Commit 7c9dc3ec authored by dongcl's avatar dongcl
Browse files

forward_backward_pipelining_without_interleaving supports a2a_overlap

parent 649bfbdb
...@@ -5,6 +5,8 @@ import types ...@@ -5,6 +5,8 @@ import types
import argparse import argparse
import torch import torch
from megatron.core.utils import is_te_min_version
class MegatronAdaptation: class MegatronAdaptation:
""" """
...@@ -89,14 +91,14 @@ class CoreAdaptation(MegatronAdaptationABC): ...@@ -89,14 +91,14 @@ class CoreAdaptation(MegatronAdaptationABC):
pass pass
def patch_core_models(self): def patch_core_models(self):
from ..core.models.gpt.gpt_model import gpt_model_init_wrapper, gpt_model_forward from ..core.models.gpt.gpt_model import gpt_model_init_wrapper, GPTModel
# GPT Model # GPT Model
MegatronAdaptation.register('megatron.core.models.gpt.gpt_model.GPTModel.__init__', MegatronAdaptation.register('megatron.core.models.gpt.gpt_model.GPTModel.__init__',
gpt_model_init_wrapper, gpt_model_init_wrapper,
apply_wrapper=True) apply_wrapper=True)
MegatronAdaptation.register('megatron.core.models.gpt.gpt_model.GPTModel.forward', MegatronAdaptation.register('megatron.core.models.gpt.gpt_model.GPTModel',
gpt_model_forward) GPTModel)
def patch_core_transformers(self): def patch_core_transformers(self):
from ..core import transformer_block_init_wrapper from ..core import transformer_block_init_wrapper
...@@ -116,9 +118,9 @@ class CoreAdaptation(MegatronAdaptationABC): ...@@ -116,9 +118,9 @@ class CoreAdaptation(MegatronAdaptationABC):
MegatronAdaptation.register('megatron.core.transformer.moe.moe_utils.topk_softmax_with_capacity', MegatronAdaptation.register('megatron.core.transformer.moe.moe_utils.topk_softmax_with_capacity',
torch.compile(options={"triton.cudagraphs": True, "triton.cudagraph_trees": False}), torch.compile(options={"triton.cudagraphs": True, "triton.cudagraph_trees": False}),
apply_wrapper=True) apply_wrapper=True)
# MegatronAdaptation.register('megatron.core.transformer.moe.moe_utils.switch_load_balancing_loss_func', MegatronAdaptation.register('megatron.core.transformer.moe.moe_utils.switch_load_balancing_loss_func',
# torch.compile(options={"triton.cudagraphs": True, "triton.cudagraph_trees": False, "triton.cudagraph_support_input_mutation":True}), torch.compile(options={"triton.cudagraphs": True, "triton.cudagraph_trees": False, "triton.cudagraph_support_input_mutation":True}),
# apply_wrapper=True) apply_wrapper=True)
MegatronAdaptation.register('megatron.core.transformer.moe.moe_utils.permute', MegatronAdaptation.register('megatron.core.transformer.moe.moe_utils.permute',
torch.compile(mode='max-autotune-no-cudagraphs'), torch.compile(mode='max-autotune-no-cudagraphs'),
apply_wrapper=True) apply_wrapper=True)
...@@ -132,12 +134,25 @@ class CoreAdaptation(MegatronAdaptationABC): ...@@ -132,12 +134,25 @@ class CoreAdaptation(MegatronAdaptationABC):
from ..core.extensions.transformer_engine import TEDotProductAttentionPatch from ..core.extensions.transformer_engine import TEDotProductAttentionPatch
from megatron.core.extensions.transformer_engine import TEGroupedLinear from megatron.core.extensions.transformer_engine import TEGroupedLinear
if not is_te_min_version("1.10.0"):
# kv channels, te_min_version 1.10.0 -> 1.9.0 # kv channels, te_min_version 1.10.0 -> 1.9.0
MegatronAdaptation.register('megatron.core.extensions.transformer_engine.TEDotProductAttention.__init__', MegatronAdaptation.register('megatron.core.extensions.transformer_engine.TEDotProductAttention.__init__',
TEDotProductAttentionPatch.__init__) TEDotProductAttentionPatch.__init__)
if int(os.getenv("GROUPED_GEMM_BatchLinear", '0')): if int(os.getenv("GROUPED_GEMM_BatchLinear", '0')):
TEGroupedLinear.__bases__ = (te.pytorch.BatchLinear,) TEGroupedLinear.__bases__ = (te.pytorch.BatchedLinear if is_te_min_version("2.3.0.dev0") else te.pytorch.BatchLinear,)
def patch_pipeline_parallel(self):
from ..core.pipeline_parallel.schedules import get_pp_rank_microbatches, forward_backward_pipelining_with_interleaving
# num_warmup_microbatches + 1
MegatronAdaptation.register('megatron.core.pipeline_parallel.schedules.get_pp_rank_microbatches',
get_pp_rank_microbatches)
# a2a_overlap
MegatronAdaptation.register('megatron.core.pipeline_parallel.schedules.forward_backward_pipelining_with_interleaving',
forward_backward_pipelining_with_interleaving)
def patch_tensor_parallel(self): def patch_tensor_parallel(self):
from ..core.tensor_parallel.cross_entropy import VocabParallelCrossEntropy from ..core.tensor_parallel.cross_entropy import VocabParallelCrossEntropy
...@@ -162,7 +177,7 @@ class CoreAdaptation(MegatronAdaptationABC): ...@@ -162,7 +177,7 @@ class CoreAdaptation(MegatronAdaptationABC):
# flux # flux
if int(os.getenv("USE_FLUX_OVERLAP", "0")): if int(os.getenv("USE_FLUX_OVERLAP", "0")):
from ..core.tensor_parallel import ( from ..core.tensor_parallel.layers import (
FluxColumnParallelLinear, FluxColumnParallelLinear,
FluxRowParallelLinear FluxRowParallelLinear
) )
......
...@@ -12,6 +12,7 @@ from megatron.core.transformer.multi_latent_attention import ( ...@@ -12,6 +12,7 @@ from megatron.core.transformer.multi_latent_attention import (
MLASelfAttentionSubmodules, MLASelfAttentionSubmodules,
) )
from megatron.core.transformer.spec_utils import ModuleSpec from megatron.core.transformer.spec_utils import ModuleSpec
from megatron.core.transformer.torch_norm import L2Norm
from megatron.core.transformer.transformer_block import TransformerBlockSubmodules from megatron.core.transformer.transformer_block import TransformerBlockSubmodules
from megatron.core.transformer.transformer_config import TransformerConfig from megatron.core.transformer.transformer_config import TransformerConfig
from megatron.core.transformer.transformer_layer import ( from megatron.core.transformer.transformer_layer import (
...@@ -40,12 +41,6 @@ from dcu_megatron.core.tensor_parallel.layers import ( ...@@ -40,12 +41,6 @@ from dcu_megatron.core.tensor_parallel.layers import (
FluxColumnParallelLinear, FluxColumnParallelLinear,
FluxRowParallelLinear FluxRowParallelLinear
) )
from dcu_megatron.core.transformer.multi_token_prediction import (
MultiTokenPredictionBlockSubmodules,
get_mtp_layer_offset,
get_mtp_layer_spec,
get_mtp_num_layers_to_build,
)
def get_gpt_layer_with_flux_spec( def get_gpt_layer_with_flux_spec(
...@@ -55,6 +50,7 @@ def get_gpt_layer_with_flux_spec( ...@@ -55,6 +50,7 @@ def get_gpt_layer_with_flux_spec(
multi_latent_attention: Optional[bool] = False, multi_latent_attention: Optional[bool] = False,
fp8: Optional[str] = None, # pylint: disable=unused-arguments fp8: Optional[str] = None, # pylint: disable=unused-arguments
moe_use_legacy_grouped_gemm: Optional[bool] = False, moe_use_legacy_grouped_gemm: Optional[bool] = False,
qk_l2_norm: Optional[bool] = False,
) -> ModuleSpec: ) -> ModuleSpec:
"""Use this spec to use flux modules (required for fp8 training). """Use this spec to use flux modules (required for fp8 training).
...@@ -66,6 +62,7 @@ def get_gpt_layer_with_flux_spec( ...@@ -66,6 +62,7 @@ def get_gpt_layer_with_flux_spec(
fp8 (str, optional): Deprecated. For temporary Nemo compatibility. fp8 (str, optional): Deprecated. For temporary Nemo compatibility.
moe_use_legacy_grouped_gemm (bool, optional): Force use the legacy GroupedMLP. moe_use_legacy_grouped_gemm (bool, optional): Force use the legacy GroupedMLP.
Defaults to False. Defaults to False.
qk_l2_norm (bool, optional): To use l2 norm for queries/keys. Defaults to False.
Returns: Returns:
ModuleSpec: Module specification with flux modules ModuleSpec: Module specification with flux modules
...@@ -84,6 +81,7 @@ def get_gpt_layer_with_flux_spec( ...@@ -84,6 +81,7 @@ def get_gpt_layer_with_flux_spec(
) )
if multi_latent_attention: if multi_latent_attention:
assert qk_l2_norm is False, "qk_l2_norm is not supported with MLA."
return ModuleSpec( return ModuleSpec(
module=TransformerLayer, module=TransformerLayer,
submodules=TransformerLayerSubmodules( submodules=TransformerLayerSubmodules(
...@@ -127,8 +125,12 @@ def get_gpt_layer_with_flux_spec( ...@@ -127,8 +125,12 @@ def get_gpt_layer_with_flux_spec(
linear_qkv=FluxColumnParallelLinear, linear_qkv=FluxColumnParallelLinear,
core_attention=TEDotProductAttention, core_attention=TEDotProductAttention,
linear_proj=FluxRowParallelLinear, linear_proj=FluxRowParallelLinear,
q_layernorm=qk_norm if qk_layernorm else IdentityOp, q_layernorm=(
k_layernorm=qk_norm if qk_layernorm else IdentityOp, L2Norm if qk_l2_norm else (qk_norm if qk_layernorm else IdentityOp)
),
k_layernorm=(
L2Norm if qk_l2_norm else (qk_norm if qk_layernorm else IdentityOp)
),
), ),
), ),
self_attn_bda=get_bias_dropout_add, self_attn_bda=get_bias_dropout_add,
......
...@@ -13,8 +13,6 @@ from megatron.core.inference.contexts import BaseInferenceContext ...@@ -13,8 +13,6 @@ from megatron.core.inference.contexts import BaseInferenceContext
from megatron.core.packed_seq_params import PackedSeqParams from megatron.core.packed_seq_params import PackedSeqParams
from megatron.core.models.gpt import GPTModel as MegatronCoreGPTModel from megatron.core.models.gpt import GPTModel as MegatronCoreGPTModel
from dcu_megatron.core.tensor_parallel import FluxColumnParallelLinear
def gpt_model_init_wrapper(fn): def gpt_model_init_wrapper(fn):
@wraps(fn) @wraps(fn)
...@@ -22,12 +20,13 @@ def gpt_model_init_wrapper(fn): ...@@ -22,12 +20,13 @@ def gpt_model_init_wrapper(fn):
fn(self, *args, **kwargs) fn(self, *args, **kwargs)
# Output # Output
if self.post_process or self.mtp_process: if (
if int(os.getenv("USE_FLUX_OVERLAP", "0")): (self.post_process or self.mtp_process)
parallel_linear_impl = FluxColumnParallelLinear and int(os.getenv("USE_FLUX_OVERLAP", "0"))
else: ):
parallel_linear_impl = tensor_parallel.ColumnParallelLinear from dcu_megatron.core.tensor_parallel.layers import FluxColumnParallelLinear
self.output_layer = parallel_linear_impl(
self.output_layer = FluxColumnParallelLinear(
self.config.hidden_size, self.config.hidden_size,
self.vocab_size, self.vocab_size,
config=self.config, config=self.config,
......
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
import contextlib import contextlib
from typing import Callable, Iterator, List, Optional, Union from typing import Callable, Iterator, List, Optional, Union
import torch import torch
from torch.autograd.variable import Variable from torch.autograd.variable import Variable
from megatron.training import get_args
from megatron.core import parallel_state from megatron.core import parallel_state
from megatron.core.enums import ModelType from megatron.core.enums import ModelType
from megatron.core.pipeline_parallel import p2p_communication from megatron.core.pipeline_parallel import p2p_communication
...@@ -19,574 +18,26 @@ from megatron.core.utils import ( ...@@ -19,574 +18,26 @@ from megatron.core.utils import (
get_model_type, get_model_type,
get_model_xattn, get_model_xattn,
) )
from megatron.core.pipeline_parallel.schedules import (
forward_step,
backward_step,
get_tensor_shapes,
get_schedule_table,
check_first_val_step,
deallocate_output_tensor,
finish_embedding_wgrad_compute,
clear_embedding_activation_buffer,
)
from .combined_1f1b import VppContextManager, forward_backward_step, set_streams, wrap_forward_func from .combined_1f1b import VppContextManager, forward_backward_step, set_streams, wrap_forward_func
# Types
Shape = Union[List[int], torch.Size]
def get_forward_backward_func():
"""Retrieves the appropriate forward_backward function given the
configuration of parallel_state.
Returns a function that will perform all of the forward and
backward passes of the model given the pipeline model parallel
world size and virtual pipeline model parallel world size in the
global parallel_state.
Note that if using sequence parallelism, the sequence length component of
the tensor shape is updated to original_sequence_length /
tensor_model_parallel_world_size.
The function returned takes the following arguments:
forward_step_func (required): A function that takes a data
iterator and a model as its arguments and return the model's
forward output and the loss function. The loss function should
take one torch.Tensor and return a torch.Tensor of loss and a
dictionary of string -> torch.Tensor.
A third argument, checkpoint_activations_microbatch, indicates
that the activations for this microbatch should be
checkpointed. A None value for this argument indicates that
the default from the configuration should be used. This is
used when the
num_microbatches_with_partial_activation_checkpoints is used.
For example:
def loss_func(loss_mask, output_tensor):
losses = output_tensor.float()
loss_mask = loss_mask.view(-1).float()
loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
# Reduce loss for logging.
averaged_loss = average_losses_across_data_parallel_group([loss])
return loss, {'lm loss': averaged_loss[0]}
def forward_step(data_iterator, model):
data, loss_mask = next(data_iterator)
output = model(data)
return output, partial(loss_func, loss_mask)
forward_backward_func(forward_step_func=forward_step, ...)
data_iterator (required): an iterator over the data, will be
passed as is to forward_step_func. Expected to be a list of
iterators in the case of interleaved pipeline parallelism.
model (required): the actual model. Expected to be a list of modules in the case of interleaved
pipeline parallelism. Must be a (potentially wrapped) megatron.core.models.MegatronModule.
num_microbatches (int, required):
The number of microbatches to go through
seq_length (int, required): Sequence length of the current global batch. If this is a dual-stack
transformer, this is the encoder's sequence length. This is ignored if variable_seq_lengths
in the config is True. Otherwise, each microbatch in the current global batch size must use
this sequence length.
micro_batch_size (int, required): The number of sequences in a microbatch.
decoder_seq_length (int, optional): The sequence length for the decoder in a dual-stack
transformer. This is ignored for a single-stack transformer.
forward_only (optional, default = False): Perform only the forward step
collect_non_loss_data (optional, bool, default=False): TODO
first_val_step (bool, optional): Is the first step of the validation phase. Used by
Transformer Engine modules to only update their fp8 weights only on the first validation
step.
adjust_tensor_shapes_fn (Callable, optional): A function that adjusts the receive and send
tensor shapes. Only applicable in forward_backward_pipelining_without_interleaving for now.
Takes in a list of receive shapes and a list of send shapes and returns the adjusted
respective list of shapes. Thus it is not used in the other forward-backward functions
which have different shape handling.
"""
pipeline_model_parallel_size = parallel_state.get_pipeline_model_parallel_world_size()
if pipeline_model_parallel_size > 1:
if parallel_state.get_virtual_pipeline_model_parallel_world_size() is not None:
forward_backward_func = forward_backward_pipelining_with_interleaving
else:
forward_backward_func = forward_backward_pipelining_without_interleaving
else:
forward_backward_func = forward_backward_no_pipelining
return forward_backward_func
def deallocate_output_tensor(out, deallocate_pipeline_outputs=False):
'''Pseudo-deallocate (i.e., set to scalar) the output tensor's '.data' field.
This method should be called right after the output tensor has been
sent to the next pipeline stage. At this point, the output tensor is
only useful for its '.grad_fn' field, and not its '.data'.
'''
if (out is None) or (not deallocate_pipeline_outputs):
return
assert isinstance(out, torch.Tensor), "expected Tensor, found %s." % type(out).__name__
assert out._base is None, "counter-productive to free a view of another tensor."
out.data = torch.empty((1,), device=out.device, dtype=out.dtype)
def custom_backward(output, grad_output):
'''Directly call C++ autograd engine.
To make the 'deallocate_output_tensor' (above) optimization work, the C++
autograd engine must be called directly, bypassing Pytorch's
torch.autograd.backward. Pytorch's 'backward' checks that the output and
grad have the same shape, while C++'s 'backward' does not.
'''
assert output.numel() == 1, "output should be pseudo-'freed' in schedule, to optimize memory"
assert isinstance(output, torch.Tensor), "output == '%s'." % type(output).__name__
assert isinstance(grad_output, (torch.Tensor, type(None))), (
"grad_output == '%s'." % type(grad_output).__name__
)
# Handle scalar output
if grad_output is None:
assert output.numel() == 1, "implicit grad requires scalar output."
grad_output = torch.ones_like(output, memory_format=torch.preserve_format)
# Call c++ engine [ see torch/csrc/autograd/python_engine.cpp ]
Variable._execution_engine.run_backward(
tensors=(output,),
grad_tensors=(grad_output,),
keep_graph=False,
create_graph=False,
inputs=tuple(),
allow_unreachable=True,
accumulate_grad=True,
)
def set_current_microbatch(model, microbatch_id):
"""Set the current microbatch."""
decoder_exists = True
decoder = None
try:
decoder = get_attr_wrapped_model(model, "decoder")
except RuntimeError:
decoder_exists = False
if decoder_exists and decoder is not None:
for layer in decoder.layers:
layer.current_microbatch = microbatch_id
def forward_step(
forward_step_func,
data_iterator,
model,
num_microbatches,
input_tensor,
forward_data_store,
config,
collect_non_loss_data=False,
checkpoint_activations_microbatch=None,
is_first_microbatch=False,
current_microbatch=None,
encoder_decoder_xattn=False,
):
"""Forward step for passed-in model.
If it is the first stage, the input tensor is obtained from the data_iterator.
Otherwise, the passed-in input_tensor is used.
Args:
forward_step_func (callable):
The forward step function for the model that takes the
data iterator as the first argument, and model as the second.
This user's forward step is expected to output a tuple of two elements:
1. The output object from the forward step. This output object needs to be a
tensor or some kind of collection of tensors. The only hard requirement
for this object is that it needs to be acceptible as input into the second
function.
2. A function to reduce (optionally) the output from the forward step. This
could be a reduction over the loss from the model, it could be a function that
grabs the output from the model and reformats, it could be a function that just
passes through the model output. This function must have one of the following
patterns, and depending on the pattern different things happen internally:
a. A tuple of reduced loss and some other data. Note that in this case
the first argument is divided by the number of global microbatches,
assuming it is a loss, so that the loss is stable as a function of
the number of devices the step is split across.
b. A triple of reduced loss, number of tokens, and some other data. This
is similar to case (a), but the loss is further averaged across the
number of tokens in the batch. If the user is not already averaging
across the number of tokens, this pattern is useful to use.
c. Any arbitrary data the user wants (eg a dictionary of tensors, a list
of tensors, etc in the case of inference). To trigger case 3 you need
to specify `collect_non_loss_data=True` and you may also want to
specify `forward_only=True` in the call to the parent forward_backward
function.
data_iterator (iterator):
The data iterator.
model (nn.Module):
The model to perform the forward step on.
num_microbatches (int):
The number of microbatches.
input_tensor (Tensor or list[Tensor]):
The input tensor(s) for the forward step.
forward_data_store (list):
The list to store the forward data. If you go down path 2.a or
2.b for the return of your forward reduction function then this will store only the
final dimension of the output, for example the metadata output by the loss function.
If you go down the path of 2.c then this will store the entire output of the forward
reduction function applied to the model output.
config (object):
The configuration object.
collect_non_loss_data (bool, optional):
Whether to collect non-loss data. Defaults to False.
This is the path to use if you want to collect arbitrary output from the model forward,
such as with inference use cases. Defaults to False.
checkpoint_activations_microbatch (int, optional):
The microbatch to checkpoint activations.
Defaults to None.
is_first_microbatch (bool, optional):
Whether it is the first microbatch. Defaults to False.
current_microbatch (int, optional):
The current microbatch. Defaults to None.
Returns:
Tensor or list[Tensor]: The output object(s) from the forward step.
Tensor: The number of tokens.
"""
if config.timers is not None:
config.timers('forward-compute', log_level=2).start()
if is_first_microbatch and hasattr(model, 'set_is_first_microbatch'):
model.set_is_first_microbatch()
if current_microbatch is not None:
set_current_microbatch(model, current_microbatch)
unwrap_output_tensor = False
if not isinstance(input_tensor, list):
input_tensor = [input_tensor]
unwrap_output_tensor = True
set_input_tensor = get_attr_wrapped_model(model, "set_input_tensor")
set_input_tensor(input_tensor)
if config.enable_autocast:
context_manager = torch.autocast("cuda", dtype=config.autocast_dtype)
else:
context_manager = contextlib.nullcontext()
with context_manager:
if checkpoint_activations_microbatch is None:
output_tensor, loss_func = forward_step_func(data_iterator, model)
else:
output_tensor, loss_func = forward_step_func(
data_iterator, model, checkpoint_activations_microbatch
)
num_tokens = torch.tensor(0, dtype=torch.int)
if parallel_state.is_pipeline_last_stage(ignore_virtual=False):
if not collect_non_loss_data:
outputs = loss_func(output_tensor)
if len(outputs) == 3:
output_tensor, num_tokens, loss_reduced = outputs
if not config.calculate_per_token_loss:
output_tensor /= num_tokens
output_tensor *= parallel_state.get_context_parallel_world_size()
output_tensor /= num_microbatches
else:
# preserve legacy loss averaging behavior (ie, over the number of microbatches)
assert len(outputs) == 2
output_tensor, loss_reduced = outputs
output_tensor *= parallel_state.get_context_parallel_world_size()
output_tensor /= num_microbatches
forward_data_store.append(loss_reduced)
else:
data = loss_func(output_tensor, non_loss_data=True)
forward_data_store.append(data)
if config.timers is not None:
config.timers('forward-compute').stop()
# Set the loss scale for the auxiliary loss of the MoE layer.
# Since we use a trick to do backward on the auxiliary loss, we need to set the scale
# explicitly.
if hasattr(config, 'num_moe_experts') and config.num_moe_experts is not None:
# Calculate the loss scale based on the grad_scale_func if available, else default to 1.
loss_scale = (
config.grad_scale_func(torch.ones(1, device=output_tensor.device))
if config.grad_scale_func is not None
else torch.ones(1, device=output_tensor.device)
)
# Set the loss scale
if config.calculate_per_token_loss:
MoEAuxLossAutoScaler.set_loss_scale(loss_scale)
else:
MoEAuxLossAutoScaler.set_loss_scale(loss_scale / num_microbatches)
# Set the loss scale for Multi-Token Prediction (MTP) loss.
if hasattr(config, 'mtp_num_layers') and config.mtp_num_layers is not None:
# Calculate the loss scale based on the grad_scale_func if available, else default to 1.
loss_scale = (
config.grad_scale_func(torch.ones(1, device=output_tensor.device))
if config.grad_scale_func is not None
else torch.ones(1, device=output_tensor.device)
)
# Set the loss scale
if config.calculate_per_token_loss:
MTPLossAutoScaler.set_loss_scale(loss_scale)
else:
MTPLossAutoScaler.set_loss_scale(loss_scale / num_microbatches)
# If T5 model and in decoder stack, then send encoder_hidden_state
# downstream as well.
model_type = get_model_type(model)
if (
model_type == ModelType.encoder_and_decoder
and encoder_decoder_xattn
and parallel_state.is_inside_decoder()
):
return [output_tensor, input_tensor[-1]], num_tokens
if unwrap_output_tensor:
return output_tensor, num_tokens
return [output_tensor], num_tokens
def backward_step(input_tensor, output_tensor, output_tensor_grad, model_type, config):
"""Backward step through passed-in output tensor.
If last stage, output_tensor_grad is None, otherwise gradient of loss
with respect to stage's output tensor.
Returns gradient of loss with respect to input tensor (None if first
stage)."""
# NOTE: This code currently can handle at most one skip connection. It
# needs to be modified slightly to support arbitrary numbers of skip
# connections.
if config.timers is not None:
config.timers('backward-compute', log_level=2).start()
# Retain the grad on the input_tensor.
unwrap_input_tensor_grad = False
if not isinstance(input_tensor, list):
input_tensor = [input_tensor]
unwrap_input_tensor_grad = True
for x in input_tensor:
if x is not None:
x.retain_grad()
if not isinstance(output_tensor, list):
output_tensor = [output_tensor]
if not isinstance(output_tensor_grad, list):
output_tensor_grad = [output_tensor_grad]
# Backward pass.
if output_tensor_grad[0] is None and config.grad_scale_func is not None:
output_tensor[0] = config.grad_scale_func(output_tensor[0])
# In multi-modal models like VLM, some batches may not have images.
# When no image is present, the vision encoder (as a separate pipeline stage)
# will not participate in the computation.
# This results in a tensor that does not require gradients.
# In such cases, we intentionally skip the backward pass while preserving zero gradients.
if output_tensor[0].requires_grad:
if config.deallocate_pipeline_outputs:
custom_backward(output_tensor[0], output_tensor_grad[0])
else:
torch.autograd.backward(output_tensor[0], grad_tensors=output_tensor_grad[0])
# Collect the grad of the input_tensor.
input_tensor_grad = [None]
if input_tensor is not None:
input_tensor_grad = []
for x in input_tensor:
if x is None:
input_tensor_grad.append(None)
else:
input_tensor_grad.append(x.grad)
# Handle single skip connection if it exists (encoder_hidden_state in
# model with encoder and decoder).
if (
parallel_state.get_pipeline_model_parallel_world_size() > 1
and model_type == ModelType.encoder_and_decoder
and len(output_tensor_grad) > 1 # excludes models that lack a skip connection.
):
if output_tensor_grad[1] is not None:
assert input_tensor_grad[-1] is not None
input_tensor_grad[-1].add_(output_tensor_grad[1])
if unwrap_input_tensor_grad:
input_tensor_grad = input_tensor_grad[0]
if config.timers is not None:
config.timers('backward-compute').stop()
return input_tensor_grad
def check_first_val_step(first_val_step, forward_only, cond):
"""Check if it is the first validation step."""
if (first_val_step is not None) and forward_only:
return first_val_step and cond
else:
return cond
def forward_backward_no_pipelining(
*,
forward_step_func,
data_iterator: Union[Iterator, List[Iterator]],
model: Union[torch.nn.Module, List[torch.nn.Module]],
num_microbatches: int,
seq_length: int, # unused
micro_batch_size: int, # unused
decoder_seq_length: Optional[int] = None, # unused
forward_only: bool = False,
collect_non_loss_data: bool = False,
first_val_step: Optional[bool] = None,
adjust_tensor_shapes_fn: Optional[Callable] = None, # unused
):
"""Run forward and backward passes with no pipeline parallelism
(no inter-stage communication).
Returns dictionary with losses.
See get_forward_backward_func() for argument details
"""
if isinstance(model, list):
assert len(model) == 1, "non-pipeline-parallel schedule does not support model chunking"
model = model[0]
if isinstance(data_iterator, list):
assert (
len(data_iterator) == 1
), "non-pipeline-parallel schedule does not support model chunking"
data_iterator = data_iterator[0]
assert (
adjust_tensor_shapes_fn is None
), "adjust_tensor_shapes_fn is not supported for non-pipeline-parallel schedule"
config = get_model_config(model)
if config.timers is not None:
config.timers('forward-backward', log_level=1).start(barrier=config.barrier_with_L1_time)
no_sync_func = config.no_sync_func
if no_sync_func is None:
no_sync_func = contextlib.nullcontext
model_type = get_model_type(model)
forward_data_store = []
input_tensor, output_tensor_grad = None, None
total_num_tokens = torch.zeros([], dtype=torch.int, device="cuda")
with no_sync_func():
for i in range(num_microbatches - 1):
output_tensor, num_tokens = forward_step(
forward_step_func,
data_iterator,
model,
num_microbatches,
input_tensor,
forward_data_store,
config,
collect_non_loss_data,
is_first_microbatch=check_first_val_step(first_val_step, forward_only, i == 0),
current_microbatch=i,
)
total_num_tokens += num_tokens
if not forward_only:
backward_step(input_tensor, output_tensor, output_tensor_grad, model_type, config)
# Run computation for last microbatch out of context handler (want to
# synchronize gradients).
output_tensor, num_tokens = forward_step(
forward_step_func,
data_iterator,
model,
num_microbatches,
input_tensor,
forward_data_store,
config,
collect_non_loss_data,
is_first_microbatch=check_first_val_step(
first_val_step, forward_only, num_microbatches == 1
),
current_microbatch=num_microbatches - 1,
)
total_num_tokens += num_tokens
if not forward_only:
backward_step(input_tensor, output_tensor, output_tensor_grad, model_type, config)
if config.finalize_model_grads_func is not None and not forward_only:
# Finalize model grads (perform full grad all-reduce / reduce-scatter for
# data parallelism and layernorm all-reduce for sequence parallelism).
config.finalize_model_grads_func(
[model], total_num_tokens if config.calculate_per_token_loss else None
)
if config.timers is not None:
config.timers('forward-backward').stop()
if hasattr(config, 'enable_cuda_graph') and config.enable_cuda_graph:
create_cudagraphs()
return forward_data_store
def clear_embedding_activation_buffer(config, model):
"""Clear embedding activation buffer."""
if (
parallel_state.is_pipeline_last_stage(ignore_virtual=True)
and config.defer_embedding_wgrad_compute
):
if isinstance(model, list):
embedding_module = get_attr_wrapped_model(
model[-1], 'post_process', return_model_obj=True
)
else:
embedding_module = get_attr_wrapped_model(model, 'post_process', return_model_obj=True)
# Need to ensure no stray activations exists in this buffer
embedding_module.embedding_activation_buffer.clear()
return embedding_module
else:
return None
def finish_embedding_wgrad_compute(config, embedding_module):
"""Finish embedding wgrad compute."""
if (
parallel_state.is_pipeline_last_stage(ignore_virtual=True)
and config.defer_embedding_wgrad_compute
):
embedding_activation_buffer = embedding_module.embedding_activation_buffer
grad_output_buffer = embedding_module.grad_output_buffer
weight = (
embedding_module.output_layer.weight
if embedding_module.share_embeddings_and_output_weights
else embedding_module.shared_embedding_or_output_weight()
)
drain_embedding_wgrad_compute(
config, embedding_activation_buffer, grad_output_buffer, weight
)
def get_pp_rank_microbatches( def get_pp_rank_microbatches(
num_microbatches, num_model_chunks, microbatch_group_size_per_vp_stage, forward_only=False num_microbatches, num_model_chunks, microbatch_group_size_per_vp_stage, forward_only=False
): ):
"""Get the number of total, warmup, and remaining microbatches in PP scheduling.""" """Get the number of total, warmup, and remaining microbatches in PP scheduling."""
args = get_args()
pipeline_parallel_size = parallel_state.get_pipeline_model_parallel_world_size() pipeline_parallel_size = parallel_state.get_pipeline_model_parallel_world_size()
pipeline_parallel_rank = parallel_state.get_pipeline_model_parallel_rank() pipeline_parallel_rank = parallel_state.get_pipeline_model_parallel_rank()
virtual_pipeline_parallel_size = parallel_state.get_virtual_pipeline_model_parallel_world_size() virtual_pipeline_parallel_size = parallel_state.get_virtual_pipeline_model_parallel_world_size()
...@@ -608,6 +59,9 @@ def get_pp_rank_microbatches( ...@@ -608,6 +59,9 @@ def get_pp_rank_microbatches(
# immediately start with 1F1B). # immediately start with 1F1B).
num_warmup_microbatches = (pipeline_parallel_size - pipeline_parallel_rank - 1) * 2 num_warmup_microbatches = (pipeline_parallel_size - pipeline_parallel_rank - 1) * 2
num_warmup_microbatches += (num_model_chunks - 1) * microbatch_group_size_per_vp_stage num_warmup_microbatches += (num_model_chunks - 1) * microbatch_group_size_per_vp_stage
if args.combined_1f1b:
num_warmup_microbatches = num_warmup_microbatches + 1
else: else:
# forward_backward_no_pipelining # forward_backward_no_pipelining
num_warmup_microbatches = 1 num_warmup_microbatches = 1
...@@ -625,62 +79,6 @@ def get_pp_rank_microbatches( ...@@ -625,62 +79,6 @@ def get_pp_rank_microbatches(
) )
def get_schedule_table(num_microbatches, num_model_chunks, microbatch_group_size_per_vp_stage):
"""Get the schedule table for PP scheduling."""
schedule_table = []
for min_microbatch_id_in_group in range(
0, num_microbatches, microbatch_group_size_per_vp_stage
):
if min_microbatch_id_in_group + microbatch_group_size_per_vp_stage >= num_microbatches:
# Construct schedule for the last microbatch group
schedule_table.extend(
[
(microbatch_id, model_chunk_id)
for model_chunk_id in range(num_model_chunks)
for microbatch_id in range(min_microbatch_id_in_group, num_microbatches)
]
)
else:
# Construct schedule for other microbatch groups
schedule_table.extend(
[
(microbatch_id, model_chunk_id)
for model_chunk_id in range(num_model_chunks)
for microbatch_id in range(
min_microbatch_id_in_group,
min_microbatch_id_in_group + microbatch_group_size_per_vp_stage,
)
]
)
return schedule_table
def convert_schedule_table_to_order(num_warmup_microbatches, num_model_chunks, schedule_table):
"""Convert a tunable schedule lookup table to the te.make_graphed_callables() accepted
order format. For example, the tunable schedule table for PP2 N3M5 with VP2 is as below:
virtual_microbatch_id | 0 1 2 3 4 5 6 7 8 9
microbatch_id | 0 1 2 0 1 2 3 4 3 4
model_chunk_id | 0 0 0 1 1 1 0 0 1 1
Then the forward backward separated order is:
forward | 1 1 1 2 2 2 1 1 2 2
backward | -2 -2 -2 -1 -1 -1 -2 -2 -1 -1
If num_warmup_microbatches is 5, the output order is:
1 1 1 2 2 2 -2 1 -2 1 -2 2 -1 2 -1 -1 -2 -2 -1 -1
"""
_, model_chunk_id_table = zip(*schedule_table)
forward_order = [chunk_id + 1 for chunk_id in model_chunk_id_table]
backward_order = [chunk_id - num_model_chunks for chunk_id in model_chunk_id_table]
order = forward_order[:num_warmup_microbatches]
for i in range(num_warmup_microbatches, len(forward_order)):
order.append(forward_order[i])
order.append(backward_order[i - num_warmup_microbatches])
if num_warmup_microbatches > 0:
order.extend(backward_order[-num_warmup_microbatches:])
return order
def forward_backward_pipelining_with_interleaving( def forward_backward_pipelining_with_interleaving(
*, *,
forward_step_func, forward_step_func,
...@@ -1057,6 +455,7 @@ def forward_backward_pipelining_with_interleaving( ...@@ -1057,6 +455,7 @@ def forward_backward_pipelining_with_interleaving(
"""Helper method to run backward step with model split into chunks """Helper method to run backward step with model split into chunks
(run set_virtual_pipeline_model_parallel_rank() before calling (run set_virtual_pipeline_model_parallel_rank() before calling
backward_step()).""" backward_step())."""
nonlocal output_tensor_grads # TODO(dongcl)
model_chunk_id = get_model_chunk_id(virtual_microbatch_id, forward=False) model_chunk_id = get_model_chunk_id(virtual_microbatch_id, forward=False)
parallel_state.set_virtual_pipeline_model_parallel_rank(model_chunk_id) parallel_state.set_virtual_pipeline_model_parallel_rank(model_chunk_id)
...@@ -1099,65 +498,273 @@ def forward_backward_pipelining_with_interleaving( ...@@ -1099,65 +498,273 @@ def forward_backward_pipelining_with_interleaving(
return input_tensor_grad return input_tensor_grad
# Run warmup forward passes. def combined_forward_backward_helper(
parallel_state.set_virtual_pipeline_model_parallel_rank(0) f_virtual_microbatch_id=None,
input_tensors[0].append(p2p_communication.recv_forward(tensor_shape, config)) b_virtual_microbatch_id=None,
pre_forward=None,
fwd_wait_handles = None pre_backward=None,
fwd_wait_recv_handles = None post_forward=None,
bwd_wait_handles = None post_backward=None,
bwd_wait_recv_handles = None ):
if parallel_state.is_pipeline_first_stage(ignore_virtual=True): """Helper method to run combined forward and backward step"""
fwd_recv_buffer_size = ( # forward prepare
config.microbatch_group_size_per_vp_stage - pipeline_parallel_size + 1 f_model_chunk_id = None
f_microbatch_id = None
if f_virtual_microbatch_id is not None:
f_microbatch_id = get_microbatch_id_in_model_chunk(f_virtual_microbatch_id, True)
f_context = contextlib.nullcontext()
input_tensor = None
if f_virtual_microbatch_id is not None:
model_chunk_id = get_model_chunk_id(f_virtual_microbatch_id, forward=True)
f_model_chunk_id = model_chunk_id
f_context = VppContextManager(f_model_chunk_id)
with f_context:
# launch param synchronization for next model chunk
# Note: Asynchronous communication tends to slow down compute.
# To reduce idling from mismatched microbatch times, we launch
# asynchronous communication at the same time across the
# pipeline-parallel group.
if config.param_sync_func is not None:
param_sync_virtual_microbatch_id = (
f_virtual_microbatch_id + pipeline_parallel_rank
) )
else: if (
fwd_recv_buffer_size = 1 param_sync_virtual_microbatch_id < total_num_microbatches
if parallel_state.is_pipeline_last_stage(ignore_virtual=True): and is_first_microbatch_for_model_chunk(param_sync_virtual_microbatch_id)
bwd_recv_buffer_size = ( ):
config.microbatch_group_size_per_vp_stage - pipeline_parallel_size + 1 param_sync_chunk_id = (
get_model_chunk_id(param_sync_virtual_microbatch_id, forward=True) + 1
) )
else: if 1 < param_sync_chunk_id < num_model_chunks:
bwd_recv_buffer_size = 1 config.param_sync_func[param_sync_chunk_id](
fwd_recv_buffer = [None] * fwd_recv_buffer_size model[param_sync_chunk_id].parameters()
bwd_recv_buffer = [None] * bwd_recv_buffer_size
recv_prev_wait_handles = []
send_next_wait_handle = None
send_prev_wait_handle = None
recv_next_wait_handles = []
for k in range(num_warmup_microbatches):
cur_model_chunk_id = get_model_chunk_id(k, forward=True)
parallel_state.set_virtual_pipeline_model_parallel_rank(cur_model_chunk_id)
if config.overlap_p2p_comm_warmup_flush:
if not parallel_state.is_pipeline_first_stage(ignore_virtual=False) and k != 0:
assert recv_prev_wait_handles, (
f'pp rank {pipeline_parallel_rank}, iteration {k},'
'should have registered recv handle'
) )
recv_prev_wait_handle = recv_prev_wait_handles.pop(0)
recv_prev_wait_handle.wait()
# Determine if tensor should be received from previous stage.
recv_prev, next_forward_model_chunk_id = recv_tensor_from_previous_stage(k, forward=True)
# No receive in last iteration when recv iteration k+1. # forward step
if k == (total_num_microbatches - 1): if parallel_state.is_pipeline_first_stage():
recv_prev = False if len(input_tensors[model_chunk_id]) == len(output_tensors[model_chunk_id]):
input_tensors[model_chunk_id].append(None)
# Prefetch recv for iteration k+1 for non-first ranks. # For non-depth-first pipeline schedules, the first rank would
if config.overlap_p2p_comm_warmup_flush and not parallel_state.is_pipeline_first_stage( # buffer multiple received activation tensors for a model chunk
ignore_virtual=True # until accessed during warmup. This input buffering is needed to overlap
# the computation with the receipt of the next inputs. To index
# the proper buffered inputs for forword_step, we use
# microbatch_id offset with number of released microbatches
# that have completed backprop.
offset = num_released_microbatches(f_virtual_microbatch_id, model_chunk_id)
input_tensor = input_tensors[model_chunk_id][f_microbatch_id - offset]
# backward prepare
b_model_chunk_id = None
b_context = contextlib.nullcontext()
b_input_tensor = None
b_output_tensor = None
b_output_tensor_grad = None
if b_virtual_microbatch_id is not None:
model_chunk_id = get_model_chunk_id(b_virtual_microbatch_id, forward=False)
b_model_chunk_id = model_chunk_id
b_context = VppContextManager(b_model_chunk_id)
with b_context:
# launch grad synchronization (default)
if config.grad_sync_func is None and is_last_microbatch_for_model_chunk(
b_virtual_microbatch_id
): ):
fwd_recv_buffer[k % fwd_recv_buffer_size], fwd_wait_recv_handles = ( enable_grad_sync()
p2p_communication.send_forward_recv_forward( synchronized_model_chunks.add(model_chunk_id)
output_tensor=None, # No output_tensor to send.
recv_prev=recv_prev, if parallel_state.is_pipeline_last_stage():
tensor_shape=tensor_shape, if len(output_tensor_grads[model_chunk_id]) == 0:
config=config, output_tensor_grads[model_chunk_id].append(None)
overlap_p2p_comm=True, b_input_tensor = input_tensors[model_chunk_id].pop(0)
) b_output_tensor = output_tensors[model_chunk_id].pop(0)
b_output_tensor_grad = output_tensor_grads[model_chunk_id].pop(0)
output_tensor, num_tokens, input_tensor_grad = forward_backward_step(
forward_step_func,
data_iterator[f_model_chunk_id] if f_model_chunk_id is not None else None,
model[f_model_chunk_id] if f_model_chunk_id is not None else None,
num_microbatches,
input_tensor,
forward_data_store,
model[b_model_chunk_id] if b_model_chunk_id is not None else None,
b_input_tensor,
b_output_tensor,
b_output_tensor_grad,
config,
f_context=f_context,
b_context=b_context,
pre_forward=pre_forward,
pre_backward=pre_backward,
post_forward=post_forward,
post_backward=post_backward,
collect_non_loss_data=collect_non_loss_data,
checkpoint_activations_microbatch=None,
is_first_microbatch=check_first_val_step(
first_val_step,
forward_only,
(
is_first_microbatch_for_model_chunk(f_virtual_microbatch_id)
if f_virtual_microbatch_id is not None
else None
),
),
current_microbatch=f_microbatch_id,
)
# forward post process
if f_model_chunk_id is not None:
with f_context:
output_tensors[f_model_chunk_id].append(output_tensor)
nonlocal total_num_tokens
total_num_tokens += num_tokens.item()
# If forward-only, no need to save tensors for a backward pass.
if forward_only:
# Release the tensor that have completed forward step.
input_tensors[f_model_chunk_id].pop(0)
output_tensors[f_model_chunk_id].pop()
# backward post process
if b_model_chunk_id:
with b_context:
# launch grad synchronization (custom grad sync)
# Note: Asynchronous communication tends to slow down compute.
# To reduce idling from mismatched microbatch times, we launch
# asynchronous communication at the same time across the
# pipeline-parallel group.
if config.grad_sync_func is not None:
grad_sync_virtual_microbatch_id = (
b_virtual_microbatch_id - pipeline_parallel_rank
)
if grad_sync_virtual_microbatch_id >= 0 and is_last_microbatch_for_model_chunk(
grad_sync_virtual_microbatch_id
):
grad_sync_chunk_id = get_model_chunk_id(
grad_sync_virtual_microbatch_id, forward=False
)
enable_grad_sync()
config.grad_sync_func[grad_sync_chunk_id](
model[grad_sync_chunk_id].parameters()
)
synchronized_model_chunks.add(grad_sync_chunk_id)
disable_grad_sync()
if input_tensor is not None:
assert input_tensor_grad is not None
return output_tensor, input_tensor_grad
def forward_backward_helper_wrapper(
f_virtual_microbatch_id=None,
b_virtual_microbatch_id=None,
pre_forward=None,
pre_backward=None,
post_forward=None,
post_backward=None,
checkpoint_activations_microbatch=None,
):
"""
wrap forward_helper、backward_helper、combined_forward_backward_helper in a unified way
"""
if config.combined_1f1b and config.combined_1f1b_recipe == "ep_a2a" and not forward_only:
assert (
checkpoint_activations_microbatch is None
), "checkpoint_activations_microbatch not supported when combined_1f1b is true"
return combined_forward_backward_helper(
f_virtual_microbatch_id=f_virtual_microbatch_id,
b_virtual_microbatch_id=b_virtual_microbatch_id,
pre_forward=pre_forward,
pre_backward=pre_backward,
post_forward=post_forward,
post_backward=post_backward,
)
else:
output_tensor = None
input_tensor_grad = None
if f_virtual_microbatch_id is not None:
# forward pass
forward_model_chunk_id = get_model_chunk_id(f_virtual_microbatch_id, forward=True)
parallel_state.set_virtual_pipeline_model_parallel_rank(forward_model_chunk_id)
if pre_forward is not None:
pre_forward()
microbatch_id = get_microbatch_id_in_model_chunk(f_virtual_microbatch_id, forward=True)
output_tensor = forward_step_helper(
f_virtual_microbatch_id, microbatch_id, checkpoint_activations_microbatch
)
if post_forward is not None:
output_tensor = post_forward(output_tensor)
if b_virtual_microbatch_id is not None:
# Backward pass.
backward_model_chunk_id = get_model_chunk_id(b_virtual_microbatch_id, forward=False)
parallel_state.set_virtual_pipeline_model_parallel_rank(backward_model_chunk_id)
if pre_backward is not None:
pre_backward()
input_tensor_grad = backward_step_helper(b_virtual_microbatch_id)
if post_backward is not None:
input_tensor_grad = post_backward(input_tensor_grad)
return output_tensor, input_tensor_grad
# Run warmup forward passes.
parallel_state.set_virtual_pipeline_model_parallel_rank(0)
input_tensors[0].append(p2p_communication.recv_forward(tensor_shape, config))
fwd_wait_handles = None
fwd_wait_recv_handles = None
bwd_wait_handles = None
bwd_wait_recv_handles = None
if parallel_state.is_pipeline_first_stage(ignore_virtual=True):
fwd_recv_buffer_size = (
config.microbatch_group_size_per_vp_stage - pipeline_parallel_size + 1
)
else:
fwd_recv_buffer_size = 1
if parallel_state.is_pipeline_last_stage(ignore_virtual=True):
bwd_recv_buffer_size = (
config.microbatch_group_size_per_vp_stage - pipeline_parallel_size + 1
)
else:
bwd_recv_buffer_size = 1
fwd_recv_buffer = [None] * fwd_recv_buffer_size
bwd_recv_buffer = [None] * bwd_recv_buffer_size
recv_prev_wait_handles = []
send_next_wait_handle = None
send_prev_wait_handle = None
recv_next_wait_handles = []
for k in range(num_warmup_microbatches):
cur_model_chunk_id = get_model_chunk_id(k, forward=True)
parallel_state.set_virtual_pipeline_model_parallel_rank(cur_model_chunk_id)
if config.overlap_p2p_comm_warmup_flush:
if not parallel_state.is_pipeline_first_stage(ignore_virtual=False) and k != 0:
assert recv_prev_wait_handles, (
f'pp rank {pipeline_parallel_rank}, iteration {k},'
'should have registered recv handle'
)
recv_prev_wait_handle = recv_prev_wait_handles.pop(0)
recv_prev_wait_handle.wait()
# Determine if tensor should be received from previous stage.
recv_prev, next_forward_model_chunk_id = recv_tensor_from_previous_stage(k, forward=True)
# No receive in last iteration when recv iteration k+1.
if k == (total_num_microbatches - 1):
recv_prev = False
# Prefetch recv for iteration k+1 for non-first ranks.
if config.overlap_p2p_comm_warmup_flush and not parallel_state.is_pipeline_first_stage(
ignore_virtual=True
):
fwd_recv_buffer[k % fwd_recv_buffer_size], fwd_wait_recv_handles = (
p2p_communication.send_forward_recv_forward(
output_tensor=None, # No output_tensor to send.
recv_prev=recv_prev,
tensor_shape=tensor_shape,
config=config,
overlap_p2p_comm=True,
)
) )
if fwd_wait_recv_handles: if fwd_wait_recv_handles:
...@@ -1172,8 +779,10 @@ def forward_backward_pipelining_with_interleaving( ...@@ -1172,8 +779,10 @@ def forward_backward_pipelining_with_interleaving(
else: else:
checkpoint_activations_microbatch = None checkpoint_activations_microbatch = None
microbatch_id = get_microbatch_id_in_model_chunk(k, forward=True) output_tensor, _ = forward_backward_helper_wrapper(
output_tensor = forward_step_helper(k, microbatch_id, checkpoint_activations_microbatch) f_virtual_microbatch_id=k,
checkpoint_activations_microbatch=checkpoint_activations_microbatch,
)
# Don't send tensor downstream if on last stage. # Don't send tensor downstream if on last stage.
if parallel_state.is_pipeline_last_stage(ignore_virtual=False): if parallel_state.is_pipeline_last_stage(ignore_virtual=False):
...@@ -1296,8 +905,11 @@ def forward_backward_pipelining_with_interleaving( ...@@ -1296,8 +905,11 @@ def forward_backward_pipelining_with_interleaving(
cur_model_chunk_id = get_model_chunk_id(forward_k, forward=True) cur_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
parallel_state.set_virtual_pipeline_model_parallel_rank(cur_model_chunk_id) parallel_state.set_virtual_pipeline_model_parallel_rank(cur_model_chunk_id)
microbatch_id = get_microbatch_id_in_model_chunk(forward_k, forward=True)
if config.overlap_p2p_comm: if config.overlap_p2p_comm:
backward_k = k
# output send / receive sync
def pp_pre_forward():
if not parallel_state.is_pipeline_first_stage(ignore_virtual=False): if not parallel_state.is_pipeline_first_stage(ignore_virtual=False):
if config.overlap_p2p_comm_warmup_flush: if config.overlap_p2p_comm_warmup_flush:
assert recv_prev_wait_handles, ( assert recv_prev_wait_handles, (
...@@ -1313,15 +925,12 @@ def forward_backward_pipelining_with_interleaving( ...@@ -1313,15 +925,12 @@ def forward_backward_pipelining_with_interleaving(
deallocate_output_tensor(output_tensor, config.deallocate_pipeline_outputs) deallocate_output_tensor(output_tensor, config.deallocate_pipeline_outputs)
output_tensor = forward_step_helper( # output async send / receive
forward_k, microbatch_id, checkpoint_activations_microbatch def pp_post_forward(output_tensor):
) nonlocal send_next_wait_handle
nonlocal fwd_recv_buffer
# Determine if current stage has anything to send in either direction, nonlocal fwd_wait_handles
# otherwise set tensor to None. nonlocal recv_prev_wait_handles
forward_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
parallel_state.set_virtual_pipeline_model_parallel_rank(forward_model_chunk_id)
# Last virtual stage no activation tensor to send. # Last virtual stage no activation tensor to send.
if parallel_state.is_pipeline_last_stage(ignore_virtual=False): if parallel_state.is_pipeline_last_stage(ignore_virtual=False):
output_tensor = None output_tensor = None
...@@ -1350,16 +959,27 @@ def forward_backward_pipelining_with_interleaving( ...@@ -1350,16 +959,27 @@ def forward_backward_pipelining_with_interleaving(
send_next_wait_handle.wait() send_next_wait_handle.wait()
if fwd_wait_handles is not None: if fwd_wait_handles is not None:
send_next_wait_handle = ( send_next_wait_handle = (
fwd_wait_handles.pop("send_next") if "send_next" in fwd_wait_handles else None fwd_wait_handles.pop("send_next")
if "send_next" in fwd_wait_handles
else None
) )
if "recv_prev" in fwd_wait_handles: if "recv_prev" in fwd_wait_handles:
recv_prev_wait_handles.append(fwd_wait_handles.pop("recv_prev")) recv_prev_wait_handles.append(fwd_wait_handles.pop("recv_prev"))
# assert fwd_wait_handles is not None # assert fwd_wait_handles is not None
# Backward pass. # Put input_tensor and output_tensor_grad in data structures in the
backward_k = k # right location.
backward_model_chunk_id = get_model_chunk_id(backward_k, forward=False) if recv_prev:
parallel_state.set_virtual_pipeline_model_parallel_rank(backward_model_chunk_id) input_tensors[next_forward_model_chunk_id].append(
fwd_recv_buffer[forward_k % fwd_recv_buffer_size]
)
fwd_recv_buffer[(forward_k + 1) % fwd_recv_buffer_size] = None
return output_tensor
# grad send receive sync
def pp_pre_backward():
nonlocal recv_next_wait_handles
if not parallel_state.is_pipeline_last_stage(ignore_virtual=False): if not parallel_state.is_pipeline_last_stage(ignore_virtual=False):
if config.overlap_p2p_comm_warmup_flush: if config.overlap_p2p_comm_warmup_flush:
assert recv_next_wait_handles, ( assert recv_next_wait_handles, (
...@@ -1373,8 +993,11 @@ def forward_backward_pipelining_with_interleaving( ...@@ -1373,8 +993,11 @@ def forward_backward_pipelining_with_interleaving(
recv_next_wait_handle = recv_next_wait_handles.pop(0) recv_next_wait_handle = recv_next_wait_handles.pop(0)
recv_next_wait_handle.wait() recv_next_wait_handle.wait()
input_tensor_grad = backward_step_helper(backward_k) # async grad send receive
def pp_post_backward(input_tensor_grad):
nonlocal send_prev_wait_handle
nonlocal bwd_wait_handles
nonlocal recv_next_wait_handles
# First virtual stage no activation gradient tensor to send. # First virtual stage no activation gradient tensor to send.
if parallel_state.is_pipeline_first_stage(ignore_virtual=False): if parallel_state.is_pipeline_first_stage(ignore_virtual=False):
input_tensor_grad = None input_tensor_grad = None
...@@ -1396,31 +1019,39 @@ def forward_backward_pipelining_with_interleaving( ...@@ -1396,31 +1019,39 @@ def forward_backward_pipelining_with_interleaving(
send_prev_wait_handle.wait() send_prev_wait_handle.wait()
if bwd_wait_handles is not None: if bwd_wait_handles is not None:
send_prev_wait_handle = ( send_prev_wait_handle = (
bwd_wait_handles.pop("send_prev") if "send_prev" in bwd_wait_handles else None bwd_wait_handles.pop("send_prev")
if "send_prev" in bwd_wait_handles
else None
) )
if "recv_next" in bwd_wait_handles: if "recv_next" in bwd_wait_handles:
recv_next_wait_handles.append(bwd_wait_handles.pop("recv_next")) recv_next_wait_handles.append(bwd_wait_handles.pop("recv_next"))
# Put input_tensor and output_tensor_grad in data structures in the # Put input_tensor and output_tensor_grad in data structures in the
# right location. # right location.
if recv_prev:
input_tensors[next_forward_model_chunk_id].append(
fwd_recv_buffer[forward_k % fwd_recv_buffer_size]
)
fwd_recv_buffer[(forward_k + 1) % fwd_recv_buffer_size] = None
if recv_next: if recv_next:
output_tensor_grads[next_backward_model_chunk_id].append( output_tensor_grads[next_backward_model_chunk_id].append(
bwd_recv_buffer[backward_k % bwd_recv_buffer_size] bwd_recv_buffer[backward_k % bwd_recv_buffer_size]
) )
bwd_recv_buffer[(backward_k + 1) % bwd_recv_buffer_size] = None bwd_recv_buffer[(backward_k + 1) % bwd_recv_buffer_size] = None
else: # No p2p overlap. return input_tensor_grad
output_tensor = forward_step_helper(
forward_k, microbatch_id, checkpoint_activations_microbatch
)
# Backward pass. output_tensor, input_tensor_grad = forward_backward_helper_wrapper(
f_virtual_microbatch_id=forward_k,
b_virtual_microbatch_id=backward_k,
pre_forward=pp_pre_forward,
pre_backward=pp_pre_backward,
post_forward=pp_post_forward,
post_backward=pp_post_backward,
checkpoint_activations_microbatch=checkpoint_activations_microbatch,
)
else: # No p2p overlap.
backward_k = k backward_k = k
input_tensor_grad = backward_step_helper(backward_k) output_tensor, input_tensor_grad = forward_backward_helper_wrapper(
f_virtual_microbatch_id=forward_k,
b_virtual_microbatch_id=backward_k,
checkpoint_activations_microbatch=checkpoint_activations_microbatch,
)
# Send output_tensor and input_tensor_grad, receive input_tensor # Send output_tensor and input_tensor_grad, receive input_tensor
# and output_tensor_grad. # and output_tensor_grad.
...@@ -1522,7 +1153,7 @@ def forward_backward_pipelining_with_interleaving( ...@@ -1522,7 +1153,7 @@ def forward_backward_pipelining_with_interleaving(
if bwd_wait_recv_handles: if bwd_wait_recv_handles:
recv_next_wait_handles.append(bwd_wait_recv_handles.pop("recv_next")) recv_next_wait_handles.append(bwd_wait_recv_handles.pop("recv_next"))
input_tensor_grad = backward_step_helper(k) _, input_tensor_grad = forward_backward_helper_wrapper(b_virtual_microbatch_id=k)
# First virtual stage no activation gradient tensor to send. # First virtual stage no activation gradient tensor to send.
if parallel_state.is_pipeline_first_stage(ignore_virtual=False): if parallel_state.is_pipeline_first_stage(ignore_virtual=False):
...@@ -1615,405 +1246,3 @@ def forward_backward_pipelining_with_interleaving( ...@@ -1615,405 +1246,3 @@ def forward_backward_pipelining_with_interleaving(
return forward_data_store return forward_data_store
def get_tensor_shapes(
*,
rank: int,
model_type: ModelType,
seq_length: int,
micro_batch_size: int,
decoder_seq_length: int,
config,
encoder_decoder_xattn: bool,
):
"""
Determine right tensor sizes (based on position of rank with respect to split rank) and
model size.
Send two tensors if model decoder requires the encoder's output (via cross-attention) and
rank is in decoder stage.
First tensor is decoder. Second tensor is encoder.
If model has an encoder & decoder and rank is at the boundary, send one tensor.
Otherwise, send one tensor.
"""
tensor_shapes = []
seq_length = seq_length // parallel_state.get_context_parallel_world_size()
if model_type == ModelType.encoder_and_decoder:
decoder_seq_length = decoder_seq_length // parallel_state.get_context_parallel_world_size()
if config.sequence_parallel:
seq_length = seq_length // parallel_state.get_tensor_model_parallel_world_size()
if model_type == ModelType.encoder_and_decoder:
decoder_seq_length = (
decoder_seq_length // parallel_state.get_tensor_model_parallel_world_size()
)
if model_type == ModelType.encoder_and_decoder:
if parallel_state.is_inside_encoder(rank) and not parallel_state.is_inside_decoder(rank):
tensor_shapes.append((seq_length, micro_batch_size, config.hidden_size))
elif encoder_decoder_xattn:
tensor_shapes.append((decoder_seq_length, micro_batch_size, config.hidden_size))
tensor_shapes.append((seq_length, micro_batch_size, config.hidden_size))
else:
tensor_shapes.append((decoder_seq_length, micro_batch_size, config.hidden_size))
else: # model_type == ModelType.encoder_or_decoder
tensor_shapes.append((seq_length, micro_batch_size, config.hidden_size))
return tensor_shapes
def recv_forward(tensor_shapes, config):
"""Wrapper for p2p_communication.recv_forward used with non-interleaving schedule."""
input_tensors = []
for tensor_shape in tensor_shapes:
if tensor_shape is None:
input_tensors.append(None)
else:
input_tensors.append(p2p_communication.recv_forward(tensor_shape, config))
return input_tensors
def recv_backward(tensor_shapes, config):
"""Wrapper for p2p_communication.recv_backward used with non-interleaving schedule."""
output_tensor_grads = []
for tensor_shape in tensor_shapes:
if tensor_shape is None:
output_tensor_grads.append(None)
else:
output_tensor_grads.append(p2p_communication.recv_backward(tensor_shape, config))
return output_tensor_grads
def send_forward(output_tensors, tensor_shapes, config):
"""Wrapper for p2p_communication.send_forward used with non-interleaving schedule."""
if not isinstance(output_tensors, list):
output_tensors = [output_tensors]
for output_tensor, tensor_shape in zip(output_tensors, tensor_shapes):
if tensor_shape is None:
continue
p2p_communication.send_forward(output_tensor, config)
def send_backward(input_tensor_grads, tensor_shapes, config):
"""Wrapper for p2p_communication.send_backward used with non-interleaving schedule."""
if not isinstance(input_tensor_grads, list):
input_tensor_grads = [input_tensor_grads]
for input_tensor_grad, tensor_shape in zip(input_tensor_grads, tensor_shapes):
if tensor_shape is None:
continue
p2p_communication.send_backward(input_tensor_grad, config)
def send_forward_recv_backward(output_tensors, tensor_shapes, config):
"""Wrapper for p2p_communication.send_forward_recv_backward used
with non-interleaving schedule."""
if not isinstance(output_tensors, list):
output_tensors = [output_tensors]
output_tensor_grads = []
for output_tensor, tensor_shape in zip(output_tensors, tensor_shapes):
if tensor_shape is None:
output_tensor_grads.append(None)
continue
output_tensor_grad = p2p_communication.send_forward_recv_backward(
output_tensor, tensor_shape, config
)
output_tensor_grads.append(output_tensor_grad)
return output_tensor_grads
def send_backward_recv_forward(input_tensor_grads, tensor_shapes, config):
"""Wrapper for p2p_communication.send_backward_recv_forward used
with non-interleaving schedule."""
if not isinstance(input_tensor_grads, list):
input_tensor_grads = [input_tensor_grads]
input_tensors = []
for input_tensor_grad, tensor_shape in zip(input_tensor_grads, tensor_shapes):
if tensor_shape is None:
input_tensors.append(None)
continue
input_tensor = p2p_communication.send_backward_recv_forward(
input_tensor_grad, tensor_shape, config
)
input_tensors.append(input_tensor)
return input_tensors
def forward_backward_pipelining_without_interleaving(
*,
forward_step_func,
data_iterator: Union[Iterator, List[Iterator]],
model: Union[torch.nn.Module, List[torch.nn.Module]],
num_microbatches: int,
seq_length: int,
micro_batch_size: int,
decoder_seq_length: Optional[int] = None,
forward_only: bool = False,
collect_non_loss_data: bool = False,
first_val_step: Optional[bool] = None,
adjust_tensor_shapes_fn: Optional[Callable] = None,
):
"""Run non-interleaved 1F1B schedule, with communication between pipeline
stages. Returns dictionary with losses if the last stage, empty dict otherwise."""
if isinstance(model, list):
assert (
len(model) == 1
), "non-interleaved pipeline-parallel schedule does not support model chunking"
model = model[0]
if isinstance(data_iterator, list):
assert (
len(data_iterator) == 1
), "non-interleaved pipeline-parallel schedule does not support model chunking"
data_iterator = data_iterator[0]
config = get_model_config(model)
if config.overlap_p2p_comm:
raise ValueError(
"Non-interleaved pipeline parallelism does not support overlapping p2p communication"
)
# Needed only when gradients are finalized in M-Core
if config.finalize_model_grads_func is not None and not forward_only:
embedding_module = clear_embedding_activation_buffer(config, model)
if config.timers is not None:
config.timers('forward-backward', log_level=1).start(barrier=config.barrier_with_L1_time)
# Disable async grad reductions
no_sync_func = config.no_sync_func
if no_sync_func is None:
no_sync_func = contextlib.nullcontext
no_sync_context = None
def disable_grad_sync():
"""Disable asynchronous grad reductions"""
nonlocal no_sync_context
if no_sync_context is None:
no_sync_context = no_sync_func()
no_sync_context.__enter__()
def enable_grad_sync():
"""Enable asynchronous grad reductions"""
nonlocal no_sync_context
if no_sync_context is not None:
no_sync_context.__exit__(None, None, None)
no_sync_context = None
disable_grad_sync()
# Compute number of warmup microbatches.
num_warmup_microbatches = (
parallel_state.get_pipeline_model_parallel_world_size()
- parallel_state.get_pipeline_model_parallel_rank()
- 1
)
num_warmup_microbatches = min(num_warmup_microbatches, num_microbatches)
num_microbatches_remaining = num_microbatches - num_warmup_microbatches
# Checkpoint the activations of partial Transformer layers in a number of micro-batches
# within the maximum outstanding micro-batch backpropagations.
# Micro-batches with the ids less than 'num_microbatches_with_partial_activation_checkpoints'
# checkpoint partial Transformer layers (or skip checkpointing) and
# the rest of micro-batches within a window of micro-batches checkpoint
# all Transformer layers. The window of micro-batches is set by the maximum
# outstanding backpropagations and becomes smaller at later pipeline stages.
# Please refer the appendix C in https://arxiv.org/pdf/2205.05198.pdf
max_outstanding_backprops = None
if config.num_microbatches_with_partial_activation_checkpoints is not None:
max_outstanding_backprops = num_warmup_microbatches + 1
model_type = get_model_type(model)
encoder_decoder_xattn = get_model_xattn(model)
rank = parallel_state.get_pipeline_model_parallel_rank()
recv_tensor_shapes = get_tensor_shapes(
rank=rank - 1,
model_type=model_type,
seq_length=seq_length,
micro_batch_size=micro_batch_size,
decoder_seq_length=decoder_seq_length,
config=config,
encoder_decoder_xattn=encoder_decoder_xattn,
)
send_tensor_shapes = get_tensor_shapes(
rank=rank,
model_type=model_type,
seq_length=seq_length,
micro_batch_size=micro_batch_size,
decoder_seq_length=decoder_seq_length,
config=config,
encoder_decoder_xattn=encoder_decoder_xattn,
)
if adjust_tensor_shapes_fn is not None:
recv_tensor_shapes, send_tensor_shapes = adjust_tensor_shapes_fn(
recv_tensor_shapes, send_tensor_shapes
)
# Input, output tensors only need to be saved when doing backward passes
input_tensors = None
output_tensors = None
total_num_tokens = torch.tensor(0, dtype=torch.int).cuda()
if not forward_only:
input_tensors = []
output_tensors = []
forward_data_store = []
# Run warmup forward passes.
for i in range(num_warmup_microbatches):
# Decide to checkpoint all layers' activations of the current micro-batch
if max_outstanding_backprops is not None:
checkpoint_activations_microbatch = (
i % max_outstanding_backprops
>= config.num_microbatches_with_partial_activation_checkpoints
)
else:
checkpoint_activations_microbatch = None
input_tensor = recv_forward(recv_tensor_shapes, config)
output_tensor, num_tokens = forward_step(
forward_step_func,
data_iterator,
model,
num_microbatches,
input_tensor,
forward_data_store,
config,
collect_non_loss_data,
checkpoint_activations_microbatch,
check_first_val_step(first_val_step, forward_only, i == 0),
current_microbatch=i,
encoder_decoder_xattn=encoder_decoder_xattn,
)
send_forward(output_tensor, send_tensor_shapes, config)
total_num_tokens += num_tokens
if not forward_only:
input_tensors.append(input_tensor)
output_tensors.append(output_tensor)
deallocate_output_tensor(output_tensor[0], config.deallocate_pipeline_outputs)
# Before running 1F1B, need to receive first forward tensor.
# If all microbatches are run in warmup / cooldown phase, then no need to
# receive this tensor here.
if num_microbatches_remaining > 0:
input_tensor = recv_forward(recv_tensor_shapes, config)
# Run 1F1B in steady state.
for i in range(num_microbatches_remaining):
last_iteration = i == (num_microbatches_remaining - 1)
# Decide to checkpoint all layers' activations of the current micro-batch
if max_outstanding_backprops is not None:
checkpoint_activations_microbatch = (
(i + num_warmup_microbatches) % max_outstanding_backprops
) >= config.num_microbatches_with_partial_activation_checkpoints
else:
checkpoint_activations_microbatch = None
output_tensor, num_tokens = forward_step(
forward_step_func,
data_iterator,
model,
num_microbatches,
input_tensor,
forward_data_store,
config,
collect_non_loss_data,
checkpoint_activations_microbatch,
check_first_val_step(
first_val_step, forward_only, (i == 0) and (num_warmup_microbatches == 0)
),
current_microbatch=i + num_warmup_microbatches,
encoder_decoder_xattn=encoder_decoder_xattn,
)
total_num_tokens += num_tokens
if forward_only:
send_forward(output_tensor, send_tensor_shapes, config)
if not last_iteration:
input_tensor = recv_forward(recv_tensor_shapes, config)
else:
output_tensor_grad = send_forward_recv_backward(
output_tensor, send_tensor_shapes, config
)
# Add input_tensor and output_tensor to end of list.
input_tensors.append(input_tensor)
output_tensors.append(output_tensor)
deallocate_output_tensor(output_tensor[0], config.deallocate_pipeline_outputs)
# Pop input_tensor and output_tensor from the start of the list for
# the backward pass.
input_tensor = input_tensors.pop(0)
output_tensor = output_tensors.pop(0)
# Enable grad sync for the last microbatch in the batch if the full
# backward pass completes in the 1F1B stage.
if num_warmup_microbatches == 0 and last_iteration:
if config.grad_sync_func is None or rank == 0:
enable_grad_sync()
input_tensor_grad = backward_step(
input_tensor, output_tensor, output_tensor_grad, model_type, config
)
if last_iteration:
input_tensor = None
send_backward(input_tensor_grad, recv_tensor_shapes, config)
else:
input_tensor = send_backward_recv_forward(
input_tensor_grad, recv_tensor_shapes, config
)
# Run cooldown backward passes.
if not forward_only:
for i in range(num_warmup_microbatches):
# Enable async grad reduction in the last backward pass
# Note: If grad sync function is provided, only enable
# async grad reduction in first pipeline stage. Other
# pipeline stages do grad reduction during pipeline
# bubble.
if i == num_warmup_microbatches - 1:
if config.grad_sync_func is None or rank == 0:
enable_grad_sync()
input_tensor = input_tensors.pop(0)
output_tensor = output_tensors.pop(0)
output_tensor_grad = recv_backward(send_tensor_shapes, config)
input_tensor_grad = backward_step(
input_tensor, output_tensor, output_tensor_grad, model_type, config
)
send_backward(input_tensor_grad, recv_tensor_shapes, config)
# Launch any remaining grad reductions.
if no_sync_context is not None:
enable_grad_sync()
if config.grad_sync_func is not None:
config.grad_sync_func(model.parameters())
if config.finalize_model_grads_func is not None and not forward_only:
# If defer_embedding_wgrad_compute is enabled we need to do the
# weight gradient GEMM's here.
finish_embedding_wgrad_compute(config, embedding_module)
# Finalize model grads (perform full grad all-reduce / reduce-scatter for
# data parallelism, layernorm all-reduce for sequence parallelism, and
# embedding all-reduce for pipeline parallelism).
config.finalize_model_grads_func(
[model], total_num_tokens if config.calculate_per_token_loss else None
)
if config.timers is not None:
config.timers('forward-backward').stop()
if hasattr(config, 'enable_cuda_graph') and config.enable_cuda_graph:
create_cudagraphs()
return forward_data_store
from .layers import (
FluxColumnParallelLinear,
FluxRowParallelLinear,
)
\ No newline at end of file
...@@ -740,6 +740,7 @@ class FluxColumnParallelLinear(ColumnParallelLinear): ...@@ -740,6 +740,7 @@ class FluxColumnParallelLinear(ColumnParallelLinear):
is_expert: bool = False, is_expert: bool = False,
tp_comm_buffer_name: str = None, # Not used tp_comm_buffer_name: str = None, # Not used
disable_grad_reduce: bool = False, disable_grad_reduce: bool = False,
tp_group: Optional[torch.distributed.ProcessGroup] = None,
): ):
super(FluxColumnParallelLinear, self).__init__( super(FluxColumnParallelLinear, self).__init__(
input_size=input_size, input_size=input_size,
...@@ -757,6 +758,7 @@ class FluxColumnParallelLinear(ColumnParallelLinear): ...@@ -757,6 +758,7 @@ class FluxColumnParallelLinear(ColumnParallelLinear):
is_expert=is_expert, is_expert=is_expert,
tp_comm_buffer_name=tp_comm_buffer_name, tp_comm_buffer_name=tp_comm_buffer_name,
disable_grad_reduce=disable_grad_reduce, disable_grad_reduce=disable_grad_reduce,
tp_group=tp_group,
) )
# flux params # flux params
...@@ -961,6 +963,7 @@ class FluxRowParallelLinear(RowParallelLinear): ...@@ -961,6 +963,7 @@ class FluxRowParallelLinear(RowParallelLinear):
keep_master_weight_for_test: bool = False, keep_master_weight_for_test: bool = False,
is_expert: bool = False, is_expert: bool = False,
tp_comm_buffer_name: str = None, # Not used tp_comm_buffer_name: str = None, # Not used
tp_group: Optional[torch.distributed.ProcessGroup] = None,
): ):
super(FluxRowParallelLinear, self).__init__( super(FluxRowParallelLinear, self).__init__(
...@@ -974,7 +977,8 @@ class FluxRowParallelLinear(RowParallelLinear): ...@@ -974,7 +977,8 @@ class FluxRowParallelLinear(RowParallelLinear):
stride=stride, stride=stride,
keep_master_weight_for_test=keep_master_weight_for_test, keep_master_weight_for_test=keep_master_weight_for_test,
is_expert=is_expert, is_expert=is_expert,
tp_comm_buffer_name=tp_comm_buffer_name tp_comm_buffer_name=tp_comm_buffer_name,
tp_group=tp_group,
) )
# flux params # flux params
......
...@@ -23,6 +23,7 @@ def transformer_config_post_init_wrapper(fn): ...@@ -23,6 +23,7 @@ def transformer_config_post_init_wrapper(fn):
################## ##################
self.flux_transpose_weight = args.flux_transpose_weight self.flux_transpose_weight = args.flux_transpose_weight
return wrapper return wrapper
...@@ -33,6 +34,12 @@ class ExtraTransformerConfig: ...@@ -33,6 +34,12 @@ class ExtraTransformerConfig:
################## ##################
flux_transpose_weight: bool = False flux_transpose_weight: bool = False
combined_1f1b: bool = False
"""If true, use combined 1F1B for communication hiding."""
combined_1f1b_recipe: str = 'ep_a2a'
"""Recipe to use for combined 1F1B. Currently only 'ep_a2a' and 'golden' are supported."""
@dataclass @dataclass
class TransformerConfigPatch(TransformerConfig, ExtraTransformerConfig): class TransformerConfigPatch(TransformerConfig, ExtraTransformerConfig):
......
...@@ -26,6 +26,8 @@ def add_megatron_arguments_patch(parser: argparse.ArgumentParser): ...@@ -26,6 +26,8 @@ def add_megatron_arguments_patch(parser: argparse.ArgumentParser):
parser = _add_extra_training_args(parser) parser = _add_extra_training_args(parser)
parser = _add_extra_distributed_args(parser) parser = _add_extra_distributed_args(parser)
parser = _add_extra_tokenizer_args(parser) parser = _add_extra_tokenizer_args(parser)
parser = _add_extra_moe_args(parser)
parser = _add_flux_args(parser)
return parser return parser
...@@ -128,6 +130,18 @@ def _add_extra_tokenizer_args(parser): ...@@ -128,6 +130,18 @@ def _add_extra_tokenizer_args(parser):
return parser return parser
def _add_extra_moe_args(parser):
group = parser.add_argument_group(title="extra moe args")
group.add_argument('--combined-1f1b', action='store_true',
help='Batch-level overlapping in 1f1b stage.')
group.add_argument('--combined-1f1b-recipe', type=str,
choices=['ep_a2a', 'golden'],
default='golden',
help='Options are "ep_a2a" and "golden".')
return parser
def _add_flux_args(parser): def _add_flux_args(parser):
group = parser.add_argument_group(title='flux args') group = parser.add_argument_group(title='flux args')
group.add_argument('--flux-transpose-weight', action='store_true', default=False, group.add_argument('--flux-transpose-weight', action='store_true', default=False,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment