Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
evt_fugx1
dcu_megatron
Commits
649bfbdb
Commit
649bfbdb
authored
May 06, 2025
by
dongcl
Browse files
add schedules.py
parent
32ee381a
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
2019 additions
and
0 deletions
+2019
-0
dcu_megatron/core/pipeline_parallel/schedules.py
dcu_megatron/core/pipeline_parallel/schedules.py
+2019
-0
No files found.
dcu_megatron/core/pipeline_parallel/schedules.py
0 → 100644
View file @
649bfbdb
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
import
contextlib
from
typing
import
Callable
,
Iterator
,
List
,
Optional
,
Union
import
torch
from
torch.autograd.variable
import
Variable
from
megatron.core
import
parallel_state
from
megatron.core.enums
import
ModelType
from
megatron.core.pipeline_parallel
import
p2p_communication
from
megatron.core.transformer.cuda_graphs
import
create_cudagraphs
from
megatron.core.transformer.moe.router
import
MoEAuxLossAutoScaler
from
megatron.core.transformer.multi_token_prediction
import
MTPLossAutoScaler
from
megatron.core.utils
import
(
drain_embedding_wgrad_compute
,
get_attr_wrapped_model
,
get_model_config
,
get_model_type
,
get_model_xattn
,
)
from
.combined_1f1b
import
VppContextManager
,
forward_backward_step
,
set_streams
,
wrap_forward_func
# Types
Shape
=
Union
[
List
[
int
],
torch
.
Size
]
def
get_forward_backward_func
():
"""Retrieves the appropriate forward_backward function given the
configuration of parallel_state.
Returns a function that will perform all of the forward and
backward passes of the model given the pipeline model parallel
world size and virtual pipeline model parallel world size in the
global parallel_state.
Note that if using sequence parallelism, the sequence length component of
the tensor shape is updated to original_sequence_length /
tensor_model_parallel_world_size.
The function returned takes the following arguments:
forward_step_func (required): A function that takes a data
iterator and a model as its arguments and return the model's
forward output and the loss function. The loss function should
take one torch.Tensor and return a torch.Tensor of loss and a
dictionary of string -> torch.Tensor.
A third argument, checkpoint_activations_microbatch, indicates
that the activations for this microbatch should be
checkpointed. A None value for this argument indicates that
the default from the configuration should be used. This is
used when the
num_microbatches_with_partial_activation_checkpoints is used.
For example:
def loss_func(loss_mask, output_tensor):
losses = output_tensor.float()
loss_mask = loss_mask.view(-1).float()
loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
# Reduce loss for logging.
averaged_loss = average_losses_across_data_parallel_group([loss])
return loss, {'lm loss': averaged_loss[0]}
def forward_step(data_iterator, model):
data, loss_mask = next(data_iterator)
output = model(data)
return output, partial(loss_func, loss_mask)
forward_backward_func(forward_step_func=forward_step, ...)
data_iterator (required): an iterator over the data, will be
passed as is to forward_step_func. Expected to be a list of
iterators in the case of interleaved pipeline parallelism.
model (required): the actual model. Expected to be a list of modules in the case of interleaved
pipeline parallelism. Must be a (potentially wrapped) megatron.core.models.MegatronModule.
num_microbatches (int, required):
The number of microbatches to go through
seq_length (int, required): Sequence length of the current global batch. If this is a dual-stack
transformer, this is the encoder's sequence length. This is ignored if variable_seq_lengths
in the config is True. Otherwise, each microbatch in the current global batch size must use
this sequence length.
micro_batch_size (int, required): The number of sequences in a microbatch.
decoder_seq_length (int, optional): The sequence length for the decoder in a dual-stack
transformer. This is ignored for a single-stack transformer.
forward_only (optional, default = False): Perform only the forward step
collect_non_loss_data (optional, bool, default=False): TODO
first_val_step (bool, optional): Is the first step of the validation phase. Used by
Transformer Engine modules to only update their fp8 weights only on the first validation
step.
adjust_tensor_shapes_fn (Callable, optional): A function that adjusts the receive and send
tensor shapes. Only applicable in forward_backward_pipelining_without_interleaving for now.
Takes in a list of receive shapes and a list of send shapes and returns the adjusted
respective list of shapes. Thus it is not used in the other forward-backward functions
which have different shape handling.
"""
pipeline_model_parallel_size
=
parallel_state
.
get_pipeline_model_parallel_world_size
()
if
pipeline_model_parallel_size
>
1
:
if
parallel_state
.
get_virtual_pipeline_model_parallel_world_size
()
is
not
None
:
forward_backward_func
=
forward_backward_pipelining_with_interleaving
else
:
forward_backward_func
=
forward_backward_pipelining_without_interleaving
else
:
forward_backward_func
=
forward_backward_no_pipelining
return
forward_backward_func
def
deallocate_output_tensor
(
out
,
deallocate_pipeline_outputs
=
False
):
'''Pseudo-deallocate (i.e., set to scalar) the output tensor's '.data' field.
This method should be called right after the output tensor has been
sent to the next pipeline stage. At this point, the output tensor is
only useful for its '.grad_fn' field, and not its '.data'.
'''
if
(
out
is
None
)
or
(
not
deallocate_pipeline_outputs
):
return
assert
isinstance
(
out
,
torch
.
Tensor
),
"expected Tensor, found %s."
%
type
(
out
).
__name__
assert
out
.
_base
is
None
,
"counter-productive to free a view of another tensor."
out
.
data
=
torch
.
empty
((
1
,),
device
=
out
.
device
,
dtype
=
out
.
dtype
)
def
custom_backward
(
output
,
grad_output
):
'''Directly call C++ autograd engine.
To make the 'deallocate_output_tensor' (above) optimization work, the C++
autograd engine must be called directly, bypassing Pytorch's
torch.autograd.backward. Pytorch's 'backward' checks that the output and
grad have the same shape, while C++'s 'backward' does not.
'''
assert
output
.
numel
()
==
1
,
"output should be pseudo-'freed' in schedule, to optimize memory"
assert
isinstance
(
output
,
torch
.
Tensor
),
"output == '%s'."
%
type
(
output
).
__name__
assert
isinstance
(
grad_output
,
(
torch
.
Tensor
,
type
(
None
))),
(
"grad_output == '%s'."
%
type
(
grad_output
).
__name__
)
# Handle scalar output
if
grad_output
is
None
:
assert
output
.
numel
()
==
1
,
"implicit grad requires scalar output."
grad_output
=
torch
.
ones_like
(
output
,
memory_format
=
torch
.
preserve_format
)
# Call c++ engine [ see torch/csrc/autograd/python_engine.cpp ]
Variable
.
_execution_engine
.
run_backward
(
tensors
=
(
output
,),
grad_tensors
=
(
grad_output
,),
keep_graph
=
False
,
create_graph
=
False
,
inputs
=
tuple
(),
allow_unreachable
=
True
,
accumulate_grad
=
True
,
)
def
set_current_microbatch
(
model
,
microbatch_id
):
"""Set the current microbatch."""
decoder_exists
=
True
decoder
=
None
try
:
decoder
=
get_attr_wrapped_model
(
model
,
"decoder"
)
except
RuntimeError
:
decoder_exists
=
False
if
decoder_exists
and
decoder
is
not
None
:
for
layer
in
decoder
.
layers
:
layer
.
current_microbatch
=
microbatch_id
def
forward_step
(
forward_step_func
,
data_iterator
,
model
,
num_microbatches
,
input_tensor
,
forward_data_store
,
config
,
collect_non_loss_data
=
False
,
checkpoint_activations_microbatch
=
None
,
is_first_microbatch
=
False
,
current_microbatch
=
None
,
encoder_decoder_xattn
=
False
,
):
"""Forward step for passed-in model.
If it is the first stage, the input tensor is obtained from the data_iterator.
Otherwise, the passed-in input_tensor is used.
Args:
forward_step_func (callable):
The forward step function for the model that takes the
data iterator as the first argument, and model as the second.
This user's forward step is expected to output a tuple of two elements:
1. The output object from the forward step. This output object needs to be a
tensor or some kind of collection of tensors. The only hard requirement
for this object is that it needs to be acceptible as input into the second
function.
2. A function to reduce (optionally) the output from the forward step. This
could be a reduction over the loss from the model, it could be a function that
grabs the output from the model and reformats, it could be a function that just
passes through the model output. This function must have one of the following
patterns, and depending on the pattern different things happen internally:
a. A tuple of reduced loss and some other data. Note that in this case
the first argument is divided by the number of global microbatches,
assuming it is a loss, so that the loss is stable as a function of
the number of devices the step is split across.
b. A triple of reduced loss, number of tokens, and some other data. This
is similar to case (a), but the loss is further averaged across the
number of tokens in the batch. If the user is not already averaging
across the number of tokens, this pattern is useful to use.
c. Any arbitrary data the user wants (eg a dictionary of tensors, a list
of tensors, etc in the case of inference). To trigger case 3 you need
to specify `collect_non_loss_data=True` and you may also want to
specify `forward_only=True` in the call to the parent forward_backward
function.
data_iterator (iterator):
The data iterator.
model (nn.Module):
The model to perform the forward step on.
num_microbatches (int):
The number of microbatches.
input_tensor (Tensor or list[Tensor]):
The input tensor(s) for the forward step.
forward_data_store (list):
The list to store the forward data. If you go down path 2.a or
2.b for the return of your forward reduction function then this will store only the
final dimension of the output, for example the metadata output by the loss function.
If you go down the path of 2.c then this will store the entire output of the forward
reduction function applied to the model output.
config (object):
The configuration object.
collect_non_loss_data (bool, optional):
Whether to collect non-loss data. Defaults to False.
This is the path to use if you want to collect arbitrary output from the model forward,
such as with inference use cases. Defaults to False.
checkpoint_activations_microbatch (int, optional):
The microbatch to checkpoint activations.
Defaults to None.
is_first_microbatch (bool, optional):
Whether it is the first microbatch. Defaults to False.
current_microbatch (int, optional):
The current microbatch. Defaults to None.
Returns:
Tensor or list[Tensor]: The output object(s) from the forward step.
Tensor: The number of tokens.
"""
if
config
.
timers
is
not
None
:
config
.
timers
(
'forward-compute'
,
log_level
=
2
).
start
()
if
is_first_microbatch
and
hasattr
(
model
,
'set_is_first_microbatch'
):
model
.
set_is_first_microbatch
()
if
current_microbatch
is
not
None
:
set_current_microbatch
(
model
,
current_microbatch
)
unwrap_output_tensor
=
False
if
not
isinstance
(
input_tensor
,
list
):
input_tensor
=
[
input_tensor
]
unwrap_output_tensor
=
True
set_input_tensor
=
get_attr_wrapped_model
(
model
,
"set_input_tensor"
)
set_input_tensor
(
input_tensor
)
if
config
.
enable_autocast
:
context_manager
=
torch
.
autocast
(
"cuda"
,
dtype
=
config
.
autocast_dtype
)
else
:
context_manager
=
contextlib
.
nullcontext
()
with
context_manager
:
if
checkpoint_activations_microbatch
is
None
:
output_tensor
,
loss_func
=
forward_step_func
(
data_iterator
,
model
)
else
:
output_tensor
,
loss_func
=
forward_step_func
(
data_iterator
,
model
,
checkpoint_activations_microbatch
)
num_tokens
=
torch
.
tensor
(
0
,
dtype
=
torch
.
int
)
if
parallel_state
.
is_pipeline_last_stage
(
ignore_virtual
=
False
):
if
not
collect_non_loss_data
:
outputs
=
loss_func
(
output_tensor
)
if
len
(
outputs
)
==
3
:
output_tensor
,
num_tokens
,
loss_reduced
=
outputs
if
not
config
.
calculate_per_token_loss
:
output_tensor
/=
num_tokens
output_tensor
*=
parallel_state
.
get_context_parallel_world_size
()
output_tensor
/=
num_microbatches
else
:
# preserve legacy loss averaging behavior (ie, over the number of microbatches)
assert
len
(
outputs
)
==
2
output_tensor
,
loss_reduced
=
outputs
output_tensor
*=
parallel_state
.
get_context_parallel_world_size
()
output_tensor
/=
num_microbatches
forward_data_store
.
append
(
loss_reduced
)
else
:
data
=
loss_func
(
output_tensor
,
non_loss_data
=
True
)
forward_data_store
.
append
(
data
)
if
config
.
timers
is
not
None
:
config
.
timers
(
'forward-compute'
).
stop
()
# Set the loss scale for the auxiliary loss of the MoE layer.
# Since we use a trick to do backward on the auxiliary loss, we need to set the scale
# explicitly.
if
hasattr
(
config
,
'num_moe_experts'
)
and
config
.
num_moe_experts
is
not
None
:
# Calculate the loss scale based on the grad_scale_func if available, else default to 1.
loss_scale
=
(
config
.
grad_scale_func
(
torch
.
ones
(
1
,
device
=
output_tensor
.
device
))
if
config
.
grad_scale_func
is
not
None
else
torch
.
ones
(
1
,
device
=
output_tensor
.
device
)
)
# Set the loss scale
if
config
.
calculate_per_token_loss
:
MoEAuxLossAutoScaler
.
set_loss_scale
(
loss_scale
)
else
:
MoEAuxLossAutoScaler
.
set_loss_scale
(
loss_scale
/
num_microbatches
)
# Set the loss scale for Multi-Token Prediction (MTP) loss.
if
hasattr
(
config
,
'mtp_num_layers'
)
and
config
.
mtp_num_layers
is
not
None
:
# Calculate the loss scale based on the grad_scale_func if available, else default to 1.
loss_scale
=
(
config
.
grad_scale_func
(
torch
.
ones
(
1
,
device
=
output_tensor
.
device
))
if
config
.
grad_scale_func
is
not
None
else
torch
.
ones
(
1
,
device
=
output_tensor
.
device
)
)
# Set the loss scale
if
config
.
calculate_per_token_loss
:
MTPLossAutoScaler
.
set_loss_scale
(
loss_scale
)
else
:
MTPLossAutoScaler
.
set_loss_scale
(
loss_scale
/
num_microbatches
)
# If T5 model and in decoder stack, then send encoder_hidden_state
# downstream as well.
model_type
=
get_model_type
(
model
)
if
(
model_type
==
ModelType
.
encoder_and_decoder
and
encoder_decoder_xattn
and
parallel_state
.
is_inside_decoder
()
):
return
[
output_tensor
,
input_tensor
[
-
1
]],
num_tokens
if
unwrap_output_tensor
:
return
output_tensor
,
num_tokens
return
[
output_tensor
],
num_tokens
def
backward_step
(
input_tensor
,
output_tensor
,
output_tensor_grad
,
model_type
,
config
):
"""Backward step through passed-in output tensor.
If last stage, output_tensor_grad is None, otherwise gradient of loss
with respect to stage's output tensor.
Returns gradient of loss with respect to input tensor (None if first
stage)."""
# NOTE: This code currently can handle at most one skip connection. It
# needs to be modified slightly to support arbitrary numbers of skip
# connections.
if
config
.
timers
is
not
None
:
config
.
timers
(
'backward-compute'
,
log_level
=
2
).
start
()
# Retain the grad on the input_tensor.
unwrap_input_tensor_grad
=
False
if
not
isinstance
(
input_tensor
,
list
):
input_tensor
=
[
input_tensor
]
unwrap_input_tensor_grad
=
True
for
x
in
input_tensor
:
if
x
is
not
None
:
x
.
retain_grad
()
if
not
isinstance
(
output_tensor
,
list
):
output_tensor
=
[
output_tensor
]
if
not
isinstance
(
output_tensor_grad
,
list
):
output_tensor_grad
=
[
output_tensor_grad
]
# Backward pass.
if
output_tensor_grad
[
0
]
is
None
and
config
.
grad_scale_func
is
not
None
:
output_tensor
[
0
]
=
config
.
grad_scale_func
(
output_tensor
[
0
])
# In multi-modal models like VLM, some batches may not have images.
# When no image is present, the vision encoder (as a separate pipeline stage)
# will not participate in the computation.
# This results in a tensor that does not require gradients.
# In such cases, we intentionally skip the backward pass while preserving zero gradients.
if
output_tensor
[
0
].
requires_grad
:
if
config
.
deallocate_pipeline_outputs
:
custom_backward
(
output_tensor
[
0
],
output_tensor_grad
[
0
])
else
:
torch
.
autograd
.
backward
(
output_tensor
[
0
],
grad_tensors
=
output_tensor_grad
[
0
])
# Collect the grad of the input_tensor.
input_tensor_grad
=
[
None
]
if
input_tensor
is
not
None
:
input_tensor_grad
=
[]
for
x
in
input_tensor
:
if
x
is
None
:
input_tensor_grad
.
append
(
None
)
else
:
input_tensor_grad
.
append
(
x
.
grad
)
# Handle single skip connection if it exists (encoder_hidden_state in
# model with encoder and decoder).
if
(
parallel_state
.
get_pipeline_model_parallel_world_size
()
>
1
and
model_type
==
ModelType
.
encoder_and_decoder
and
len
(
output_tensor_grad
)
>
1
# excludes models that lack a skip connection.
):
if
output_tensor_grad
[
1
]
is
not
None
:
assert
input_tensor_grad
[
-
1
]
is
not
None
input_tensor_grad
[
-
1
].
add_
(
output_tensor_grad
[
1
])
if
unwrap_input_tensor_grad
:
input_tensor_grad
=
input_tensor_grad
[
0
]
if
config
.
timers
is
not
None
:
config
.
timers
(
'backward-compute'
).
stop
()
return
input_tensor_grad
def
check_first_val_step
(
first_val_step
,
forward_only
,
cond
):
"""Check if it is the first validation step."""
if
(
first_val_step
is
not
None
)
and
forward_only
:
return
first_val_step
and
cond
else
:
return
cond
def
forward_backward_no_pipelining
(
*
,
forward_step_func
,
data_iterator
:
Union
[
Iterator
,
List
[
Iterator
]],
model
:
Union
[
torch
.
nn
.
Module
,
List
[
torch
.
nn
.
Module
]],
num_microbatches
:
int
,
seq_length
:
int
,
# unused
micro_batch_size
:
int
,
# unused
decoder_seq_length
:
Optional
[
int
]
=
None
,
# unused
forward_only
:
bool
=
False
,
collect_non_loss_data
:
bool
=
False
,
first_val_step
:
Optional
[
bool
]
=
None
,
adjust_tensor_shapes_fn
:
Optional
[
Callable
]
=
None
,
# unused
):
"""Run forward and backward passes with no pipeline parallelism
(no inter-stage communication).
Returns dictionary with losses.
See get_forward_backward_func() for argument details
"""
if
isinstance
(
model
,
list
):
assert
len
(
model
)
==
1
,
"non-pipeline-parallel schedule does not support model chunking"
model
=
model
[
0
]
if
isinstance
(
data_iterator
,
list
):
assert
(
len
(
data_iterator
)
==
1
),
"non-pipeline-parallel schedule does not support model chunking"
data_iterator
=
data_iterator
[
0
]
assert
(
adjust_tensor_shapes_fn
is
None
),
"adjust_tensor_shapes_fn is not supported for non-pipeline-parallel schedule"
config
=
get_model_config
(
model
)
if
config
.
timers
is
not
None
:
config
.
timers
(
'forward-backward'
,
log_level
=
1
).
start
(
barrier
=
config
.
barrier_with_L1_time
)
no_sync_func
=
config
.
no_sync_func
if
no_sync_func
is
None
:
no_sync_func
=
contextlib
.
nullcontext
model_type
=
get_model_type
(
model
)
forward_data_store
=
[]
input_tensor
,
output_tensor_grad
=
None
,
None
total_num_tokens
=
torch
.
zeros
([],
dtype
=
torch
.
int
,
device
=
"cuda"
)
with
no_sync_func
():
for
i
in
range
(
num_microbatches
-
1
):
output_tensor
,
num_tokens
=
forward_step
(
forward_step_func
,
data_iterator
,
model
,
num_microbatches
,
input_tensor
,
forward_data_store
,
config
,
collect_non_loss_data
,
is_first_microbatch
=
check_first_val_step
(
first_val_step
,
forward_only
,
i
==
0
),
current_microbatch
=
i
,
)
total_num_tokens
+=
num_tokens
if
not
forward_only
:
backward_step
(
input_tensor
,
output_tensor
,
output_tensor_grad
,
model_type
,
config
)
# Run computation for last microbatch out of context handler (want to
# synchronize gradients).
output_tensor
,
num_tokens
=
forward_step
(
forward_step_func
,
data_iterator
,
model
,
num_microbatches
,
input_tensor
,
forward_data_store
,
config
,
collect_non_loss_data
,
is_first_microbatch
=
check_first_val_step
(
first_val_step
,
forward_only
,
num_microbatches
==
1
),
current_microbatch
=
num_microbatches
-
1
,
)
total_num_tokens
+=
num_tokens
if
not
forward_only
:
backward_step
(
input_tensor
,
output_tensor
,
output_tensor_grad
,
model_type
,
config
)
if
config
.
finalize_model_grads_func
is
not
None
and
not
forward_only
:
# Finalize model grads (perform full grad all-reduce / reduce-scatter for
# data parallelism and layernorm all-reduce for sequence parallelism).
config
.
finalize_model_grads_func
(
[
model
],
total_num_tokens
if
config
.
calculate_per_token_loss
else
None
)
if
config
.
timers
is
not
None
:
config
.
timers
(
'forward-backward'
).
stop
()
if
hasattr
(
config
,
'enable_cuda_graph'
)
and
config
.
enable_cuda_graph
:
create_cudagraphs
()
return
forward_data_store
def
clear_embedding_activation_buffer
(
config
,
model
):
"""Clear embedding activation buffer."""
if
(
parallel_state
.
is_pipeline_last_stage
(
ignore_virtual
=
True
)
and
config
.
defer_embedding_wgrad_compute
):
if
isinstance
(
model
,
list
):
embedding_module
=
get_attr_wrapped_model
(
model
[
-
1
],
'post_process'
,
return_model_obj
=
True
)
else
:
embedding_module
=
get_attr_wrapped_model
(
model
,
'post_process'
,
return_model_obj
=
True
)
# Need to ensure no stray activations exists in this buffer
embedding_module
.
embedding_activation_buffer
.
clear
()
return
embedding_module
else
:
return
None
def
finish_embedding_wgrad_compute
(
config
,
embedding_module
):
"""Finish embedding wgrad compute."""
if
(
parallel_state
.
is_pipeline_last_stage
(
ignore_virtual
=
True
)
and
config
.
defer_embedding_wgrad_compute
):
embedding_activation_buffer
=
embedding_module
.
embedding_activation_buffer
grad_output_buffer
=
embedding_module
.
grad_output_buffer
weight
=
(
embedding_module
.
output_layer
.
weight
if
embedding_module
.
share_embeddings_and_output_weights
else
embedding_module
.
shared_embedding_or_output_weight
()
)
drain_embedding_wgrad_compute
(
config
,
embedding_activation_buffer
,
grad_output_buffer
,
weight
)
def
get_pp_rank_microbatches
(
num_microbatches
,
num_model_chunks
,
microbatch_group_size_per_vp_stage
,
forward_only
=
False
):
"""Get the number of total, warmup, and remaining microbatches in PP scheduling."""
pipeline_parallel_size
=
parallel_state
.
get_pipeline_model_parallel_world_size
()
pipeline_parallel_rank
=
parallel_state
.
get_pipeline_model_parallel_rank
()
virtual_pipeline_parallel_size
=
parallel_state
.
get_virtual_pipeline_model_parallel_world_size
()
total_num_microbatches
=
num_microbatches
*
num_model_chunks
are_all_microbatches_in_warmup
=
False
if
forward_only
:
num_warmup_microbatches
=
total_num_microbatches
elif
pipeline_parallel_size
>
1
:
if
virtual_pipeline_parallel_size
is
None
:
# forward_backward_pipelining_without_interleaving
num_warmup_microbatches
=
pipeline_parallel_size
-
pipeline_parallel_rank
-
1
else
:
# forward_backward_pipelining_with_interleaving
# Run (num_model_chunks-1)*microbatch_group_size_per_vp_stage on
# all workers, followed by more microbatches after depending on
# stage ID (more forward passes for earlier stages, later stages can
# immediately start with 1F1B).
num_warmup_microbatches
=
(
pipeline_parallel_size
-
pipeline_parallel_rank
-
1
)
*
2
num_warmup_microbatches
+=
(
num_model_chunks
-
1
)
*
microbatch_group_size_per_vp_stage
else
:
# forward_backward_no_pipelining
num_warmup_microbatches
=
1
if
num_warmup_microbatches
>=
total_num_microbatches
:
num_warmup_microbatches
=
total_num_microbatches
are_all_microbatches_in_warmup
=
True
num_microbatches_remaining
=
total_num_microbatches
-
num_warmup_microbatches
return
(
total_num_microbatches
,
are_all_microbatches_in_warmup
,
num_warmup_microbatches
,
num_microbatches_remaining
,
)
def
get_schedule_table
(
num_microbatches
,
num_model_chunks
,
microbatch_group_size_per_vp_stage
):
"""Get the schedule table for PP scheduling."""
schedule_table
=
[]
for
min_microbatch_id_in_group
in
range
(
0
,
num_microbatches
,
microbatch_group_size_per_vp_stage
):
if
min_microbatch_id_in_group
+
microbatch_group_size_per_vp_stage
>=
num_microbatches
:
# Construct schedule for the last microbatch group
schedule_table
.
extend
(
[
(
microbatch_id
,
model_chunk_id
)
for
model_chunk_id
in
range
(
num_model_chunks
)
for
microbatch_id
in
range
(
min_microbatch_id_in_group
,
num_microbatches
)
]
)
else
:
# Construct schedule for other microbatch groups
schedule_table
.
extend
(
[
(
microbatch_id
,
model_chunk_id
)
for
model_chunk_id
in
range
(
num_model_chunks
)
for
microbatch_id
in
range
(
min_microbatch_id_in_group
,
min_microbatch_id_in_group
+
microbatch_group_size_per_vp_stage
,
)
]
)
return
schedule_table
def
convert_schedule_table_to_order
(
num_warmup_microbatches
,
num_model_chunks
,
schedule_table
):
"""Convert a tunable schedule lookup table to the te.make_graphed_callables() accepted
order format. For example, the tunable schedule table for PP2 N3M5 with VP2 is as below:
virtual_microbatch_id | 0 1 2 3 4 5 6 7 8 9
microbatch_id | 0 1 2 0 1 2 3 4 3 4
model_chunk_id | 0 0 0 1 1 1 0 0 1 1
Then the forward backward separated order is:
forward | 1 1 1 2 2 2 1 1 2 2
backward | -2 -2 -2 -1 -1 -1 -2 -2 -1 -1
If num_warmup_microbatches is 5, the output order is:
1 1 1 2 2 2 -2 1 -2 1 -2 2 -1 2 -1 -1 -2 -2 -1 -1
"""
_
,
model_chunk_id_table
=
zip
(
*
schedule_table
)
forward_order
=
[
chunk_id
+
1
for
chunk_id
in
model_chunk_id_table
]
backward_order
=
[
chunk_id
-
num_model_chunks
for
chunk_id
in
model_chunk_id_table
]
order
=
forward_order
[:
num_warmup_microbatches
]
for
i
in
range
(
num_warmup_microbatches
,
len
(
forward_order
)):
order
.
append
(
forward_order
[
i
])
order
.
append
(
backward_order
[
i
-
num_warmup_microbatches
])
if
num_warmup_microbatches
>
0
:
order
.
extend
(
backward_order
[
-
num_warmup_microbatches
:])
return
order
def
forward_backward_pipelining_with_interleaving
(
*
,
forward_step_func
,
data_iterator
:
Union
[
Iterator
,
List
[
Iterator
]],
model
:
Union
[
torch
.
nn
.
Module
,
List
[
torch
.
nn
.
Module
]],
num_microbatches
:
int
,
seq_length
:
int
,
micro_batch_size
:
int
,
decoder_seq_length
:
Optional
[
int
]
=
None
,
forward_only
:
bool
=
False
,
collect_non_loss_data
:
bool
=
False
,
first_val_step
:
Optional
[
bool
]
=
None
,
adjust_tensor_shapes_fn
:
Optional
[
Callable
]
=
None
,
# unused
):
"""Run interleaved 1F1B schedule (model split into model chunks), with
communication between pipeline stages as needed.
Returns dictionary with losses if the last stage, empty dict otherwise."""
# Convention used in this function:
# num_microbatches for number of microbatches per pipeline stage;
# num_model_chunks for virtual pipeline size;
# then total_num_microbatches = num_microbatches * num_model_chunks.
# Their corresponding index variables are
# microbatch_id in [0, num_microbatches)
# model_chunk_id in [0, num_model_chunks)
# virtual_microbatch_id in [0, total_num_microbatches)
assert
isinstance
(
model
,
list
),
"interleaved pipeline parallelism expected model chunking"
assert
all
(
isinstance
(
chunk
,
torch
.
nn
.
Module
)
for
chunk
in
model
),
"invalid model chunking"
assert
isinstance
(
data_iterator
,
list
),
"interleaved pipeline parallelism expected each model chunk to have a data iterator"
assert
(
adjust_tensor_shapes_fn
is
None
),
"adjust_tensor_shapes_fn is not supported for interleaved pipeline parallelism"
config
=
get_model_config
(
model
[
0
])
set_streams
()
if
not
forward_only
:
forward_step_func
=
wrap_forward_func
(
config
,
forward_step_func
)
if
config
.
overlap_p2p_comm
and
config
.
batch_p2p_comm
:
raise
ValueError
(
"Can not use both overlap_p2p_comm and batch_p2p_comm"
)
# Needed only when gradients are finalized in M-Core
if
config
.
finalize_model_grads_func
is
not
None
and
not
forward_only
:
embedding_module
=
clear_embedding_activation_buffer
(
config
,
model
)
if
config
.
timers
is
not
None
:
config
.
timers
(
'forward-backward'
,
log_level
=
1
).
start
(
barrier
=
config
.
barrier_with_L1_time
)
# Disable async grad reductions
no_sync_func
=
config
.
no_sync_func
if
isinstance
(
no_sync_func
,
list
):
def
multi_no_sync
():
stack
=
contextlib
.
ExitStack
()
for
model_chunk_no_sync_func
in
config
.
no_sync_func
:
stack
.
enter_context
(
model_chunk_no_sync_func
())
return
stack
no_sync_func
=
multi_no_sync
if
no_sync_func
is
None
:
no_sync_func
=
contextlib
.
nullcontext
no_sync_context
=
None
if
config
.
grad_sync_func
is
not
None
and
not
isinstance
(
config
.
grad_sync_func
,
list
):
config
.
grad_sync_func
=
[
config
.
grad_sync_func
for
_
in
model
]
if
config
.
param_sync_func
is
not
None
and
not
isinstance
(
config
.
param_sync_func
,
list
):
config
.
param_sync_func
=
[
config
.
param_sync_func
for
_
in
model
]
# Disable config.grad_sync_func and config.param_sync_func if only running forward passes.
# They will be re-enabled at the end of this function.
grad_sync_func
,
param_sync_func
=
None
,
None
if
forward_only
:
grad_sync_func
,
param_sync_func
=
config
.
grad_sync_func
,
config
.
param_sync_func
config
.
grad_sync_func
,
config
.
param_sync_func
=
None
,
None
def
disable_grad_sync
():
"""Disable asynchronous grad reductions"""
nonlocal
no_sync_context
if
no_sync_context
is
None
:
no_sync_context
=
no_sync_func
()
no_sync_context
.
__enter__
()
def
enable_grad_sync
():
"""Enable asynchronous grad reductions"""
nonlocal
no_sync_context
if
no_sync_context
is
not
None
:
no_sync_context
.
__exit__
(
None
,
None
,
None
)
no_sync_context
=
None
disable_grad_sync
()
# Model chunk IDs with synchronized grads
synchronized_model_chunks
=
set
()
input_tensors
=
[[]
for
_
in
range
(
len
(
model
))]
output_tensors
=
[[]
for
_
in
range
(
len
(
model
))]
total_num_tokens
=
torch
.
tensor
(
0
,
dtype
=
torch
.
int
).
cuda
()
forward_data_store
=
[]
output_tensor_grads
=
None
if
not
forward_only
:
output_tensor_grads
=
[[]
for
_
in
range
(
len
(
model
))]
else
:
output_tensor_grads
=
None
pipeline_parallel_size
=
parallel_state
.
get_pipeline_model_parallel_world_size
()
pipeline_parallel_rank
=
parallel_state
.
get_pipeline_model_parallel_rank
()
if
(
config
.
microbatch_group_size_per_vp_stage
>
num_microbatches
or
config
.
microbatch_group_size_per_vp_stage
<
pipeline_parallel_size
):
msg
=
(
'The number of contiguous micro-batches in a virtual pipeline stage'
f
'should range in [PP=
{
pipeline_parallel_size
}
, M=
{
num_microbatches
}
]'
)
raise
ValueError
(
msg
)
# If the final micro-batch group has fewer micro-batches than pipeline-parallel size,
# the pipeline will have dependency bubbles.
final_microbatch_group_size
=
num_microbatches
%
config
.
microbatch_group_size_per_vp_stage
if
0
<
final_microbatch_group_size
<
pipeline_parallel_size
:
msg
=
'The remainder of M (the total micro-batches) divided by N (number of '
msg
+=
'contiguous micro-batches in a virtual pipeline stage) should be 0, '
msg
+=
'or larger than or equal to the pipeline-parallel size, but it is '
msg
+=
f
'
{
final_microbatch_group_size
}
. '
msg
+=
'Otherwise, it introduces dependency bubbles in the pipeline '
msg
+=
'and reduces throughput.'
raise
RuntimeError
(
msg
)
model_type
=
get_model_type
(
model
[
0
])
if
model_type
==
ModelType
.
encoder_and_decoder
:
xattn_needed
=
get_model_xattn
(
model
)
assert
(
not
xattn_needed
),
"Interleaving is not supported when xattn is required between encoder and decoder"
tensor_shape
=
get_tensor_shapes
(
rank
=
parallel_state
.
get_pipeline_model_parallel_rank
(),
model_type
=
model_type
,
seq_length
=
seq_length
,
micro_batch_size
=
micro_batch_size
,
decoder_seq_length
=
decoder_seq_length
,
config
=
config
,
encoder_decoder_xattn
=
xattn_needed
,
)
tensor_shape
=
list
(
tensor_shape
[
0
])
else
:
tensor_shape
=
[
seq_length
,
micro_batch_size
,
config
.
hidden_size
]
tensor_shape
[
0
]
=
tensor_shape
[
0
]
//
parallel_state
.
get_context_parallel_world_size
()
if
config
.
sequence_parallel
:
tensor_shape
[
0
]
=
(
tensor_shape
[
0
]
//
parallel_state
.
get_tensor_model_parallel_world_size
()
)
# Compute number of warmup and remaining microbatches.
num_model_chunks
=
len
(
model
)
(
total_num_microbatches
,
are_all_microbatches_in_warmup
,
num_warmup_microbatches
,
num_microbatches_remaining
,
)
=
get_pp_rank_microbatches
(
num_microbatches
,
num_model_chunks
,
config
.
microbatch_group_size_per_vp_stage
,
forward_only
)
# Checkpoint the activations of partial Transformer layers in a number of micro-batches
# within the maximum outstanding micro-batch backpropagations.
# Micro-batches with the ids less than 'num_microbatches_with_partial_activation_checkpoints'
# checkpoint partial Transformer layers (or skip checkpointing) and
# the rest of micro-batches within a window of micro-batches checkpoint
# all Transformer layers. The window of micro-batches is set by the maximum
# outstanding backpropagations and becomes smaller at later pipeline stages.
# Please refer the appendix C in https://arxiv.org/pdf/2205.05198.pdf
max_outstanding_backprops
=
None
if
config
.
num_microbatches_with_partial_activation_checkpoints
is
not
None
:
max_outstanding_backprops
=
num_warmup_microbatches
+
1
# Synchronize params for first two model chunks
if
config
.
param_sync_func
is
not
None
:
config
.
param_sync_func
[
0
](
model
[
0
].
parameters
())
config
.
param_sync_func
[
1
](
model
[
1
].
parameters
())
# Create a tunable schedule lookup table.
# The schedule lookup table uses the virtual_microbatch_id to find the corresponding
# microbatch_id and model_chunk_id. For example, the tunable schedule table for
# PP2 N3M5 with VP2 is constructed as below:
# virtual_microbatch_id | 0 1 2 3 4 5 6 7 8 9
# microbatch_id | 0 1 2 0 1 2 3 4 3 4
# model_chunk_id | 0 0 0 1 1 1 0 0 1 1
schedule_table
=
get_schedule_table
(
num_microbatches
,
len
(
model
),
config
.
microbatch_group_size_per_vp_stage
)
# Decouple individual lookup table for microbatch_id and model_chunk_id.
# For example, the micro-batch table for PP2 N3M5 with VP2 is
# virtual_microbatch_id | 0 1 2 3 4 5 6 7 8 9
# microbatch_id | 0 1 2 0 1 2 3 4 3 4
# Similarly, the model chunk table is
# virtual_microbatch_id | 0 1 2 3 4 5 6 7 8 9
# model_chunk_id | 0 0 0 1 1 1 0 0 1 1
# Both tables are indexed with virtual_microbatch_id.
microbatch_id_table
,
model_chunk_id_table
=
zip
(
*
schedule_table
)
def
get_model_chunk_id
(
virtual_microbatch_id
,
forward
):
"""Helper method to get the model chunk ID given the iteration number."""
model_chunk_id
=
model_chunk_id_table
[
virtual_microbatch_id
%
total_num_microbatches
]
if
not
forward
:
model_chunk_id
=
num_model_chunks
-
model_chunk_id
-
1
return
model_chunk_id
def
get_microbatch_id_in_model_chunk
(
iteration_id
,
forward
):
"""Helper method to get the microbatch_id within model chunk given the iteration number."""
assert
forward
microbatch_id_in_model_chunk
=
microbatch_id_table
[
iteration_id
]
return
microbatch_id_in_model_chunk
def
num_released_microbatches
(
virtual_microbatch_id
,
model_chunk_id
):
"""Helper method to count number of released (i.e. popped from input_tensors)
microbatches for a model chunk."""
if
forward_only
:
# Micro-batch is released after forward prop.
return
model_chunk_id_table
[:
virtual_microbatch_id
].
count
(
model_chunk_id
)
else
:
# Micro-batch is released after backward prop.
# Zero backward prop in warmup.
if
virtual_microbatch_id
<
num_warmup_microbatches
:
return
0
else
:
backward_microbatch_id
=
virtual_microbatch_id
-
num_warmup_microbatches
model_chunk_id
=
num_model_chunks
-
model_chunk_id
-
1
return
model_chunk_id_table
[:
backward_microbatch_id
].
count
(
model_chunk_id
)
def
is_first_microbatch_for_model_chunk
(
virtual_microbatch_id
:
int
)
->
bool
:
"""Check if an iteration is the first for a model chunk."""
if
virtual_microbatch_id
<
total_num_microbatches
:
return
microbatch_id_table
[
virtual_microbatch_id
]
==
0
else
:
return
False
def
is_last_microbatch_for_model_chunk
(
virtual_microbatch_id
:
int
)
->
bool
:
"""Check if an iteration is the last for a model chunk."""
if
virtual_microbatch_id
<
total_num_microbatches
:
return
microbatch_id_table
[
virtual_microbatch_id
]
==
num_microbatches
-
1
else
:
return
False
def
recv_tensor_from_previous_stage
(
virtual_microbatch_id
,
forward
):
"""Determine if peers are sending, and where in data structure
to put received tensors.
Return a boolean if the pipeline stage expects to recv from peers, and the
corresponding model_chunk_id for the received tensor.
"""
recv
=
True
# The leading pipeline stage is the first rank in fwd and the last rank in bwd.
is_leading_pipeline_stage
=
(
parallel_state
.
is_pipeline_first_stage
(
ignore_virtual
=
True
)
if
forward
else
parallel_state
.
is_pipeline_last_stage
(
ignore_virtual
=
True
)
)
last_model_chunk
=
(
num_model_chunks
-
1
)
if
forward
else
0
if
is_leading_pipeline_stage
:
# The leading pipeline stage is ahead of the ending pipeline stage
# (i.e. last rank in fwd and first rank in bwd) by (pipeline_parallel_size - 1).
# Let's consider bwd as an example with PP 4:
# 0 1 2 3 ...
# 0 1 2 3 ...
# 0 1 2 3 ...
# 0 1 2 3 ...
if
virtual_microbatch_id
<
(
pipeline_parallel_size
-
1
):
# The ending stage has not produced any tensors, so no recv will be initiated.
recv
=
False
next_model_chunk_id
=
get_model_chunk_id
(
virtual_microbatch_id
+
1
,
forward
)
else
:
# Find the model chunk of the aligned microbatches in the ending stage.
# For example, microbatch 0 in the ending stage is aligned with microbatch 3
# in the leading stage.
next_model_chunk_id
=
get_model_chunk_id
(
virtual_microbatch_id
-
(
pipeline_parallel_size
-
1
),
forward
)
# Last model chunk in the final stage does not produce tensors.
if
next_model_chunk_id
==
last_model_chunk
:
recv
=
False
if
forward
:
# Model chunk id increases in forward.
next_model_chunk_id
+=
1
else
:
# Model chunk id decreases in backward.
next_model_chunk_id
-=
1
else
:
next_model_chunk_id
=
get_model_chunk_id
(
virtual_microbatch_id
+
1
,
forward
)
return
recv
,
next_model_chunk_id
def
forward_step_helper
(
virtual_microbatch_id
,
microbatch_id
,
checkpoint_activations_microbatch
):
"""Helper method to run forward step with model split into chunks
(run set_virtual_pipeline_model_parallel_rank() before calling
forward_step())."""
model_chunk_id
=
get_model_chunk_id
(
virtual_microbatch_id
,
forward
=
True
)
parallel_state
.
set_virtual_pipeline_model_parallel_rank
(
model_chunk_id
)
# launch param synchronization for next model chunk
# Note: Asynchronous communication tends to slow down compute.
# To reduce idling from mismatched microbatch times, we launch
# asynchronous communication at the same time across the
# pipeline-parallel group.
if
config
.
param_sync_func
is
not
None
:
param_sync_virtual_microbatch_id
=
virtual_microbatch_id
+
pipeline_parallel_rank
if
(
param_sync_virtual_microbatch_id
<
total_num_microbatches
and
is_first_microbatch_for_model_chunk
(
param_sync_virtual_microbatch_id
)
):
param_sync_chunk_id
=
(
get_model_chunk_id
(
param_sync_virtual_microbatch_id
,
forward
=
True
)
+
1
)
if
1
<
param_sync_chunk_id
<
num_model_chunks
:
config
.
param_sync_func
[
param_sync_chunk_id
](
model
[
param_sync_chunk_id
].
parameters
()
)
# forward step
if
parallel_state
.
is_pipeline_first_stage
(
ignore_virtual
=
False
):
if
len
(
input_tensors
[
model_chunk_id
])
==
len
(
output_tensors
[
model_chunk_id
]):
input_tensors
[
model_chunk_id
].
append
(
None
)
# For non-depth-first pipeline schedules, the first rank would buffer multiple received
# activation tensors for a model chunk until accessed during warmup.
# This input buffering is needed to overlap the computation with the receipt of
# the next inputs. To index the proper buffered inputs for forword_step, we use
# microbatch_id offset with number of released microbatches that have completed backprop.
offset
=
num_released_microbatches
(
virtual_microbatch_id
,
model_chunk_id
)
input_tensor
=
input_tensors
[
model_chunk_id
][
microbatch_id
-
offset
]
output_tensor
,
num_tokens
=
forward_step
(
forward_step_func
,
data_iterator
[
model_chunk_id
],
model
[
model_chunk_id
],
num_microbatches
,
input_tensor
,
forward_data_store
,
config
,
collect_non_loss_data
,
checkpoint_activations_microbatch
,
check_first_val_step
(
first_val_step
,
forward_only
,
is_first_microbatch_for_model_chunk
(
virtual_microbatch_id
),
),
current_microbatch
=
microbatch_id
,
)
output_tensors
[
model_chunk_id
].
append
(
output_tensor
)
nonlocal
total_num_tokens
total_num_tokens
+=
num_tokens
# If forward-only, no need to save tensors for a backward pass.
if
forward_only
:
# Release the tensor that have completed forward step.
input_tensors
[
model_chunk_id
].
pop
(
0
)
output_tensors
[
model_chunk_id
].
pop
()
return
output_tensor
def
backward_step_helper
(
virtual_microbatch_id
):
"""Helper method to run backward step with model split into chunks
(run set_virtual_pipeline_model_parallel_rank() before calling
backward_step())."""
model_chunk_id
=
get_model_chunk_id
(
virtual_microbatch_id
,
forward
=
False
)
parallel_state
.
set_virtual_pipeline_model_parallel_rank
(
model_chunk_id
)
# launch grad synchronization (default)
if
config
.
grad_sync_func
is
None
and
is_last_microbatch_for_model_chunk
(
virtual_microbatch_id
):
enable_grad_sync
()
synchronized_model_chunks
.
add
(
model_chunk_id
)
# pylint: disable=E0606
if
parallel_state
.
is_pipeline_last_stage
(
ignore_virtual
=
False
):
if
len
(
output_tensor_grads
[
model_chunk_id
])
==
0
:
output_tensor_grads
[
model_chunk_id
].
append
(
None
)
input_tensor
=
input_tensors
[
model_chunk_id
].
pop
(
0
)
output_tensor
=
output_tensors
[
model_chunk_id
].
pop
(
0
)
output_tensor_grad
=
output_tensor_grads
[
model_chunk_id
].
pop
(
0
)
input_tensor_grad
=
backward_step
(
input_tensor
,
output_tensor
,
output_tensor_grad
,
model_type
,
config
)
# launch grad synchronization (custom grad sync)
# Note: Asynchronous communication tends to slow down compute.
# To reduce idling from mismatched microbatch times, we launch
# asynchronous communication at the same time across the
# pipeline-parallel group.
if
config
.
grad_sync_func
is
not
None
:
grad_sync_virtual_microbatch_id
=
virtual_microbatch_id
-
pipeline_parallel_rank
if
grad_sync_virtual_microbatch_id
>=
0
and
is_last_microbatch_for_model_chunk
(
grad_sync_virtual_microbatch_id
):
grad_sync_chunk_id
=
get_model_chunk_id
(
grad_sync_virtual_microbatch_id
,
forward
=
False
)
enable_grad_sync
()
config
.
grad_sync_func
[
grad_sync_chunk_id
](
model
[
grad_sync_chunk_id
].
parameters
())
synchronized_model_chunks
.
add
(
grad_sync_chunk_id
)
disable_grad_sync
()
return
input_tensor_grad
# Run warmup forward passes.
parallel_state
.
set_virtual_pipeline_model_parallel_rank
(
0
)
input_tensors
[
0
].
append
(
p2p_communication
.
recv_forward
(
tensor_shape
,
config
))
fwd_wait_handles
=
None
fwd_wait_recv_handles
=
None
bwd_wait_handles
=
None
bwd_wait_recv_handles
=
None
if
parallel_state
.
is_pipeline_first_stage
(
ignore_virtual
=
True
):
fwd_recv_buffer_size
=
(
config
.
microbatch_group_size_per_vp_stage
-
pipeline_parallel_size
+
1
)
else
:
fwd_recv_buffer_size
=
1
if
parallel_state
.
is_pipeline_last_stage
(
ignore_virtual
=
True
):
bwd_recv_buffer_size
=
(
config
.
microbatch_group_size_per_vp_stage
-
pipeline_parallel_size
+
1
)
else
:
bwd_recv_buffer_size
=
1
fwd_recv_buffer
=
[
None
]
*
fwd_recv_buffer_size
bwd_recv_buffer
=
[
None
]
*
bwd_recv_buffer_size
recv_prev_wait_handles
=
[]
send_next_wait_handle
=
None
send_prev_wait_handle
=
None
recv_next_wait_handles
=
[]
for
k
in
range
(
num_warmup_microbatches
):
cur_model_chunk_id
=
get_model_chunk_id
(
k
,
forward
=
True
)
parallel_state
.
set_virtual_pipeline_model_parallel_rank
(
cur_model_chunk_id
)
if
config
.
overlap_p2p_comm_warmup_flush
:
if
not
parallel_state
.
is_pipeline_first_stage
(
ignore_virtual
=
False
)
and
k
!=
0
:
assert
recv_prev_wait_handles
,
(
f
'pp rank
{
pipeline_parallel_rank
}
, iteration
{
k
}
,'
'should have registered recv handle'
)
recv_prev_wait_handle
=
recv_prev_wait_handles
.
pop
(
0
)
recv_prev_wait_handle
.
wait
()
# Determine if tensor should be received from previous stage.
recv_prev
,
next_forward_model_chunk_id
=
recv_tensor_from_previous_stage
(
k
,
forward
=
True
)
# No receive in last iteration when recv iteration k+1.
if
k
==
(
total_num_microbatches
-
1
):
recv_prev
=
False
# Prefetch recv for iteration k+1 for non-first ranks.
if
config
.
overlap_p2p_comm_warmup_flush
and
not
parallel_state
.
is_pipeline_first_stage
(
ignore_virtual
=
True
):
fwd_recv_buffer
[
k
%
fwd_recv_buffer_size
],
fwd_wait_recv_handles
=
(
p2p_communication
.
send_forward_recv_forward
(
output_tensor
=
None
,
# No output_tensor to send.
recv_prev
=
recv_prev
,
tensor_shape
=
tensor_shape
,
config
=
config
,
overlap_p2p_comm
=
True
,
)
)
if
fwd_wait_recv_handles
:
recv_prev_wait_handles
.
append
(
fwd_wait_recv_handles
.
pop
(
"recv_prev"
))
# Decide to checkpoint all layers' activations of the current micro-batch.
if
max_outstanding_backprops
is
not
None
:
checkpoint_activations_microbatch
=
(
k
%
max_outstanding_backprops
>=
config
.
num_microbatches_with_partial_activation_checkpoints
)
else
:
checkpoint_activations_microbatch
=
None
microbatch_id
=
get_microbatch_id_in_model_chunk
(
k
,
forward
=
True
)
output_tensor
=
forward_step_helper
(
k
,
microbatch_id
,
checkpoint_activations_microbatch
)
# Don't send tensor downstream if on last stage.
if
parallel_state
.
is_pipeline_last_stage
(
ignore_virtual
=
False
):
output_tensor
=
None
# Send and receive tensors as appropriate (send tensors computed
# in this iteration; receive tensors for next iteration).
if
not
config
.
overlap_p2p_comm_warmup_flush
:
if
(
k
==
(
num_warmup_microbatches
-
1
)
and
not
config
.
overlap_p2p_comm
and
not
forward_only
and
not
are_all_microbatches_in_warmup
):
input_tensor_grad
=
None
recv_next
=
True
if
parallel_state
.
is_pipeline_last_stage
(
ignore_virtual
=
True
):
recv_next
=
False
(
input_tensor
,
output_tensor_grad
)
=
(
p2p_communication
.
send_forward_backward_recv_forward_backward
(
output_tensor
,
input_tensor_grad
,
recv_prev
=
recv_prev
,
recv_next
=
recv_next
,
tensor_shape
=
tensor_shape
,
config
=
config
,
)
)
output_tensor_grads
[
num_model_chunks
-
1
].
append
(
output_tensor_grad
)
else
:
input_tensor
=
p2p_communication
.
send_forward_recv_forward
(
output_tensor
,
recv_prev
=
recv_prev
,
tensor_shape
=
tensor_shape
,
config
=
config
)
if
recv_prev
:
input_tensors
[
next_forward_model_chunk_id
].
append
(
input_tensor
)
deallocate_output_tensor
(
output_tensor
,
config
.
deallocate_pipeline_outputs
)
else
:
if
not
parallel_state
.
is_pipeline_first_stage
(
ignore_virtual
=
True
):
# Send only since recv prefetched.
_
,
fwd_wait_handles
=
p2p_communication
.
send_forward_recv_forward
(
output_tensor
,
recv_prev
=
False
,
tensor_shape
=
tensor_shape
,
config
=
config
,
overlap_p2p_comm
=
True
,
)
else
:
# No prefetch for first rank, so both send and recv initiated.
fwd_recv_buffer
[
k
%
fwd_recv_buffer_size
],
fwd_wait_handles
=
(
p2p_communication
.
send_forward_recv_forward
(
output_tensor
,
recv_prev
=
recv_prev
,
tensor_shape
=
tensor_shape
,
config
=
config
,
overlap_p2p_comm
=
True
,
)
)
if
send_next_wait_handle
is
not
None
:
send_next_wait_handle
.
wait
()
if
fwd_wait_handles
is
not
None
:
send_next_wait_handle
=
(
fwd_wait_handles
.
pop
(
"send_next"
)
if
"send_next"
in
fwd_wait_handles
else
None
)
if
"recv_prev"
in
fwd_wait_handles
:
recv_prev_wait_handles
.
append
(
fwd_wait_handles
.
pop
(
"recv_prev"
))
deallocate_output_tensor
(
output_tensor
,
config
.
deallocate_pipeline_outputs
)
if
recv_prev
:
input_tensors
[
next_forward_model_chunk_id
].
append
(
fwd_recv_buffer
[
k
%
fwd_recv_buffer_size
]
)
fwd_recv_buffer
[(
k
+
1
)
%
fwd_recv_buffer_size
]
=
None
if
config
.
overlap_p2p_comm
:
if
(
k
==
(
num_warmup_microbatches
-
1
)
and
not
forward_only
and
not
are_all_microbatches_in_warmup
):
input_tensor_grad
=
None
recv_next
=
True
if
parallel_state
.
is_pipeline_last_stage
(
ignore_virtual
=
True
):
recv_next
=
False
(
bwd_recv_buffer
[
-
1
],
bwd_wait_handles
)
=
(
p2p_communication
.
send_backward_recv_backward
(
input_tensor_grad
,
recv_next
=
recv_next
,
tensor_shape
=
tensor_shape
,
config
=
config
,
overlap_p2p_comm
=
True
,
)
)
if
send_prev_wait_handle
is
not
None
:
send_prev_wait_handle
.
wait
()
if
bwd_wait_handles
is
not
None
:
send_prev_wait_handle
=
(
bwd_wait_handles
.
pop
(
"send_prev"
)
if
"send_prev"
in
bwd_wait_handles
else
None
)
if
"recv_next"
in
bwd_wait_handles
:
recv_next_wait_handles
.
append
(
bwd_wait_handles
.
pop
(
"recv_next"
))
if
recv_next
:
output_tensor_grads
[
num_model_chunks
-
1
].
append
(
bwd_recv_buffer
[
-
1
])
# Run 1F1B in steady state.
for
k
in
range
(
num_microbatches_remaining
):
# Forward pass.
forward_k
=
k
+
num_warmup_microbatches
# Decide to checkpoint all layers' activations of the current micro-batch.
if
max_outstanding_backprops
is
not
None
:
checkpoint_activations_microbatch
=
(
forward_k
%
max_outstanding_backprops
>=
config
.
num_microbatches_with_partial_activation_checkpoints
)
else
:
checkpoint_activations_microbatch
=
None
cur_model_chunk_id
=
get_model_chunk_id
(
forward_k
,
forward
=
True
)
parallel_state
.
set_virtual_pipeline_model_parallel_rank
(
cur_model_chunk_id
)
microbatch_id
=
get_microbatch_id_in_model_chunk
(
forward_k
,
forward
=
True
)
if
config
.
overlap_p2p_comm
:
if
not
parallel_state
.
is_pipeline_first_stage
(
ignore_virtual
=
False
):
if
config
.
overlap_p2p_comm_warmup_flush
:
assert
recv_prev_wait_handles
,
(
f
'pp rank
{
pipeline_parallel_rank
}
, fwd iteration
{
forward_k
}
, '
'should have registered recv handle'
)
recv_prev_wait_handle
=
recv_prev_wait_handles
.
pop
(
0
)
recv_prev_wait_handle
.
wait
()
else
:
if
recv_prev_wait_handles
is
not
None
and
recv_prev_wait_handles
:
recv_prev_wait_handle
=
recv_prev_wait_handles
.
pop
(
0
)
recv_prev_wait_handle
.
wait
()
deallocate_output_tensor
(
output_tensor
,
config
.
deallocate_pipeline_outputs
)
output_tensor
=
forward_step_helper
(
forward_k
,
microbatch_id
,
checkpoint_activations_microbatch
)
# Determine if current stage has anything to send in either direction,
# otherwise set tensor to None.
forward_model_chunk_id
=
get_model_chunk_id
(
forward_k
,
forward
=
True
)
parallel_state
.
set_virtual_pipeline_model_parallel_rank
(
forward_model_chunk_id
)
# Last virtual stage no activation tensor to send.
if
parallel_state
.
is_pipeline_last_stage
(
ignore_virtual
=
False
):
output_tensor
=
None
recv_prev
,
next_forward_model_chunk_id
=
recv_tensor_from_previous_stage
(
forward_k
,
forward
=
True
)
# If last iteration, don't receive; we already received one extra
# before the start of the for loop.
if
k
==
(
num_microbatches_remaining
-
1
):
recv_prev
=
False
# Send activation tensor to the next stage and receive activation tensor from the
# previous stage
fwd_recv_buffer
[
forward_k
%
fwd_recv_buffer_size
],
fwd_wait_handles
=
(
p2p_communication
.
send_forward_recv_forward
(
output_tensor
,
recv_prev
=
recv_prev
,
tensor_shape
=
tensor_shape
,
config
=
config
,
overlap_p2p_comm
=
True
,
)
)
if
send_next_wait_handle
is
not
None
:
send_next_wait_handle
.
wait
()
if
fwd_wait_handles
is
not
None
:
send_next_wait_handle
=
(
fwd_wait_handles
.
pop
(
"send_next"
)
if
"send_next"
in
fwd_wait_handles
else
None
)
if
"recv_prev"
in
fwd_wait_handles
:
recv_prev_wait_handles
.
append
(
fwd_wait_handles
.
pop
(
"recv_prev"
))
# assert fwd_wait_handles is not None
# Backward pass.
backward_k
=
k
backward_model_chunk_id
=
get_model_chunk_id
(
backward_k
,
forward
=
False
)
parallel_state
.
set_virtual_pipeline_model_parallel_rank
(
backward_model_chunk_id
)
if
not
parallel_state
.
is_pipeline_last_stage
(
ignore_virtual
=
False
):
if
config
.
overlap_p2p_comm_warmup_flush
:
assert
recv_next_wait_handles
,
(
f
'pp rank
{
pipeline_parallel_rank
}
, bwd iteration
{
backward_k
}
, '
'should have registered recv next handle'
)
recv_next_wait_handle
=
recv_next_wait_handles
.
pop
(
0
)
recv_next_wait_handle
.
wait
()
else
:
if
recv_next_wait_handles
is
not
None
and
recv_next_wait_handles
:
recv_next_wait_handle
=
recv_next_wait_handles
.
pop
(
0
)
recv_next_wait_handle
.
wait
()
input_tensor_grad
=
backward_step_helper
(
backward_k
)
# First virtual stage no activation gradient tensor to send.
if
parallel_state
.
is_pipeline_first_stage
(
ignore_virtual
=
False
):
input_tensor_grad
=
None
recv_next
,
next_backward_model_chunk_id
=
recv_tensor_from_previous_stage
(
backward_k
,
forward
=
False
)
(
bwd_recv_buffer
[
backward_k
%
bwd_recv_buffer_size
],
bwd_wait_handles
)
=
(
p2p_communication
.
send_backward_recv_backward
(
input_tensor_grad
,
recv_next
=
recv_next
,
tensor_shape
=
tensor_shape
,
config
=
config
,
overlap_p2p_comm
=
True
,
)
)
if
send_prev_wait_handle
is
not
None
:
send_prev_wait_handle
.
wait
()
if
bwd_wait_handles
is
not
None
:
send_prev_wait_handle
=
(
bwd_wait_handles
.
pop
(
"send_prev"
)
if
"send_prev"
in
bwd_wait_handles
else
None
)
if
"recv_next"
in
bwd_wait_handles
:
recv_next_wait_handles
.
append
(
bwd_wait_handles
.
pop
(
"recv_next"
))
# Put input_tensor and output_tensor_grad in data structures in the
# right location.
if
recv_prev
:
input_tensors
[
next_forward_model_chunk_id
].
append
(
fwd_recv_buffer
[
forward_k
%
fwd_recv_buffer_size
]
)
fwd_recv_buffer
[(
forward_k
+
1
)
%
fwd_recv_buffer_size
]
=
None
if
recv_next
:
output_tensor_grads
[
next_backward_model_chunk_id
].
append
(
bwd_recv_buffer
[
backward_k
%
bwd_recv_buffer_size
]
)
bwd_recv_buffer
[(
backward_k
+
1
)
%
bwd_recv_buffer_size
]
=
None
else
:
# No p2p overlap.
output_tensor
=
forward_step_helper
(
forward_k
,
microbatch_id
,
checkpoint_activations_microbatch
)
# Backward pass.
backward_k
=
k
input_tensor_grad
=
backward_step_helper
(
backward_k
)
# Send output_tensor and input_tensor_grad, receive input_tensor
# and output_tensor_grad.
# Determine if current stage has anything to send in either direction,
# otherwise set tensor to None.
forward_model_chunk_id
=
get_model_chunk_id
(
forward_k
,
forward
=
True
)
parallel_state
.
set_virtual_pipeline_model_parallel_rank
(
forward_model_chunk_id
)
if
parallel_state
.
is_pipeline_last_stage
(
ignore_virtual
=
False
):
output_tensor
=
None
backward_model_chunk_id
=
get_model_chunk_id
(
backward_k
,
forward
=
False
)
parallel_state
.
set_virtual_pipeline_model_parallel_rank
(
backward_model_chunk_id
)
if
parallel_state
.
is_pipeline_first_stage
(
ignore_virtual
=
False
):
input_tensor_grad
=
None
recv_prev
,
next_forward_model_chunk_id
=
recv_tensor_from_previous_stage
(
forward_k
,
forward
=
True
)
recv_next
,
next_backward_model_chunk_id
=
recv_tensor_from_previous_stage
(
backward_k
,
forward
=
False
)
# If last iteration, don't receive; we already received one extra
# before the start of the for loop.
if
k
==
(
num_microbatches_remaining
-
1
):
recv_prev
=
False
# Communicate tensors.
(
input_tensor
,
output_tensor_grad
)
=
(
p2p_communication
.
send_forward_backward_recv_forward_backward
(
output_tensor
,
input_tensor_grad
,
recv_prev
=
recv_prev
,
recv_next
=
recv_next
,
tensor_shape
=
tensor_shape
,
config
=
config
,
)
)
deallocate_output_tensor
(
output_tensor
,
config
.
deallocate_pipeline_outputs
)
# Put input_tensor and output_tensor_grad in data structures in the
# right location.
if
recv_prev
:
input_tensors
[
next_forward_model_chunk_id
].
append
(
input_tensor
)
if
recv_next
:
output_tensor_grads
[
next_backward_model_chunk_id
].
append
(
output_tensor_grad
)
deallocate_output_tensor
(
output_tensor
,
config
.
deallocate_pipeline_outputs
)
# Run cooldown backward passes (flush out pipeline).
if
not
forward_only
:
if
bwd_wait_handles
is
not
None
:
for
bwd_wait_handle
in
bwd_wait_handles
.
values
():
bwd_wait_handle
.
wait
()
if
are_all_microbatches_in_warmup
:
output_tensor_grads
[
num_model_chunks
-
1
].
append
(
p2p_communication
.
recv_backward
(
tensor_shape
,
config
=
config
)
)
for
k
in
range
(
num_microbatches_remaining
,
total_num_microbatches
):
cur_model_chunk_id
=
get_model_chunk_id
(
k
,
forward
=
False
)
parallel_state
.
set_virtual_pipeline_model_parallel_rank
(
cur_model_chunk_id
)
if
not
parallel_state
.
is_pipeline_last_stage
(
ignore_virtual
=
False
)
and
k
!=
0
:
if
config
.
overlap_p2p_comm_warmup_flush
:
assert
recv_next_wait_handles
,
(
f
'pp rank
{
pipeline_parallel_rank
}
, backward iteration
{
k
}
, '
'should have registered recv next handle'
)
recv_next_wait_handle
=
recv_next_wait_handles
.
pop
(
0
)
recv_next_wait_handle
.
wait
()
else
:
if
recv_next_wait_handles
is
not
None
and
recv_next_wait_handles
:
recv_next_wait_handle
=
recv_next_wait_handles
.
pop
(
0
)
recv_next_wait_handle
.
wait
()
recv_next
,
next_backward_model_chunk_id
=
recv_tensor_from_previous_stage
(
k
,
forward
=
False
)
if
k
==
(
total_num_microbatches
-
1
):
recv_next
=
False
# Prefetch recv for backward iteration k+1 for non last ranks.
if
config
.
overlap_p2p_comm_warmup_flush
and
not
parallel_state
.
is_pipeline_last_stage
(
ignore_virtual
=
True
):
bwd_recv_buffer
[
k
%
bwd_recv_buffer_size
],
bwd_wait_recv_handles
=
(
p2p_communication
.
send_backward_recv_backward
(
input_tensor_grad
=
None
,
# No input_tensor_grad to send.
recv_next
=
recv_next
,
tensor_shape
=
tensor_shape
,
config
=
config
,
overlap_p2p_comm
=
True
,
)
)
if
bwd_wait_recv_handles
:
recv_next_wait_handles
.
append
(
bwd_wait_recv_handles
.
pop
(
"recv_next"
))
input_tensor_grad
=
backward_step_helper
(
k
)
# First virtual stage no activation gradient tensor to send.
if
parallel_state
.
is_pipeline_first_stage
(
ignore_virtual
=
False
):
input_tensor_grad
=
None
if
config
.
overlap_p2p_comm_warmup_flush
:
if
not
parallel_state
.
is_pipeline_last_stage
(
ignore_virtual
=
True
):
_
,
bwd_wait_handles
=
p2p_communication
.
send_backward_recv_backward
(
input_tensor_grad
,
recv_next
=
False
,
tensor_shape
=
tensor_shape
,
config
=
config
,
overlap_p2p_comm
=
True
,
)
else
:
bwd_recv_buffer
[
k
%
bwd_recv_buffer_size
],
bwd_wait_handles
=
(
p2p_communication
.
send_backward_recv_backward
(
input_tensor_grad
,
recv_next
=
recv_next
,
tensor_shape
=
tensor_shape
,
config
=
config
,
overlap_p2p_comm
=
True
,
)
)
if
send_prev_wait_handle
is
not
None
:
send_prev_wait_handle
.
wait
()
if
bwd_wait_handles
is
not
None
:
send_prev_wait_handle
=
(
bwd_wait_handles
.
pop
(
"send_prev"
)
if
"send_prev"
in
bwd_wait_handles
else
None
)
if
"recv_next"
in
bwd_wait_handles
:
recv_next_wait_handles
.
append
(
bwd_wait_handles
.
pop
(
"recv_next"
))
if
recv_next
:
output_tensor_grads
[
next_backward_model_chunk_id
].
append
(
bwd_recv_buffer
[
k
%
bwd_recv_buffer_size
]
)
bwd_recv_buffer
[(
k
+
1
)
%
bwd_recv_buffer_size
]
=
None
else
:
output_tensor_grad
=
p2p_communication
.
send_backward_recv_backward
(
input_tensor_grad
,
recv_next
=
recv_next
,
tensor_shape
=
tensor_shape
,
config
=
config
)
if
recv_next
:
output_tensor_grads
[
next_backward_model_chunk_id
].
append
(
output_tensor_grad
)
if
send_prev_wait_handle
is
not
None
:
send_prev_wait_handle
.
wait
()
# Launch any remaining grad reductions.
enable_grad_sync
()
if
config
.
grad_sync_func
is
not
None
:
for
model_chunk_id
in
range
(
num_model_chunks
):
if
model_chunk_id
not
in
synchronized_model_chunks
:
config
.
grad_sync_func
[
model_chunk_id
](
model
[
model_chunk_id
].
parameters
())
synchronized_model_chunks
.
add
(
model_chunk_id
)
assert
(
not
recv_prev_wait_handles
),
'recv_prev_wait_handles should be cleared at the end of a step'
assert
(
not
recv_next_wait_handles
),
'recv_next_wait_handles should be cleared at the end of a step'
if
config
.
finalize_model_grads_func
is
not
None
and
not
forward_only
:
# If defer_embedding_wgrad_compute is enabled we need to do the
# weight gradient GEMM's here.
finish_embedding_wgrad_compute
(
config
,
embedding_module
)
# Finalize model grads (perform full grad all-reduce / reduce-scatter for
# data parallelism, layernorm all-reduce for sequence parallelism, and
# embedding all-reduce for pipeline parallelism).
config
.
finalize_model_grads_func
(
model
,
total_num_tokens
if
config
.
calculate_per_token_loss
else
None
)
# Restore config.grad_sync_func and config.param_sync_func.
if
forward_only
:
config
.
grad_sync_func
,
config
.
param_sync_func
=
grad_sync_func
,
param_sync_func
if
config
.
timers
is
not
None
:
config
.
timers
(
'forward-backward'
).
stop
()
if
hasattr
(
config
,
'enable_cuda_graph'
)
and
config
.
enable_cuda_graph
:
create_cudagraphs
()
return
forward_data_store
def
get_tensor_shapes
(
*
,
rank
:
int
,
model_type
:
ModelType
,
seq_length
:
int
,
micro_batch_size
:
int
,
decoder_seq_length
:
int
,
config
,
encoder_decoder_xattn
:
bool
,
):
"""
Determine right tensor sizes (based on position of rank with respect to split rank) and
model size.
Send two tensors if model decoder requires the encoder's output (via cross-attention) and
rank is in decoder stage.
First tensor is decoder. Second tensor is encoder.
If model has an encoder & decoder and rank is at the boundary, send one tensor.
Otherwise, send one tensor.
"""
tensor_shapes
=
[]
seq_length
=
seq_length
//
parallel_state
.
get_context_parallel_world_size
()
if
model_type
==
ModelType
.
encoder_and_decoder
:
decoder_seq_length
=
decoder_seq_length
//
parallel_state
.
get_context_parallel_world_size
()
if
config
.
sequence_parallel
:
seq_length
=
seq_length
//
parallel_state
.
get_tensor_model_parallel_world_size
()
if
model_type
==
ModelType
.
encoder_and_decoder
:
decoder_seq_length
=
(
decoder_seq_length
//
parallel_state
.
get_tensor_model_parallel_world_size
()
)
if
model_type
==
ModelType
.
encoder_and_decoder
:
if
parallel_state
.
is_inside_encoder
(
rank
)
and
not
parallel_state
.
is_inside_decoder
(
rank
):
tensor_shapes
.
append
((
seq_length
,
micro_batch_size
,
config
.
hidden_size
))
elif
encoder_decoder_xattn
:
tensor_shapes
.
append
((
decoder_seq_length
,
micro_batch_size
,
config
.
hidden_size
))
tensor_shapes
.
append
((
seq_length
,
micro_batch_size
,
config
.
hidden_size
))
else
:
tensor_shapes
.
append
((
decoder_seq_length
,
micro_batch_size
,
config
.
hidden_size
))
else
:
# model_type == ModelType.encoder_or_decoder
tensor_shapes
.
append
((
seq_length
,
micro_batch_size
,
config
.
hidden_size
))
return
tensor_shapes
def
recv_forward
(
tensor_shapes
,
config
):
"""Wrapper for p2p_communication.recv_forward used with non-interleaving schedule."""
input_tensors
=
[]
for
tensor_shape
in
tensor_shapes
:
if
tensor_shape
is
None
:
input_tensors
.
append
(
None
)
else
:
input_tensors
.
append
(
p2p_communication
.
recv_forward
(
tensor_shape
,
config
))
return
input_tensors
def
recv_backward
(
tensor_shapes
,
config
):
"""Wrapper for p2p_communication.recv_backward used with non-interleaving schedule."""
output_tensor_grads
=
[]
for
tensor_shape
in
tensor_shapes
:
if
tensor_shape
is
None
:
output_tensor_grads
.
append
(
None
)
else
:
output_tensor_grads
.
append
(
p2p_communication
.
recv_backward
(
tensor_shape
,
config
))
return
output_tensor_grads
def
send_forward
(
output_tensors
,
tensor_shapes
,
config
):
"""Wrapper for p2p_communication.send_forward used with non-interleaving schedule."""
if
not
isinstance
(
output_tensors
,
list
):
output_tensors
=
[
output_tensors
]
for
output_tensor
,
tensor_shape
in
zip
(
output_tensors
,
tensor_shapes
):
if
tensor_shape
is
None
:
continue
p2p_communication
.
send_forward
(
output_tensor
,
config
)
def
send_backward
(
input_tensor_grads
,
tensor_shapes
,
config
):
"""Wrapper for p2p_communication.send_backward used with non-interleaving schedule."""
if
not
isinstance
(
input_tensor_grads
,
list
):
input_tensor_grads
=
[
input_tensor_grads
]
for
input_tensor_grad
,
tensor_shape
in
zip
(
input_tensor_grads
,
tensor_shapes
):
if
tensor_shape
is
None
:
continue
p2p_communication
.
send_backward
(
input_tensor_grad
,
config
)
def
send_forward_recv_backward
(
output_tensors
,
tensor_shapes
,
config
):
"""Wrapper for p2p_communication.send_forward_recv_backward used
with non-interleaving schedule."""
if
not
isinstance
(
output_tensors
,
list
):
output_tensors
=
[
output_tensors
]
output_tensor_grads
=
[]
for
output_tensor
,
tensor_shape
in
zip
(
output_tensors
,
tensor_shapes
):
if
tensor_shape
is
None
:
output_tensor_grads
.
append
(
None
)
continue
output_tensor_grad
=
p2p_communication
.
send_forward_recv_backward
(
output_tensor
,
tensor_shape
,
config
)
output_tensor_grads
.
append
(
output_tensor_grad
)
return
output_tensor_grads
def
send_backward_recv_forward
(
input_tensor_grads
,
tensor_shapes
,
config
):
"""Wrapper for p2p_communication.send_backward_recv_forward used
with non-interleaving schedule."""
if
not
isinstance
(
input_tensor_grads
,
list
):
input_tensor_grads
=
[
input_tensor_grads
]
input_tensors
=
[]
for
input_tensor_grad
,
tensor_shape
in
zip
(
input_tensor_grads
,
tensor_shapes
):
if
tensor_shape
is
None
:
input_tensors
.
append
(
None
)
continue
input_tensor
=
p2p_communication
.
send_backward_recv_forward
(
input_tensor_grad
,
tensor_shape
,
config
)
input_tensors
.
append
(
input_tensor
)
return
input_tensors
def
forward_backward_pipelining_without_interleaving
(
*
,
forward_step_func
,
data_iterator
:
Union
[
Iterator
,
List
[
Iterator
]],
model
:
Union
[
torch
.
nn
.
Module
,
List
[
torch
.
nn
.
Module
]],
num_microbatches
:
int
,
seq_length
:
int
,
micro_batch_size
:
int
,
decoder_seq_length
:
Optional
[
int
]
=
None
,
forward_only
:
bool
=
False
,
collect_non_loss_data
:
bool
=
False
,
first_val_step
:
Optional
[
bool
]
=
None
,
adjust_tensor_shapes_fn
:
Optional
[
Callable
]
=
None
,
):
"""Run non-interleaved 1F1B schedule, with communication between pipeline
stages. Returns dictionary with losses if the last stage, empty dict otherwise."""
if
isinstance
(
model
,
list
):
assert
(
len
(
model
)
==
1
),
"non-interleaved pipeline-parallel schedule does not support model chunking"
model
=
model
[
0
]
if
isinstance
(
data_iterator
,
list
):
assert
(
len
(
data_iterator
)
==
1
),
"non-interleaved pipeline-parallel schedule does not support model chunking"
data_iterator
=
data_iterator
[
0
]
config
=
get_model_config
(
model
)
if
config
.
overlap_p2p_comm
:
raise
ValueError
(
"Non-interleaved pipeline parallelism does not support overlapping p2p communication"
)
# Needed only when gradients are finalized in M-Core
if
config
.
finalize_model_grads_func
is
not
None
and
not
forward_only
:
embedding_module
=
clear_embedding_activation_buffer
(
config
,
model
)
if
config
.
timers
is
not
None
:
config
.
timers
(
'forward-backward'
,
log_level
=
1
).
start
(
barrier
=
config
.
barrier_with_L1_time
)
# Disable async grad reductions
no_sync_func
=
config
.
no_sync_func
if
no_sync_func
is
None
:
no_sync_func
=
contextlib
.
nullcontext
no_sync_context
=
None
def
disable_grad_sync
():
"""Disable asynchronous grad reductions"""
nonlocal
no_sync_context
if
no_sync_context
is
None
:
no_sync_context
=
no_sync_func
()
no_sync_context
.
__enter__
()
def
enable_grad_sync
():
"""Enable asynchronous grad reductions"""
nonlocal
no_sync_context
if
no_sync_context
is
not
None
:
no_sync_context
.
__exit__
(
None
,
None
,
None
)
no_sync_context
=
None
disable_grad_sync
()
# Compute number of warmup microbatches.
num_warmup_microbatches
=
(
parallel_state
.
get_pipeline_model_parallel_world_size
()
-
parallel_state
.
get_pipeline_model_parallel_rank
()
-
1
)
num_warmup_microbatches
=
min
(
num_warmup_microbatches
,
num_microbatches
)
num_microbatches_remaining
=
num_microbatches
-
num_warmup_microbatches
# Checkpoint the activations of partial Transformer layers in a number of micro-batches
# within the maximum outstanding micro-batch backpropagations.
# Micro-batches with the ids less than 'num_microbatches_with_partial_activation_checkpoints'
# checkpoint partial Transformer layers (or skip checkpointing) and
# the rest of micro-batches within a window of micro-batches checkpoint
# all Transformer layers. The window of micro-batches is set by the maximum
# outstanding backpropagations and becomes smaller at later pipeline stages.
# Please refer the appendix C in https://arxiv.org/pdf/2205.05198.pdf
max_outstanding_backprops
=
None
if
config
.
num_microbatches_with_partial_activation_checkpoints
is
not
None
:
max_outstanding_backprops
=
num_warmup_microbatches
+
1
model_type
=
get_model_type
(
model
)
encoder_decoder_xattn
=
get_model_xattn
(
model
)
rank
=
parallel_state
.
get_pipeline_model_parallel_rank
()
recv_tensor_shapes
=
get_tensor_shapes
(
rank
=
rank
-
1
,
model_type
=
model_type
,
seq_length
=
seq_length
,
micro_batch_size
=
micro_batch_size
,
decoder_seq_length
=
decoder_seq_length
,
config
=
config
,
encoder_decoder_xattn
=
encoder_decoder_xattn
,
)
send_tensor_shapes
=
get_tensor_shapes
(
rank
=
rank
,
model_type
=
model_type
,
seq_length
=
seq_length
,
micro_batch_size
=
micro_batch_size
,
decoder_seq_length
=
decoder_seq_length
,
config
=
config
,
encoder_decoder_xattn
=
encoder_decoder_xattn
,
)
if
adjust_tensor_shapes_fn
is
not
None
:
recv_tensor_shapes
,
send_tensor_shapes
=
adjust_tensor_shapes_fn
(
recv_tensor_shapes
,
send_tensor_shapes
)
# Input, output tensors only need to be saved when doing backward passes
input_tensors
=
None
output_tensors
=
None
total_num_tokens
=
torch
.
tensor
(
0
,
dtype
=
torch
.
int
).
cuda
()
if
not
forward_only
:
input_tensors
=
[]
output_tensors
=
[]
forward_data_store
=
[]
# Run warmup forward passes.
for
i
in
range
(
num_warmup_microbatches
):
# Decide to checkpoint all layers' activations of the current micro-batch
if
max_outstanding_backprops
is
not
None
:
checkpoint_activations_microbatch
=
(
i
%
max_outstanding_backprops
>=
config
.
num_microbatches_with_partial_activation_checkpoints
)
else
:
checkpoint_activations_microbatch
=
None
input_tensor
=
recv_forward
(
recv_tensor_shapes
,
config
)
output_tensor
,
num_tokens
=
forward_step
(
forward_step_func
,
data_iterator
,
model
,
num_microbatches
,
input_tensor
,
forward_data_store
,
config
,
collect_non_loss_data
,
checkpoint_activations_microbatch
,
check_first_val_step
(
first_val_step
,
forward_only
,
i
==
0
),
current_microbatch
=
i
,
encoder_decoder_xattn
=
encoder_decoder_xattn
,
)
send_forward
(
output_tensor
,
send_tensor_shapes
,
config
)
total_num_tokens
+=
num_tokens
if
not
forward_only
:
input_tensors
.
append
(
input_tensor
)
output_tensors
.
append
(
output_tensor
)
deallocate_output_tensor
(
output_tensor
[
0
],
config
.
deallocate_pipeline_outputs
)
# Before running 1F1B, need to receive first forward tensor.
# If all microbatches are run in warmup / cooldown phase, then no need to
# receive this tensor here.
if
num_microbatches_remaining
>
0
:
input_tensor
=
recv_forward
(
recv_tensor_shapes
,
config
)
# Run 1F1B in steady state.
for
i
in
range
(
num_microbatches_remaining
):
last_iteration
=
i
==
(
num_microbatches_remaining
-
1
)
# Decide to checkpoint all layers' activations of the current micro-batch
if
max_outstanding_backprops
is
not
None
:
checkpoint_activations_microbatch
=
(
(
i
+
num_warmup_microbatches
)
%
max_outstanding_backprops
)
>=
config
.
num_microbatches_with_partial_activation_checkpoints
else
:
checkpoint_activations_microbatch
=
None
output_tensor
,
num_tokens
=
forward_step
(
forward_step_func
,
data_iterator
,
model
,
num_microbatches
,
input_tensor
,
forward_data_store
,
config
,
collect_non_loss_data
,
checkpoint_activations_microbatch
,
check_first_val_step
(
first_val_step
,
forward_only
,
(
i
==
0
)
and
(
num_warmup_microbatches
==
0
)
),
current_microbatch
=
i
+
num_warmup_microbatches
,
encoder_decoder_xattn
=
encoder_decoder_xattn
,
)
total_num_tokens
+=
num_tokens
if
forward_only
:
send_forward
(
output_tensor
,
send_tensor_shapes
,
config
)
if
not
last_iteration
:
input_tensor
=
recv_forward
(
recv_tensor_shapes
,
config
)
else
:
output_tensor_grad
=
send_forward_recv_backward
(
output_tensor
,
send_tensor_shapes
,
config
)
# Add input_tensor and output_tensor to end of list.
input_tensors
.
append
(
input_tensor
)
output_tensors
.
append
(
output_tensor
)
deallocate_output_tensor
(
output_tensor
[
0
],
config
.
deallocate_pipeline_outputs
)
# Pop input_tensor and output_tensor from the start of the list for
# the backward pass.
input_tensor
=
input_tensors
.
pop
(
0
)
output_tensor
=
output_tensors
.
pop
(
0
)
# Enable grad sync for the last microbatch in the batch if the full
# backward pass completes in the 1F1B stage.
if
num_warmup_microbatches
==
0
and
last_iteration
:
if
config
.
grad_sync_func
is
None
or
rank
==
0
:
enable_grad_sync
()
input_tensor_grad
=
backward_step
(
input_tensor
,
output_tensor
,
output_tensor_grad
,
model_type
,
config
)
if
last_iteration
:
input_tensor
=
None
send_backward
(
input_tensor_grad
,
recv_tensor_shapes
,
config
)
else
:
input_tensor
=
send_backward_recv_forward
(
input_tensor_grad
,
recv_tensor_shapes
,
config
)
# Run cooldown backward passes.
if
not
forward_only
:
for
i
in
range
(
num_warmup_microbatches
):
# Enable async grad reduction in the last backward pass
# Note: If grad sync function is provided, only enable
# async grad reduction in first pipeline stage. Other
# pipeline stages do grad reduction during pipeline
# bubble.
if
i
==
num_warmup_microbatches
-
1
:
if
config
.
grad_sync_func
is
None
or
rank
==
0
:
enable_grad_sync
()
input_tensor
=
input_tensors
.
pop
(
0
)
output_tensor
=
output_tensors
.
pop
(
0
)
output_tensor_grad
=
recv_backward
(
send_tensor_shapes
,
config
)
input_tensor_grad
=
backward_step
(
input_tensor
,
output_tensor
,
output_tensor_grad
,
model_type
,
config
)
send_backward
(
input_tensor_grad
,
recv_tensor_shapes
,
config
)
# Launch any remaining grad reductions.
if
no_sync_context
is
not
None
:
enable_grad_sync
()
if
config
.
grad_sync_func
is
not
None
:
config
.
grad_sync_func
(
model
.
parameters
())
if
config
.
finalize_model_grads_func
is
not
None
and
not
forward_only
:
# If defer_embedding_wgrad_compute is enabled we need to do the
# weight gradient GEMM's here.
finish_embedding_wgrad_compute
(
config
,
embedding_module
)
# Finalize model grads (perform full grad all-reduce / reduce-scatter for
# data parallelism, layernorm all-reduce for sequence parallelism, and
# embedding all-reduce for pipeline parallelism).
config
.
finalize_model_grads_func
(
[
model
],
total_num_tokens
if
config
.
calculate_per_token_loss
else
None
)
if
config
.
timers
is
not
None
:
config
.
timers
(
'forward-backward'
).
stop
()
if
hasattr
(
config
,
'enable_cuda_graph'
)
and
config
.
enable_cuda_graph
:
create_cudagraphs
()
return
forward_data_store
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment