Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
000eefbf
Commit
000eefbf
authored
Aug 13, 2022
by
Chao Liu
Browse files
Merge remote-tracking branch 'origin/develop' into fused-gemm
parents
b64a2860
cac014f1
Changes
56
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
16 changed files
with
989 additions
and
5 deletions
+989
-5
library/src/tensor_operation_instance/gpu/batched_gemm_softmax_gemm/CMakeLists.txt
...ion_instance/gpu/batched_gemm_softmax_gemm/CMakeLists.txt
+8
-0
library/src/tensor_operation_instance/gpu/batched_gemm_softmax_gemm/device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
...xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
+68
-0
library/src/tensor_operation_instance/gpu/normalization/CMakeLists.txt
...ensor_operation_instance/gpu/normalization/CMakeLists.txt
+2
-0
library/src/tensor_operation_instance/gpu/normalization/device_layernorm_f16_instance.cpp
...tance/gpu/normalization/device_layernorm_f16_instance.cpp
+53
-0
library/src/tensor_operation_instance/gpu/normalization/device_layernorm_f32_instance.cpp
...tance/gpu/normalization/device_layernorm_f32_instance.cpp
+51
-0
profiler/CMakeLists.txt
profiler/CMakeLists.txt
+1
-0
profiler/include/profile_batched_gemm_softmax_gemm_impl.hpp
profiler/include/profile_batched_gemm_softmax_gemm_impl.hpp
+325
-0
profiler/include/profile_layernorm_impl.hpp
profiler/include/profile_layernorm_impl.hpp
+238
-0
profiler/include/profile_normalization_impl.hpp
profiler/include/profile_normalization_impl.hpp
+0
-1
profiler/src/profile_layernorm.cpp
profiler/src/profile_layernorm.cpp
+123
-0
profiler/src/profile_normalization.cpp
profiler/src/profile_normalization.cpp
+1
-2
profiler/src/profiler.cpp
profiler/src/profiler.cpp
+6
-2
test/CMakeLists.txt
test/CMakeLists.txt
+1
-0
test/batched_gemm_softmax_gemm/CMakeLists.txt
test/batched_gemm_softmax_gemm/CMakeLists.txt
+5
-0
test/batched_gemm_softmax_gemm/test_batched_gemm_softmax_gemm_fp16.cpp
...gemm_softmax_gemm/test_batched_gemm_softmax_gemm_fp16.cpp
+39
-0
test/batched_gemm_softmax_gemm/test_batched_gemm_softmax_gemm_util.hpp
...gemm_softmax_gemm/test_batched_gemm_softmax_gemm_util.hpp
+68
-0
No files found.
library/src/tensor_operation_instance/gpu/batched_gemm_softmax_gemm/CMakeLists.txt
0 → 100644
View file @
000eefbf
set
(
DEVICE_BATCHED_GEMM_SOFTMAX_GEMM_INSTANCE_SOURCE
device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
)
add_instance_library
(
device_batched_gemm_softmax_gemm_instance OBJECT
${
DEVICE_BATCHED_GEMM_SOFTMAX_GEMM_INSTANCE_SOURCE
}
)
target_compile_features
(
device_batched_gemm_softmax_gemm_instance PUBLIC
)
set_target_properties
(
device_batched_gemm_softmax_gemm_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
clang_tidy_check
(
device_batched_gemm_softmax_gemm_instance
)
\ No newline at end of file
library/src/tensor_operation_instance/gpu/batched_gemm_softmax_gemm/device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
0 → 100644
View file @
000eefbf
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_xdl_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// c[g, m, n] = a[g, m, k] * b[g, n, k]
using
device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances
=
std
::
tuple
<
// clang-format off
//#######################################| ALayout| B0Layout| B1Layout| CLayout| AData| B0Data| B1Data| CData| AccData| CShuffle| A| B0| Acc0| B1| C| GEMM| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#######################################| | | | | Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#######################################| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#######################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
2
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
64
,
32
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
1
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
void
add_device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance
(
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchedGemmSoftmaxGemm
<
Row
,
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/normalization/CMakeLists.txt
View file @
000eefbf
# device_normalization_instance
set
(
DEVICE_NORMALIZATION_INSTANCE_SOURCE
device_layernorm_f16_instance.cpp
device_layernorm_f32_instance.cpp
device_softmax_f32_f32_instance.cpp
device_softmax_f16_f16_instance.cpp
)
...
...
library/src/tensor_operation_instance/gpu/normalization/device_layernorm_f16_instance.cpp
0 → 100644
View file @
000eefbf
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Pass
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
template
<
index_t
Rank
,
index_t
Reduce
>
using
device_layernorm_f16_instances
=
std
::
tuple
<
// clang-format off
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize>
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
1
,
1
,
1
,
1
>
,
// fallback kernel
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
2
,
2
,
2
,
2
>
,
// fallback kernel
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
4
,
4
,
4
,
4
>
,
// fallback kernel
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
4
,
64
,
1
,
8
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
8
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
16
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
32
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernorm
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
8
,
8
,
8
,
8
>
// clang-format on
>
;
void
add_device_layernorm_f16_rank2_instances
(
std
::
vector
<
DeviceNormalization2Ptr
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
2
,
1
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_layernorm_f16_instances
<
2
,
1
>
{});
}
void
add_device_layernorm_f16_rank4_instances
(
std
::
vector
<
DeviceNormalization2Ptr
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
4
,
3
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_layernorm_f16_instances
<
4
,
3
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/normalization/device_layernorm_f32_instance.cpp
0 → 100644
View file @
000eefbf
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F32
=
float
;
using
Pass
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
template
<
index_t
Rank
,
index_t
Reduce
>
using
device_layernorm_f32_instances
=
std
::
tuple
<
// clang-format off
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize>
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
1
,
1
,
1
,
1
>
,
// fallback kernel
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
2
,
2
,
2
,
2
>
,
// fallback kernel
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
4
,
64
,
1
,
8
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
8
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
16
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
32
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernorm
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
4
,
4
,
4
,
4
>
// clang-format on
>
;
void
add_device_layernorm_f32_rank2_instances
(
std
::
vector
<
DeviceNormalization2Ptr
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
2
,
1
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_layernorm_f32_instances
<
2
,
1
>
{});
}
void
add_device_layernorm_f32_rank4_instances
(
std
::
vector
<
DeviceNormalization2Ptr
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
4
,
3
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_layernorm_f32_instances
<
4
,
3
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
profiler/CMakeLists.txt
View file @
000eefbf
...
...
@@ -21,6 +21,7 @@ set(PROFILER_SOURCE
src/profile_conv_bwd_weight.cpp
src/profile_grouped_conv_fwd.cpp
src/profile_reduce.cpp
src/profile_layernorm.cpp
src/profile_normalization.cpp
)
...
...
profiler/include/profile_batched_gemm_softmax_gemm_impl.hpp
0 → 100644
View file @
000eefbf
This diff is collapsed.
Click to expand it.
profiler/include/profile_layernorm_impl.hpp
0 → 100644
View file @
000eefbf
This diff is collapsed.
Click to expand it.
profiler/include/profile_normalization_impl.hpp
View file @
000eefbf
...
...
@@ -36,7 +36,6 @@ namespace profiler {
enum
struct
NormType
{
LAYERNORM
,
BATCHNORM
,
SOFTMAX
,
};
...
...
profiler/src/profile_layernorm.cpp
0 → 100644
View file @
000eefbf
This diff is collapsed.
Click to expand it.
profiler/src/profile_normalization.cpp
View file @
000eefbf
...
...
@@ -13,8 +13,7 @@ using ck::profiler::NormType;
struct
ArgParser
{
std
::
unordered_map
<
std
::
string
,
NormType
>
norm_dict
=
{{
"layernorm"
,
NormType
::
LAYERNORM
},
{
"batchnorm"
,
NormType
::
BATCHNORM
},
std
::
unordered_map
<
std
::
string
,
NormType
>
norm_dict
=
{{
"batchnorm"
,
NormType
::
BATCHNORM
},
{
"softmax"
,
NormType
::
SOFTMAX
}};
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int
>>
long_opts
=
{
...
...
profiler/src/profiler.cpp
View file @
000eefbf
...
...
@@ -19,6 +19,7 @@ int profile_conv_bwd_data(int, char*[]);
int
profile_conv_bwd_weight
(
int
,
char
*
[]);
int
profile_grouped_conv_fwd
(
int
,
char
*
[]);
int
profile_normalization
(
int
,
char
*
[]);
int
profile_layernorm
(
int
,
char
*
[]);
int
profile_reduce
(
int
,
char
*
[]);
static
void
print_helper_message
()
...
...
@@ -115,11 +116,14 @@ int main(int argc, char* argv[])
{
return
profile_reduce
(
argc
,
argv
);
}
else
if
(
strcmp
(
argv
[
1
],
"batchnorm"
)
==
0
||
strcmp
(
argv
[
1
],
"layernorm"
)
==
0
||
strcmp
(
argv
[
1
],
"softmax"
)
==
0
)
else
if
(
strcmp
(
argv
[
1
],
"batchnorm"
)
==
0
||
strcmp
(
argv
[
1
],
"softmax"
)
==
0
)
{
return
profile_normalization
(
argc
,
argv
);
}
else
if
(
strcmp
(
argv
[
1
],
"layernorm"
)
==
0
)
{
return
profile_layernorm
(
argc
,
argv
);
}
else
{
print_helper_message
();
...
...
test/CMakeLists.txt
View file @
000eefbf
...
...
@@ -41,6 +41,7 @@ add_subdirectory(gemm_reduce)
add_subdirectory
(
batched_gemm
)
add_subdirectory
(
batched_gemm_reduce
)
add_subdirectory
(
batched_gemm_gemm
)
add_subdirectory
(
batched_gemm_softmax_gemm
)
add_subdirectory
(
grouped_gemm
)
add_subdirectory
(
reduce
)
add_subdirectory
(
convnd_fwd
)
...
...
test/batched_gemm_softmax_gemm/CMakeLists.txt
0 → 100644
View file @
000eefbf
add_custom_target
(
test_batched_gemm_softmax_gemm
)
add_gtest_executable
(
test_batched_gemm_softmax_gemm_fp16 test_batched_gemm_softmax_gemm_fp16.cpp
)
target_link_libraries
(
test_batched_gemm_softmax_gemm_fp16 PRIVATE utility device_batched_gemm_softmax_gemm_instance
)
add_dependencies
(
test_batched_gemm_softmax_gemm test_batched_gemm_softmax_gemm_fp16
)
\ No newline at end of file
test/batched_gemm_softmax_gemm/test_batched_gemm_softmax_gemm_fp16.cpp
0 → 100644
View file @
000eefbf
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "test_batched_gemm_softmax_gemm_util.hpp"
template
<
typename
Tuple
>
class
TestBatchedGemmSoftmaxGemmFP16
:
public
TestBatchedGemmSoftmaxGemm
<
Tuple
>
{
};
// clang-format off
using
KernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
F16
,
F16
,
F16
,
F16
,
Row
,
Col
,
Row
,
Row
>
>
;
// clang-format on
TYPED_TEST_SUITE
(
TestBatchedGemmSoftmaxGemmFP16
,
KernelTypes
);
TYPED_TEST
(
TestBatchedGemmSoftmaxGemmFP16
,
Test_FP16
)
{
this
->
Run
();
}
TYPED_TEST
(
TestBatchedGemmSoftmaxGemmFP16
,
DISABLED_Bench_FP16
)
{
this
->
lengths_
=
std
::
vector
<
std
::
vector
<
int
>>
{
{
256
,
256
,
64
,
64
,
768
},
{
256
,
256
,
128
,
128
,
768
},
{
512
,
512
,
64
,
64
,
768
},
{
512
,
512
,
128
,
128
,
768
},
{
1024
,
1024
,
64
,
64
,
768
},
{
1024
,
1024
,
128
,
128
,
768
},
{
2048
,
2048
,
64
,
64
,
768
},
{
2048
,
2048
,
128
,
128
,
768
},
{
4096
,
4096
,
64
,
64
,
768
},
{
4096
,
4096
,
128
,
128
,
768
},
};
this
->
bench_
=
true
;
this
->
verify_
=
false
;
this
->
Run
();
}
test/batched_gemm_softmax_gemm/test_batched_gemm_softmax_gemm_util.hpp
0 → 100644
View file @
000eefbf
This diff is collapsed.
Click to expand it.
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment