perlayer_quantization.hpp
View file @
00af2988
...
...
@@ -23,7 +23,7 @@ void add_device_conv2d_bias_perlayer_quantization_int8_instances(
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
2
,
GNHWC
,
GKYXC
,
GK_T
UPLE
,
GK_T
uple
,
GNHWK
,
int8_t
,
int8_t
,
...
...
@@ -38,7 +38,7 @@ void add_device_conv2d_bias_relu_perlayer_quantization_int8_instances(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
2
,
GNHWC
,
GKYXC
,
GK_T
UPLE
,
GK_T
uple
,
GNHWK
,
int8_t
,
int8_t
,
...
...
@@ -91,7 +91,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
if
constexpr
(
NumDimSpatial
==
2
&&
is_same_v
<
InLayout
,
GNHWC
>
&&
is_same_v
<
WeiLayout
,
GKYXC
>
&&
is_same_v
<
DsLayout
,
GK_T
UPLE
>
&&
is_same_v
<
WeiLayout
,
GKYXC
>
&&
is_same_v
<
DsLayout
,
GK_T
uple
>
&&
is_same_v
<
OutLayout
,
GNHWK
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
...
...
library/include/ck/library/tensor_operation_instance/gpu/quantization/grouped_convolution_forward_perchannel_quantization.hpp
0 → 100644
View file @
00af2988
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
void
add_device_conv2d_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Activation_Mul2_Clamp
<
PassThrough
>>>>&
instances
);
void
add_device_conv2d_relu_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Activation_Mul2_Clamp
<
Relu
>>>>&
instances
);
template
<
ck
::
index_t
NumDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
DsLayout
,
typename
OutLayout
,
typename
InDataType
,
typename
WeiDataType
,
typename
DsDataType
,
typename
OutDataType
,
typename
Activation
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
DsLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
DsDataType
,
OutDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Activation_Mul2_Clamp
<
Activation
>>>
{
using
DeviceOp
=
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
GK_Tuple
,
OutLayout
,
InDataType
,
WeiDataType
,
F32_Tuple
,
OutDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Activation_Mul2_Clamp
<
Activation
>>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
if
constexpr
(
NumDimSpatial
==
2
&&
is_same_v
<
InLayout
,
GNHWC
>
&&
is_same_v
<
WeiLayout
,
GKYXC
>
&&
is_same_v
<
DsLayout
,
GK_Tuple
>
&&
is_same_v
<
OutLayout
,
GNHWK
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
if
constexpr
(
is_same_v
<
Activation
,
PassThrough
>
)
add_device_conv2d_perchannel_quantization_int8_instances
(
op_ptrs
);
else
if
constexpr
(
is_same_v
<
Activation
,
Relu
>
)
add_device_conv2d_relu_perchannel_quantization_int8_instances
(
op_ptrs
);
}
}
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_perlayer_quantization.hpp
→
library/include/ck/library/tensor_operation_instance/gpu/
quantization/
grouped_convolution_forward_perlayer_quantization.hpp
View file @
00af2988
File moved
library/src/tensor_operation_instance/gpu/batchnorm/CMakeLists.txt
View file @
00af2988
...
...
@@ -3,4 +3,8 @@ add_instance_library(device_batchnorm_instance
device_batchnorm_forward_f32_instance.cpp
device_batchnorm_forward_bf16_instance.cpp
device_batchnorm_forward_f64_instance.cpp
device_batchnorm_backward_f16_instance.cpp
device_batchnorm_backward_f32_instance.cpp
device_batchnorm_backward_bf16_instance.cpp
device_batchnorm_backward_f64_instance.cpp
)
library/src/tensor_operation_instance/gpu/batchnorm/device_batchnorm_backward_bf16_instance.cpp
0 → 100644
View file @
00af2988
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batchnorm_backward_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
// clang-format off
template
<
index_t
Rank
,
index_t
NumReduceDim
,
typename
DyElementwiseOp
>
using
device_batchnorm_backward_bf16_blockwise_instances
=
std
::
tuple
<
// XDataType, DxDataType, DyDataType, AccDataType, ScaleDataType, DscaleDbiasDataType, MeanVarDataType, DyElementwiseOp, Rank, NumReduceDim, UseMultiBlockInK, BLockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XDyDxVectorDim, XSrcVectorSize, DySrcVectorSize, DxDstVectorSize, ScaleSrcVectorSize, DscaleDbiasDstVectorSize, MeanVarSrcVectorSize
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
>
;
// clang-format on
// clang-format off
template
<
index_t
Rank
,
index_t
NumReduceDim
,
typename
DyElementwiseOp
>
using
device_batchnorm_backward_bf16_multiblock_instances
=
std
::
tuple
<
// XDataType, DxDataType, DyDataType, AccDataType, ScaleDataType, BiasDataType, MeanVarDataType, DyElementwiseOp, Rank, NumReduceDim, UseMultiBlockInK, BLockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XDyDxVectorDim, XSrcVectorSize, DySrcVectorSize, DxDstVectorSize, ScaleSrcDstVectorSize, BiasDstVectorSize, MeanVarSrcVectorSize
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
>
;
// clang-format on
void
add_device_batchnorm_backward_rank_4_3_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchNormBwd
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
PassThrough
,
4
,
3
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_batchnorm_backward_bf16_blockwise_instances
<
4
,
3
,
PassThrough
>
{});
add_device_operation_instances
(
instances
,
device_batchnorm_backward_bf16_multiblock_instances
<
4
,
3
,
PassThrough
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/batchnorm/device_batchnorm_backward_f16_instance.cpp
0 → 100644
View file @
00af2988
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batchnorm_backward_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
// clang-format off
template
<
index_t
Rank
,
index_t
NumReduceDim
,
typename
DyElementwiseOp
>
using
device_batchnorm_backward_f16_blockwise_instances
=
std
::
tuple
<
// XDataType, DxDataType, DyDataType, AccDataType, ScaleDataType, DscaleDbiasDataType, MeanVarDataType, DyElementwiseOp, Rank, NumReduceDim, UseMultiBlockInK, BLockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XDyDxVectorDim, XSrcVectorSize, DySrcVectorSize, DxDstVectorSize, ScaleSrcVectorSize, DscaleDbiasDstVectorSize, MeanVarSrcVectorSize
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
>
;
// clang-format on
// clang-format off
template
<
index_t
Rank
,
index_t
NumReduceDim
,
typename
DyElementwiseOp
>
using
device_batchnorm_backward_f16_multiblock_instances
=
std
::
tuple
<
// XDataType, DxDataType, DyDataType, AccDataType, ScaleDataType, BiasDataType, MeanVarDataType, DyElementwiseOp, Rank, NumReduceDim, UseMultiBlockInK, BLockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XDyDxVectorDim, XSrcVectorSize, DySrcVectorSize, DxDstVectorSize, ScaleSrcDstVectorSize, BiasDstVectorSize, MeanVarSrcVectorSize
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
>
;
// clang-format on
void
add_device_batchnorm_backward_rank_4_3_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchNormBwd
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
PassThrough
,
4
,
3
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_batchnorm_backward_f16_blockwise_instances
<
4
,
3
,
PassThrough
>
{});
add_device_operation_instances
(
instances
,
device_batchnorm_backward_f16_multiblock_instances
<
4
,
3
,
PassThrough
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/batchnorm/device_batchnorm_backward_f32_instance.cpp
0 → 100644
View file @
00af2988
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batchnorm_backward_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
// clang-format off
template
<
index_t
Rank
,
index_t
NumReduceDim
,
typename
DyElementwiseOp
>
using
device_batchnorm_backward_f32_blockwise_instances
=
std
::
tuple
<
// XDataType, DxDataType, DyDataType, AccDataType, ScaleDataType, DscaleDbiasDataType, MeanVarDataType, DyElementwiseOp, Rank, NumReduceDim, UseMultiBlockInK, BLockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XDyDxVectorDim, XSrcVectorSize, DySrcVectorSize, DxDstVectorSize, ScaleSrcVectorSize, DscaleDbiasDstVectorSize, MeanVarSrcVectorSize
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
>
;
// clang-format on
// clang-format off
template
<
index_t
Rank
,
index_t
NumReduceDim
,
typename
DyElementwiseOp
>
using
device_batchnorm_backward_f32_multiblock_instances
=
std
::
tuple
<
// XDataType, DxDataType, DyDataType, AccDataType, ScaleDataType, BiasDataType, MeanVarDataType, DyElementwiseOp, Rank, NumReduceDim, UseMultiBlockInK, BLockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XDyDxVectorDim, XSrcVectorSize, DySrcVectorSize, DxDstVectorSize, ScaleSrcDstVectorSize, BiasDstVectorSize, MeanVarSrcVectorSize
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
>
;
// clang-format on
void
add_device_batchnorm_backward_rank_4_3_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchNormBwd
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
4
,
3
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_batchnorm_backward_f32_blockwise_instances
<
4
,
3
,
PassThrough
>
{});
add_device_operation_instances
(
instances
,
device_batchnorm_backward_f32_multiblock_instances
<
4
,
3
,
PassThrough
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/batchnorm/device_batchnorm_backward_f64_instance.cpp
0 → 100644
View file @
00af2988
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batchnorm_backward_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F64
=
double
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
// clang-format off
template
<
index_t
Rank
,
index_t
NumReduceDim
,
typename
DyElementwiseOp
>
using
device_batchnorm_backward_f64_blockwise_instances
=
std
::
tuple
<
// XDataType, DxDataType, DyDataType, AccDataType, ScaleDataType, DscaleDbiasDataType, MeanVarDataType, DyElementwiseOp, Rank, NumReduceDim, UseMultiBlockInK, BLockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XDyDxVectorDim, XSrcVectorSize, DySrcVectorSize, DxDstVectorSize, ScaleSrcVectorSize, DscaleDbiasDstVectorSize, MeanVarSrcVectorSize
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
128
,
2
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
64
,
4
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
32
,
8
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
16
,
16
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
8
,
32
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
4
,
64
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
2
,
128
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
false
,
256
,
1
,
256
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
>
;
// clang-format on
// clang-format off
template
<
index_t
Rank
,
index_t
NumReduceDim
,
typename
DyElementwiseOp
>
using
device_batchnorm_backward_f64_multiblock_instances
=
std
::
tuple
<
// XDataType, DxDataType, DyDataType, AccDataType, ScaleDataType, BiasDataType, MeanVarDataType, DyElementwiseOp, Rank, NumReduceDim, UseMultiBlockInK, BLockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XDyDxVectorDim, XSrcVectorSize, DySrcVectorSize, DxDstVectorSize, ScaleSrcDstVectorSize, BiasDstVectorSize, MeanVarSrcVectorSize
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
128
,
2
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
64
,
4
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
32
,
8
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
16
,
16
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
8
,
32
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
4
,
64
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
2
,
128
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
0
,
2
,
2
,
2
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
0
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
0
,
1
,
1
,
1
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
0
,
2
,
2
,
2
,
1
,
1
,
1
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
1
,
1
,
1
,
1
,
2
,
2
,
2
>
,
DeviceBatchNormBwdImpl
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
DyElementwiseOp
,
Rank
,
NumReduceDim
,
true
,
256
,
1
,
256
,
2
,
2
,
1
,
1
,
1
,
1
,
1
,
1
,
1
>
>
;
// clang-format on
void
add_device_batchnorm_backward_rank_4_3_f64_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchNormBwd
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
PassThrough
,
4
,
3
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_batchnorm_backward_f64_blockwise_instances
<
4
,
3
,
PassThrough
>
{});
add_device_operation_instances
(
instances
,
device_batchnorm_backward_f64_multiblock_instances
<
4
,
3
,
PassThrough
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/quantization/CMakeLists.txt
View file @
00af2988
add_instance_library
(
device_quantization_instance
device_conv2d_xdl_bias_quant_int8_instance.cpp
device_conv2d_xdl_quant_int8_instance.cpp
device_conv2d_xdl_bias_perchannel_quantization_int8_instance.cpp
device_conv2d_xdl_bias_perlayer_quantization_int8_instance.cpp
device_conv2d_xdl_perchannel_quantization_int8_instance.cpp
device_conv2d_xdl_perlayer_quantization_int8_instance.cpp
)
library/src/tensor_operation_instance/gpu/quantization/device_conv2d_xdl_bias_perchannel_quantization_int8_instance.cpp
0 → 100644
View file @
00af2988
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_conv2d_xdl_int8_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_conv2d_bias_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
GNHWC
,
GKYXC
,
GK_GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul2_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_conv2d_int8_32Ds_instances
<
GK_GK_Tuple
,
I32_F32_Tuple
,
Add_Mul2_Clamp
,
ConvFwdDefault
>
{});
add_device_operation_instances
(
instances
,
device_conv2d_int8_32Ds_instances
<
GK_GK_Tuple
,
I32_F32_Tuple
,
Add_Mul2_Clamp
,
ConvFwd1x1P0
>
{});
add_device_operation_instances
(
instances
,
device_conv2d_int8_32Ds_instances
<
GK_GK_Tuple
,
I32_F32_Tuple
,
Add_Mul2_Clamp
,
ConvFwd1x1S1P0
>
{});
}
void
add_device_conv2d_bias_relu_perchannel_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
GNHWC
,
GKYXC
,
GK_GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
I32_F32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Relu_Mul2_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_conv2d_int8_32Ds_instances
<
GK_GK_Tuple
,
I32_F32_Tuple
,
Add_Relu_Mul2_Clamp
,
ConvFwdDefault
>
{});
add_device_operation_instances
(
instances
,
device_conv2d_int8_32Ds_instances
<
GK_GK_Tuple
,
I32_F32_Tuple
,
Add_Relu_Mul2_Clamp
,
ConvFwd1x1P0
>
{});
add_device_operation_instances
(
instances
,
device_conv2d_int8_32Ds_instances
<
GK_GK_Tuple
,
I32_F32_Tuple
,
Add_Relu_Mul2_Clamp
,
ConvFwd1x1S1P0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/quantization/device_conv2d_xdl_bias_perlayer_quantization_int8_instance.cpp
0 → 100644
View file @
00af2988
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "device_conv2d_xdl_int8_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_conv2d_bias_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_conv2d_int8_32Ds_instances
<
GK_Tuple
,
I32_Tuple
,
Add_Mul_Clamp
,
ConvFwdDefault
>
{});
add_device_operation_instances
(
instances
,
device_conv2d_int8_32Ds_instances
<
GK_Tuple
,
I32_Tuple
,
Add_Mul_Clamp
,
ConvFwd1x1P0
>
{});
add_device_operation_instances
(
instances
,
device_conv2d_int8_32Ds_instances
<
GK_Tuple
,
I32_Tuple
,
Add_Mul_Clamp
,
ConvFwd1x1S1P0
>
{});
}
void
add_device_conv2d_bias_relu_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Relu_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_conv2d_int8_32Ds_instances
<
GK_Tuple
,
I32_Tuple
,
Add_Relu_Mul_Clamp
,
ConvFwdDefault
>
{});
add_device_operation_instances
(
instances
,
device_conv2d_int8_32Ds_instances
<
GK_Tuple
,
I32_Tuple
,
Add_Relu_Mul_Clamp
,
ConvFwd1x1P0
>
{});
add_device_operation_instances
(
instances
,
device_conv2d_int8_32Ds_instances
<
GK_Tuple
,
I32_Tuple
,
Add_Relu_Mul_Clamp
,
ConvFwd1x1S1P0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/quantization/device_conv2d_xdl_bias_quant_int8_instance.cpp
deleted
100644 → 0
View file @
9a2607d6
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
GNHWC
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
GKYXC
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
GNHWK
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
GK
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Relu
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
GK_Tuple
=
ck
::
Tuple
<
GK
>
;
using
I32_Tuple
=
ck
::
Tuple
<
int32_t
>
;
using
Add_Mul_Clamp
=
ck
::
tensor_operation
::
element_wise
::
Add_Activation_Mul_Clamp
<
PassThrough
>
;
using
Add_Relu_Mul_Clamp
=
ck
::
tensor_operation
::
element_wise
::
Add_Activation_Mul_Clamp
<
Relu
>
;
static
constexpr
ck
::
index_t
NDimSpatial
=
2
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
ConvFwd1x1P0
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Pad0
;
static
constexpr
auto
ConvFwd1x1S1P0
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
;
// TODO - Add more instances
template
<
typename
OutElementOp
,
ConvolutionForwardSpecialization
ConvSpec
>
// clang-format off
using
device_conv2d_int8_instances
=
std
::
tuple
<
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
256
,
64
,
16
,
16
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
64
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
128
,
64
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
256
,
64
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
128
,
32
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
128
,
32
,
128
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
64
,
32
,
64
,
16
,
16
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
2
,
GNHWC
,
GKYXC
,
GK_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
int32_t
,
int32_t
,
I32_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmSpec
,
1
,
64
,
32
,
64
,
64
,
16
,
16
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
2
>
,
8
>
>
;
// clang-format on
void
add_device_conv2d_bias_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
GNHWC
,
GKYXC
,
ck
::
Tuple
<
GK
>
,
GNHWK
,
int8_t
,
int8_t
,
ck
::
Tuple
<
int32_t
>
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_conv2d_int8_instances
<
Add_Mul_Clamp
,
ConvFwdDefault
>
{});
add_device_operation_instances
(
instances
,
device_conv2d_int8_instances
<
Add_Mul_Clamp
,
ConvFwd1x1P0
>
{});
add_device_operation_instances
(
instances
,
device_conv2d_int8_instances
<
Add_Mul_Clamp
,
ConvFwd1x1S1P0
>
{});
}
void
add_device_conv2d_bias_relu_perlayer_quantization_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
GNHWC
,
GKYXC
,
ck
::
Tuple
<
GK
>
,
GNHWK
,
int8_t
,
int8_t
,
ck
::
Tuple
<
int32_t
>
,
int8_t
,
PassThrough
,
PassThrough
,
Add_Relu_Mul_Clamp
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_conv2d_int8_instances
<
Add_Relu_Mul_Clamp
,
ConvFwdDefault
>
{});
add_device_operation_instances
(
instances
,
device_conv2d_int8_instances
<
Add_Relu_Mul_Clamp
,
ConvFwd1x1P0
>
{});
add_device_operation_instances
(
instances
,
device_conv2d_int8_instances
<
Add_Relu_Mul_Clamp
,
ConvFwd1x1S1P0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment