Commit 649bfbdb authored by dongcl's avatar dongcl
Browse files

add schedules.py

parent 32ee381a
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
import contextlib
from typing import Callable, Iterator, List, Optional, Union
import torch
from torch.autograd.variable import Variable
from megatron.core import parallel_state
from megatron.core.enums import ModelType
from megatron.core.pipeline_parallel import p2p_communication
from megatron.core.transformer.cuda_graphs import create_cudagraphs
from megatron.core.transformer.moe.router import MoEAuxLossAutoScaler
from megatron.core.transformer.multi_token_prediction import MTPLossAutoScaler
from megatron.core.utils import (
drain_embedding_wgrad_compute,
get_attr_wrapped_model,
get_model_config,
get_model_type,
get_model_xattn,
)
from .combined_1f1b import VppContextManager, forward_backward_step, set_streams, wrap_forward_func
# Types
Shape = Union[List[int], torch.Size]
def get_forward_backward_func():
"""Retrieves the appropriate forward_backward function given the
configuration of parallel_state.
Returns a function that will perform all of the forward and
backward passes of the model given the pipeline model parallel
world size and virtual pipeline model parallel world size in the
global parallel_state.
Note that if using sequence parallelism, the sequence length component of
the tensor shape is updated to original_sequence_length /
tensor_model_parallel_world_size.
The function returned takes the following arguments:
forward_step_func (required): A function that takes a data
iterator and a model as its arguments and return the model's
forward output and the loss function. The loss function should
take one torch.Tensor and return a torch.Tensor of loss and a
dictionary of string -> torch.Tensor.
A third argument, checkpoint_activations_microbatch, indicates
that the activations for this microbatch should be
checkpointed. A None value for this argument indicates that
the default from the configuration should be used. This is
used when the
num_microbatches_with_partial_activation_checkpoints is used.
For example:
def loss_func(loss_mask, output_tensor):
losses = output_tensor.float()
loss_mask = loss_mask.view(-1).float()
loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
# Reduce loss for logging.
averaged_loss = average_losses_across_data_parallel_group([loss])
return loss, {'lm loss': averaged_loss[0]}
def forward_step(data_iterator, model):
data, loss_mask = next(data_iterator)
output = model(data)
return output, partial(loss_func, loss_mask)
forward_backward_func(forward_step_func=forward_step, ...)
data_iterator (required): an iterator over the data, will be
passed as is to forward_step_func. Expected to be a list of
iterators in the case of interleaved pipeline parallelism.
model (required): the actual model. Expected to be a list of modules in the case of interleaved
pipeline parallelism. Must be a (potentially wrapped) megatron.core.models.MegatronModule.
num_microbatches (int, required):
The number of microbatches to go through
seq_length (int, required): Sequence length of the current global batch. If this is a dual-stack
transformer, this is the encoder's sequence length. This is ignored if variable_seq_lengths
in the config is True. Otherwise, each microbatch in the current global batch size must use
this sequence length.
micro_batch_size (int, required): The number of sequences in a microbatch.
decoder_seq_length (int, optional): The sequence length for the decoder in a dual-stack
transformer. This is ignored for a single-stack transformer.
forward_only (optional, default = False): Perform only the forward step
collect_non_loss_data (optional, bool, default=False): TODO
first_val_step (bool, optional): Is the first step of the validation phase. Used by
Transformer Engine modules to only update their fp8 weights only on the first validation
step.
adjust_tensor_shapes_fn (Callable, optional): A function that adjusts the receive and send
tensor shapes. Only applicable in forward_backward_pipelining_without_interleaving for now.
Takes in a list of receive shapes and a list of send shapes and returns the adjusted
respective list of shapes. Thus it is not used in the other forward-backward functions
which have different shape handling.
"""
pipeline_model_parallel_size = parallel_state.get_pipeline_model_parallel_world_size()
if pipeline_model_parallel_size > 1:
if parallel_state.get_virtual_pipeline_model_parallel_world_size() is not None:
forward_backward_func = forward_backward_pipelining_with_interleaving
else:
forward_backward_func = forward_backward_pipelining_without_interleaving
else:
forward_backward_func = forward_backward_no_pipelining
return forward_backward_func
def deallocate_output_tensor(out, deallocate_pipeline_outputs=False):
'''Pseudo-deallocate (i.e., set to scalar) the output tensor's '.data' field.
This method should be called right after the output tensor has been
sent to the next pipeline stage. At this point, the output tensor is
only useful for its '.grad_fn' field, and not its '.data'.
'''
if (out is None) or (not deallocate_pipeline_outputs):
return
assert isinstance(out, torch.Tensor), "expected Tensor, found %s." % type(out).__name__
assert out._base is None, "counter-productive to free a view of another tensor."
out.data = torch.empty((1,), device=out.device, dtype=out.dtype)
def custom_backward(output, grad_output):
'''Directly call C++ autograd engine.
To make the 'deallocate_output_tensor' (above) optimization work, the C++
autograd engine must be called directly, bypassing Pytorch's
torch.autograd.backward. Pytorch's 'backward' checks that the output and
grad have the same shape, while C++'s 'backward' does not.
'''
assert output.numel() == 1, "output should be pseudo-'freed' in schedule, to optimize memory"
assert isinstance(output, torch.Tensor), "output == '%s'." % type(output).__name__
assert isinstance(grad_output, (torch.Tensor, type(None))), (
"grad_output == '%s'." % type(grad_output).__name__
)
# Handle scalar output
if grad_output is None:
assert output.numel() == 1, "implicit grad requires scalar output."
grad_output = torch.ones_like(output, memory_format=torch.preserve_format)
# Call c++ engine [ see torch/csrc/autograd/python_engine.cpp ]
Variable._execution_engine.run_backward(
tensors=(output,),
grad_tensors=(grad_output,),
keep_graph=False,
create_graph=False,
inputs=tuple(),
allow_unreachable=True,
accumulate_grad=True,
)
def set_current_microbatch(model, microbatch_id):
"""Set the current microbatch."""
decoder_exists = True
decoder = None
try:
decoder = get_attr_wrapped_model(model, "decoder")
except RuntimeError:
decoder_exists = False
if decoder_exists and decoder is not None:
for layer in decoder.layers:
layer.current_microbatch = microbatch_id
def forward_step(
forward_step_func,
data_iterator,
model,
num_microbatches,
input_tensor,
forward_data_store,
config,
collect_non_loss_data=False,
checkpoint_activations_microbatch=None,
is_first_microbatch=False,
current_microbatch=None,
encoder_decoder_xattn=False,
):
"""Forward step for passed-in model.
If it is the first stage, the input tensor is obtained from the data_iterator.
Otherwise, the passed-in input_tensor is used.
Args:
forward_step_func (callable):
The forward step function for the model that takes the
data iterator as the first argument, and model as the second.
This user's forward step is expected to output a tuple of two elements:
1. The output object from the forward step. This output object needs to be a
tensor or some kind of collection of tensors. The only hard requirement
for this object is that it needs to be acceptible as input into the second
function.
2. A function to reduce (optionally) the output from the forward step. This
could be a reduction over the loss from the model, it could be a function that
grabs the output from the model and reformats, it could be a function that just
passes through the model output. This function must have one of the following
patterns, and depending on the pattern different things happen internally:
a. A tuple of reduced loss and some other data. Note that in this case
the first argument is divided by the number of global microbatches,
assuming it is a loss, so that the loss is stable as a function of
the number of devices the step is split across.
b. A triple of reduced loss, number of tokens, and some other data. This
is similar to case (a), but the loss is further averaged across the
number of tokens in the batch. If the user is not already averaging
across the number of tokens, this pattern is useful to use.
c. Any arbitrary data the user wants (eg a dictionary of tensors, a list
of tensors, etc in the case of inference). To trigger case 3 you need
to specify `collect_non_loss_data=True` and you may also want to
specify `forward_only=True` in the call to the parent forward_backward
function.
data_iterator (iterator):
The data iterator.
model (nn.Module):
The model to perform the forward step on.
num_microbatches (int):
The number of microbatches.
input_tensor (Tensor or list[Tensor]):
The input tensor(s) for the forward step.
forward_data_store (list):
The list to store the forward data. If you go down path 2.a or
2.b for the return of your forward reduction function then this will store only the
final dimension of the output, for example the metadata output by the loss function.
If you go down the path of 2.c then this will store the entire output of the forward
reduction function applied to the model output.
config (object):
The configuration object.
collect_non_loss_data (bool, optional):
Whether to collect non-loss data. Defaults to False.
This is the path to use if you want to collect arbitrary output from the model forward,
such as with inference use cases. Defaults to False.
checkpoint_activations_microbatch (int, optional):
The microbatch to checkpoint activations.
Defaults to None.
is_first_microbatch (bool, optional):
Whether it is the first microbatch. Defaults to False.
current_microbatch (int, optional):
The current microbatch. Defaults to None.
Returns:
Tensor or list[Tensor]: The output object(s) from the forward step.
Tensor: The number of tokens.
"""
if config.timers is not None:
config.timers('forward-compute', log_level=2).start()
if is_first_microbatch and hasattr(model, 'set_is_first_microbatch'):
model.set_is_first_microbatch()
if current_microbatch is not None:
set_current_microbatch(model, current_microbatch)
unwrap_output_tensor = False
if not isinstance(input_tensor, list):
input_tensor = [input_tensor]
unwrap_output_tensor = True
set_input_tensor = get_attr_wrapped_model(model, "set_input_tensor")
set_input_tensor(input_tensor)
if config.enable_autocast:
context_manager = torch.autocast("cuda", dtype=config.autocast_dtype)
else:
context_manager = contextlib.nullcontext()
with context_manager:
if checkpoint_activations_microbatch is None:
output_tensor, loss_func = forward_step_func(data_iterator, model)
else:
output_tensor, loss_func = forward_step_func(
data_iterator, model, checkpoint_activations_microbatch
)
num_tokens = torch.tensor(0, dtype=torch.int)
if parallel_state.is_pipeline_last_stage(ignore_virtual=False):
if not collect_non_loss_data:
outputs = loss_func(output_tensor)
if len(outputs) == 3:
output_tensor, num_tokens, loss_reduced = outputs
if not config.calculate_per_token_loss:
output_tensor /= num_tokens
output_tensor *= parallel_state.get_context_parallel_world_size()
output_tensor /= num_microbatches
else:
# preserve legacy loss averaging behavior (ie, over the number of microbatches)
assert len(outputs) == 2
output_tensor, loss_reduced = outputs
output_tensor *= parallel_state.get_context_parallel_world_size()
output_tensor /= num_microbatches
forward_data_store.append(loss_reduced)
else:
data = loss_func(output_tensor, non_loss_data=True)
forward_data_store.append(data)
if config.timers is not None:
config.timers('forward-compute').stop()
# Set the loss scale for the auxiliary loss of the MoE layer.
# Since we use a trick to do backward on the auxiliary loss, we need to set the scale
# explicitly.
if hasattr(config, 'num_moe_experts') and config.num_moe_experts is not None:
# Calculate the loss scale based on the grad_scale_func if available, else default to 1.
loss_scale = (
config.grad_scale_func(torch.ones(1, device=output_tensor.device))
if config.grad_scale_func is not None
else torch.ones(1, device=output_tensor.device)
)
# Set the loss scale
if config.calculate_per_token_loss:
MoEAuxLossAutoScaler.set_loss_scale(loss_scale)
else:
MoEAuxLossAutoScaler.set_loss_scale(loss_scale / num_microbatches)
# Set the loss scale for Multi-Token Prediction (MTP) loss.
if hasattr(config, 'mtp_num_layers') and config.mtp_num_layers is not None:
# Calculate the loss scale based on the grad_scale_func if available, else default to 1.
loss_scale = (
config.grad_scale_func(torch.ones(1, device=output_tensor.device))
if config.grad_scale_func is not None
else torch.ones(1, device=output_tensor.device)
)
# Set the loss scale
if config.calculate_per_token_loss:
MTPLossAutoScaler.set_loss_scale(loss_scale)
else:
MTPLossAutoScaler.set_loss_scale(loss_scale / num_microbatches)
# If T5 model and in decoder stack, then send encoder_hidden_state
# downstream as well.
model_type = get_model_type(model)
if (
model_type == ModelType.encoder_and_decoder
and encoder_decoder_xattn
and parallel_state.is_inside_decoder()
):
return [output_tensor, input_tensor[-1]], num_tokens
if unwrap_output_tensor:
return output_tensor, num_tokens
return [output_tensor], num_tokens
def backward_step(input_tensor, output_tensor, output_tensor_grad, model_type, config):
"""Backward step through passed-in output tensor.
If last stage, output_tensor_grad is None, otherwise gradient of loss
with respect to stage's output tensor.
Returns gradient of loss with respect to input tensor (None if first
stage)."""
# NOTE: This code currently can handle at most one skip connection. It
# needs to be modified slightly to support arbitrary numbers of skip
# connections.
if config.timers is not None:
config.timers('backward-compute', log_level=2).start()
# Retain the grad on the input_tensor.
unwrap_input_tensor_grad = False
if not isinstance(input_tensor, list):
input_tensor = [input_tensor]
unwrap_input_tensor_grad = True
for x in input_tensor:
if x is not None:
x.retain_grad()
if not isinstance(output_tensor, list):
output_tensor = [output_tensor]
if not isinstance(output_tensor_grad, list):
output_tensor_grad = [output_tensor_grad]
# Backward pass.
if output_tensor_grad[0] is None and config.grad_scale_func is not None:
output_tensor[0] = config.grad_scale_func(output_tensor[0])
# In multi-modal models like VLM, some batches may not have images.
# When no image is present, the vision encoder (as a separate pipeline stage)
# will not participate in the computation.
# This results in a tensor that does not require gradients.
# In such cases, we intentionally skip the backward pass while preserving zero gradients.
if output_tensor[0].requires_grad:
if config.deallocate_pipeline_outputs:
custom_backward(output_tensor[0], output_tensor_grad[0])
else:
torch.autograd.backward(output_tensor[0], grad_tensors=output_tensor_grad[0])
# Collect the grad of the input_tensor.
input_tensor_grad = [None]
if input_tensor is not None:
input_tensor_grad = []
for x in input_tensor:
if x is None:
input_tensor_grad.append(None)
else:
input_tensor_grad.append(x.grad)
# Handle single skip connection if it exists (encoder_hidden_state in
# model with encoder and decoder).
if (
parallel_state.get_pipeline_model_parallel_world_size() > 1
and model_type == ModelType.encoder_and_decoder
and len(output_tensor_grad) > 1 # excludes models that lack a skip connection.
):
if output_tensor_grad[1] is not None:
assert input_tensor_grad[-1] is not None
input_tensor_grad[-1].add_(output_tensor_grad[1])
if unwrap_input_tensor_grad:
input_tensor_grad = input_tensor_grad[0]
if config.timers is not None:
config.timers('backward-compute').stop()
return input_tensor_grad
def check_first_val_step(first_val_step, forward_only, cond):
"""Check if it is the first validation step."""
if (first_val_step is not None) and forward_only:
return first_val_step and cond
else:
return cond
def forward_backward_no_pipelining(
*,
forward_step_func,
data_iterator: Union[Iterator, List[Iterator]],
model: Union[torch.nn.Module, List[torch.nn.Module]],
num_microbatches: int,
seq_length: int, # unused
micro_batch_size: int, # unused
decoder_seq_length: Optional[int] = None, # unused
forward_only: bool = False,
collect_non_loss_data: bool = False,
first_val_step: Optional[bool] = None,
adjust_tensor_shapes_fn: Optional[Callable] = None, # unused
):
"""Run forward and backward passes with no pipeline parallelism
(no inter-stage communication).
Returns dictionary with losses.
See get_forward_backward_func() for argument details
"""
if isinstance(model, list):
assert len(model) == 1, "non-pipeline-parallel schedule does not support model chunking"
model = model[0]
if isinstance(data_iterator, list):
assert (
len(data_iterator) == 1
), "non-pipeline-parallel schedule does not support model chunking"
data_iterator = data_iterator[0]
assert (
adjust_tensor_shapes_fn is None
), "adjust_tensor_shapes_fn is not supported for non-pipeline-parallel schedule"
config = get_model_config(model)
if config.timers is not None:
config.timers('forward-backward', log_level=1).start(barrier=config.barrier_with_L1_time)
no_sync_func = config.no_sync_func
if no_sync_func is None:
no_sync_func = contextlib.nullcontext
model_type = get_model_type(model)
forward_data_store = []
input_tensor, output_tensor_grad = None, None
total_num_tokens = torch.zeros([], dtype=torch.int, device="cuda")
with no_sync_func():
for i in range(num_microbatches - 1):
output_tensor, num_tokens = forward_step(
forward_step_func,
data_iterator,
model,
num_microbatches,
input_tensor,
forward_data_store,
config,
collect_non_loss_data,
is_first_microbatch=check_first_val_step(first_val_step, forward_only, i == 0),
current_microbatch=i,
)
total_num_tokens += num_tokens
if not forward_only:
backward_step(input_tensor, output_tensor, output_tensor_grad, model_type, config)
# Run computation for last microbatch out of context handler (want to
# synchronize gradients).
output_tensor, num_tokens = forward_step(
forward_step_func,
data_iterator,
model,
num_microbatches,
input_tensor,
forward_data_store,
config,
collect_non_loss_data,
is_first_microbatch=check_first_val_step(
first_val_step, forward_only, num_microbatches == 1
),
current_microbatch=num_microbatches - 1,
)
total_num_tokens += num_tokens
if not forward_only:
backward_step(input_tensor, output_tensor, output_tensor_grad, model_type, config)
if config.finalize_model_grads_func is not None and not forward_only:
# Finalize model grads (perform full grad all-reduce / reduce-scatter for
# data parallelism and layernorm all-reduce for sequence parallelism).
config.finalize_model_grads_func(
[model], total_num_tokens if config.calculate_per_token_loss else None
)
if config.timers is not None:
config.timers('forward-backward').stop()
if hasattr(config, 'enable_cuda_graph') and config.enable_cuda_graph:
create_cudagraphs()
return forward_data_store
def clear_embedding_activation_buffer(config, model):
"""Clear embedding activation buffer."""
if (
parallel_state.is_pipeline_last_stage(ignore_virtual=True)
and config.defer_embedding_wgrad_compute
):
if isinstance(model, list):
embedding_module = get_attr_wrapped_model(
model[-1], 'post_process', return_model_obj=True
)
else:
embedding_module = get_attr_wrapped_model(model, 'post_process', return_model_obj=True)
# Need to ensure no stray activations exists in this buffer
embedding_module.embedding_activation_buffer.clear()
return embedding_module
else:
return None
def finish_embedding_wgrad_compute(config, embedding_module):
"""Finish embedding wgrad compute."""
if (
parallel_state.is_pipeline_last_stage(ignore_virtual=True)
and config.defer_embedding_wgrad_compute
):
embedding_activation_buffer = embedding_module.embedding_activation_buffer
grad_output_buffer = embedding_module.grad_output_buffer
weight = (
embedding_module.output_layer.weight
if embedding_module.share_embeddings_and_output_weights
else embedding_module.shared_embedding_or_output_weight()
)
drain_embedding_wgrad_compute(
config, embedding_activation_buffer, grad_output_buffer, weight
)
def get_pp_rank_microbatches(
num_microbatches, num_model_chunks, microbatch_group_size_per_vp_stage, forward_only=False
):
"""Get the number of total, warmup, and remaining microbatches in PP scheduling."""
pipeline_parallel_size = parallel_state.get_pipeline_model_parallel_world_size()
pipeline_parallel_rank = parallel_state.get_pipeline_model_parallel_rank()
virtual_pipeline_parallel_size = parallel_state.get_virtual_pipeline_model_parallel_world_size()
total_num_microbatches = num_microbatches * num_model_chunks
are_all_microbatches_in_warmup = False
if forward_only:
num_warmup_microbatches = total_num_microbatches
elif pipeline_parallel_size > 1:
if virtual_pipeline_parallel_size is None:
# forward_backward_pipelining_without_interleaving
num_warmup_microbatches = pipeline_parallel_size - pipeline_parallel_rank - 1
else:
# forward_backward_pipelining_with_interleaving
# Run (num_model_chunks-1)*microbatch_group_size_per_vp_stage on
# all workers, followed by more microbatches after depending on
# stage ID (more forward passes for earlier stages, later stages can
# immediately start with 1F1B).
num_warmup_microbatches = (pipeline_parallel_size - pipeline_parallel_rank - 1) * 2
num_warmup_microbatches += (num_model_chunks - 1) * microbatch_group_size_per_vp_stage
else:
# forward_backward_no_pipelining
num_warmup_microbatches = 1
if num_warmup_microbatches >= total_num_microbatches:
num_warmup_microbatches = total_num_microbatches
are_all_microbatches_in_warmup = True
num_microbatches_remaining = total_num_microbatches - num_warmup_microbatches
return (
total_num_microbatches,
are_all_microbatches_in_warmup,
num_warmup_microbatches,
num_microbatches_remaining,
)
def get_schedule_table(num_microbatches, num_model_chunks, microbatch_group_size_per_vp_stage):
"""Get the schedule table for PP scheduling."""
schedule_table = []
for min_microbatch_id_in_group in range(
0, num_microbatches, microbatch_group_size_per_vp_stage
):
if min_microbatch_id_in_group + microbatch_group_size_per_vp_stage >= num_microbatches:
# Construct schedule for the last microbatch group
schedule_table.extend(
[
(microbatch_id, model_chunk_id)
for model_chunk_id in range(num_model_chunks)
for microbatch_id in range(min_microbatch_id_in_group, num_microbatches)
]
)
else:
# Construct schedule for other microbatch groups
schedule_table.extend(
[
(microbatch_id, model_chunk_id)
for model_chunk_id in range(num_model_chunks)
for microbatch_id in range(
min_microbatch_id_in_group,
min_microbatch_id_in_group + microbatch_group_size_per_vp_stage,
)
]
)
return schedule_table
def convert_schedule_table_to_order(num_warmup_microbatches, num_model_chunks, schedule_table):
"""Convert a tunable schedule lookup table to the te.make_graphed_callables() accepted
order format. For example, the tunable schedule table for PP2 N3M5 with VP2 is as below:
virtual_microbatch_id | 0 1 2 3 4 5 6 7 8 9
microbatch_id | 0 1 2 0 1 2 3 4 3 4
model_chunk_id | 0 0 0 1 1 1 0 0 1 1
Then the forward backward separated order is:
forward | 1 1 1 2 2 2 1 1 2 2
backward | -2 -2 -2 -1 -1 -1 -2 -2 -1 -1
If num_warmup_microbatches is 5, the output order is:
1 1 1 2 2 2 -2 1 -2 1 -2 2 -1 2 -1 -1 -2 -2 -1 -1
"""
_, model_chunk_id_table = zip(*schedule_table)
forward_order = [chunk_id + 1 for chunk_id in model_chunk_id_table]
backward_order = [chunk_id - num_model_chunks for chunk_id in model_chunk_id_table]
order = forward_order[:num_warmup_microbatches]
for i in range(num_warmup_microbatches, len(forward_order)):
order.append(forward_order[i])
order.append(backward_order[i - num_warmup_microbatches])
if num_warmup_microbatches > 0:
order.extend(backward_order[-num_warmup_microbatches:])
return order
def forward_backward_pipelining_with_interleaving(
*,
forward_step_func,
data_iterator: Union[Iterator, List[Iterator]],
model: Union[torch.nn.Module, List[torch.nn.Module]],
num_microbatches: int,
seq_length: int,
micro_batch_size: int,
decoder_seq_length: Optional[int] = None,
forward_only: bool = False,
collect_non_loss_data: bool = False,
first_val_step: Optional[bool] = None,
adjust_tensor_shapes_fn: Optional[Callable] = None, # unused
):
"""Run interleaved 1F1B schedule (model split into model chunks), with
communication between pipeline stages as needed.
Returns dictionary with losses if the last stage, empty dict otherwise."""
# Convention used in this function:
# num_microbatches for number of microbatches per pipeline stage;
# num_model_chunks for virtual pipeline size;
# then total_num_microbatches = num_microbatches * num_model_chunks.
# Their corresponding index variables are
# microbatch_id in [0, num_microbatches)
# model_chunk_id in [0, num_model_chunks)
# virtual_microbatch_id in [0, total_num_microbatches)
assert isinstance(model, list), "interleaved pipeline parallelism expected model chunking"
assert all(isinstance(chunk, torch.nn.Module) for chunk in model), "invalid model chunking"
assert isinstance(
data_iterator, list
), "interleaved pipeline parallelism expected each model chunk to have a data iterator"
assert (
adjust_tensor_shapes_fn is None
), "adjust_tensor_shapes_fn is not supported for interleaved pipeline parallelism"
config = get_model_config(model[0])
set_streams()
if not forward_only:
forward_step_func = wrap_forward_func(config, forward_step_func)
if config.overlap_p2p_comm and config.batch_p2p_comm:
raise ValueError("Can not use both overlap_p2p_comm and batch_p2p_comm")
# Needed only when gradients are finalized in M-Core
if config.finalize_model_grads_func is not None and not forward_only:
embedding_module = clear_embedding_activation_buffer(config, model)
if config.timers is not None:
config.timers('forward-backward', log_level=1).start(barrier=config.barrier_with_L1_time)
# Disable async grad reductions
no_sync_func = config.no_sync_func
if isinstance(no_sync_func, list):
def multi_no_sync():
stack = contextlib.ExitStack()
for model_chunk_no_sync_func in config.no_sync_func:
stack.enter_context(model_chunk_no_sync_func())
return stack
no_sync_func = multi_no_sync
if no_sync_func is None:
no_sync_func = contextlib.nullcontext
no_sync_context = None
if config.grad_sync_func is not None and not isinstance(config.grad_sync_func, list):
config.grad_sync_func = [config.grad_sync_func for _ in model]
if config.param_sync_func is not None and not isinstance(config.param_sync_func, list):
config.param_sync_func = [config.param_sync_func for _ in model]
# Disable config.grad_sync_func and config.param_sync_func if only running forward passes.
# They will be re-enabled at the end of this function.
grad_sync_func, param_sync_func = None, None
if forward_only:
grad_sync_func, param_sync_func = config.grad_sync_func, config.param_sync_func
config.grad_sync_func, config.param_sync_func = None, None
def disable_grad_sync():
"""Disable asynchronous grad reductions"""
nonlocal no_sync_context
if no_sync_context is None:
no_sync_context = no_sync_func()
no_sync_context.__enter__()
def enable_grad_sync():
"""Enable asynchronous grad reductions"""
nonlocal no_sync_context
if no_sync_context is not None:
no_sync_context.__exit__(None, None, None)
no_sync_context = None
disable_grad_sync()
# Model chunk IDs with synchronized grads
synchronized_model_chunks = set()
input_tensors = [[] for _ in range(len(model))]
output_tensors = [[] for _ in range(len(model))]
total_num_tokens = torch.tensor(0, dtype=torch.int).cuda()
forward_data_store = []
output_tensor_grads = None
if not forward_only:
output_tensor_grads = [[] for _ in range(len(model))]
else:
output_tensor_grads = None
pipeline_parallel_size = parallel_state.get_pipeline_model_parallel_world_size()
pipeline_parallel_rank = parallel_state.get_pipeline_model_parallel_rank()
if (
config.microbatch_group_size_per_vp_stage > num_microbatches
or config.microbatch_group_size_per_vp_stage < pipeline_parallel_size
):
msg = (
'The number of contiguous micro-batches in a virtual pipeline stage'
f'should range in [PP={pipeline_parallel_size} , M={num_microbatches}]'
)
raise ValueError(msg)
# If the final micro-batch group has fewer micro-batches than pipeline-parallel size,
# the pipeline will have dependency bubbles.
final_microbatch_group_size = num_microbatches % config.microbatch_group_size_per_vp_stage
if 0 < final_microbatch_group_size < pipeline_parallel_size:
msg = 'The remainder of M (the total micro-batches) divided by N (number of '
msg += 'contiguous micro-batches in a virtual pipeline stage) should be 0, '
msg += 'or larger than or equal to the pipeline-parallel size, but it is '
msg += f'{final_microbatch_group_size}. '
msg += 'Otherwise, it introduces dependency bubbles in the pipeline '
msg += 'and reduces throughput.'
raise RuntimeError(msg)
model_type = get_model_type(model[0])
if model_type == ModelType.encoder_and_decoder:
xattn_needed = get_model_xattn(model)
assert (
not xattn_needed
), "Interleaving is not supported when xattn is required between encoder and decoder"
tensor_shape = get_tensor_shapes(
rank=parallel_state.get_pipeline_model_parallel_rank(),
model_type=model_type,
seq_length=seq_length,
micro_batch_size=micro_batch_size,
decoder_seq_length=decoder_seq_length,
config=config,
encoder_decoder_xattn=xattn_needed,
)
tensor_shape = list(tensor_shape[0])
else:
tensor_shape = [seq_length, micro_batch_size, config.hidden_size]
tensor_shape[0] = tensor_shape[0] // parallel_state.get_context_parallel_world_size()
if config.sequence_parallel:
tensor_shape[0] = (
tensor_shape[0] // parallel_state.get_tensor_model_parallel_world_size()
)
# Compute number of warmup and remaining microbatches.
num_model_chunks = len(model)
(
total_num_microbatches,
are_all_microbatches_in_warmup,
num_warmup_microbatches,
num_microbatches_remaining,
) = get_pp_rank_microbatches(
num_microbatches, num_model_chunks, config.microbatch_group_size_per_vp_stage, forward_only
)
# Checkpoint the activations of partial Transformer layers in a number of micro-batches
# within the maximum outstanding micro-batch backpropagations.
# Micro-batches with the ids less than 'num_microbatches_with_partial_activation_checkpoints'
# checkpoint partial Transformer layers (or skip checkpointing) and
# the rest of micro-batches within a window of micro-batches checkpoint
# all Transformer layers. The window of micro-batches is set by the maximum
# outstanding backpropagations and becomes smaller at later pipeline stages.
# Please refer the appendix C in https://arxiv.org/pdf/2205.05198.pdf
max_outstanding_backprops = None
if config.num_microbatches_with_partial_activation_checkpoints is not None:
max_outstanding_backprops = num_warmup_microbatches + 1
# Synchronize params for first two model chunks
if config.param_sync_func is not None:
config.param_sync_func[0](model[0].parameters())
config.param_sync_func[1](model[1].parameters())
# Create a tunable schedule lookup table.
# The schedule lookup table uses the virtual_microbatch_id to find the corresponding
# microbatch_id and model_chunk_id. For example, the tunable schedule table for
# PP2 N3M5 with VP2 is constructed as below:
# virtual_microbatch_id | 0 1 2 3 4 5 6 7 8 9
# microbatch_id | 0 1 2 0 1 2 3 4 3 4
# model_chunk_id | 0 0 0 1 1 1 0 0 1 1
schedule_table = get_schedule_table(
num_microbatches, len(model), config.microbatch_group_size_per_vp_stage
)
# Decouple individual lookup table for microbatch_id and model_chunk_id.
# For example, the micro-batch table for PP2 N3M5 with VP2 is
# virtual_microbatch_id | 0 1 2 3 4 5 6 7 8 9
# microbatch_id | 0 1 2 0 1 2 3 4 3 4
# Similarly, the model chunk table is
# virtual_microbatch_id | 0 1 2 3 4 5 6 7 8 9
# model_chunk_id | 0 0 0 1 1 1 0 0 1 1
# Both tables are indexed with virtual_microbatch_id.
microbatch_id_table, model_chunk_id_table = zip(*schedule_table)
def get_model_chunk_id(virtual_microbatch_id, forward):
"""Helper method to get the model chunk ID given the iteration number."""
model_chunk_id = model_chunk_id_table[virtual_microbatch_id % total_num_microbatches]
if not forward:
model_chunk_id = num_model_chunks - model_chunk_id - 1
return model_chunk_id
def get_microbatch_id_in_model_chunk(iteration_id, forward):
"""Helper method to get the microbatch_id within model chunk given the iteration number."""
assert forward
microbatch_id_in_model_chunk = microbatch_id_table[iteration_id]
return microbatch_id_in_model_chunk
def num_released_microbatches(virtual_microbatch_id, model_chunk_id):
"""Helper method to count number of released (i.e. popped from input_tensors)
microbatches for a model chunk."""
if forward_only: # Micro-batch is released after forward prop.
return model_chunk_id_table[:virtual_microbatch_id].count(model_chunk_id)
else: # Micro-batch is released after backward prop.
# Zero backward prop in warmup.
if virtual_microbatch_id < num_warmup_microbatches:
return 0
else:
backward_microbatch_id = virtual_microbatch_id - num_warmup_microbatches
model_chunk_id = num_model_chunks - model_chunk_id - 1
return model_chunk_id_table[:backward_microbatch_id].count(model_chunk_id)
def is_first_microbatch_for_model_chunk(virtual_microbatch_id: int) -> bool:
"""Check if an iteration is the first for a model chunk."""
if virtual_microbatch_id < total_num_microbatches:
return microbatch_id_table[virtual_microbatch_id] == 0
else:
return False
def is_last_microbatch_for_model_chunk(virtual_microbatch_id: int) -> bool:
"""Check if an iteration is the last for a model chunk."""
if virtual_microbatch_id < total_num_microbatches:
return microbatch_id_table[virtual_microbatch_id] == num_microbatches - 1
else:
return False
def recv_tensor_from_previous_stage(virtual_microbatch_id, forward):
"""Determine if peers are sending, and where in data structure
to put received tensors.
Return a boolean if the pipeline stage expects to recv from peers, and the
corresponding model_chunk_id for the received tensor.
"""
recv = True
# The leading pipeline stage is the first rank in fwd and the last rank in bwd.
is_leading_pipeline_stage = (
parallel_state.is_pipeline_first_stage(ignore_virtual=True)
if forward
else parallel_state.is_pipeline_last_stage(ignore_virtual=True)
)
last_model_chunk = (num_model_chunks - 1) if forward else 0
if is_leading_pipeline_stage:
# The leading pipeline stage is ahead of the ending pipeline stage
# (i.e. last rank in fwd and first rank in bwd) by (pipeline_parallel_size - 1).
# Let's consider bwd as an example with PP 4:
# 0 1 2 3 ...
# 0 1 2 3 ...
# 0 1 2 3 ...
# 0 1 2 3 ...
if virtual_microbatch_id < (pipeline_parallel_size - 1):
# The ending stage has not produced any tensors, so no recv will be initiated.
recv = False
next_model_chunk_id = get_model_chunk_id(virtual_microbatch_id + 1, forward)
else:
# Find the model chunk of the aligned microbatches in the ending stage.
# For example, microbatch 0 in the ending stage is aligned with microbatch 3
# in the leading stage.
next_model_chunk_id = get_model_chunk_id(
virtual_microbatch_id - (pipeline_parallel_size - 1), forward
)
# Last model chunk in the final stage does not produce tensors.
if next_model_chunk_id == last_model_chunk:
recv = False
if forward:
# Model chunk id increases in forward.
next_model_chunk_id += 1
else:
# Model chunk id decreases in backward.
next_model_chunk_id -= 1
else:
next_model_chunk_id = get_model_chunk_id(virtual_microbatch_id + 1, forward)
return recv, next_model_chunk_id
def forward_step_helper(
virtual_microbatch_id, microbatch_id, checkpoint_activations_microbatch
):
"""Helper method to run forward step with model split into chunks
(run set_virtual_pipeline_model_parallel_rank() before calling
forward_step())."""
model_chunk_id = get_model_chunk_id(virtual_microbatch_id, forward=True)
parallel_state.set_virtual_pipeline_model_parallel_rank(model_chunk_id)
# launch param synchronization for next model chunk
# Note: Asynchronous communication tends to slow down compute.
# To reduce idling from mismatched microbatch times, we launch
# asynchronous communication at the same time across the
# pipeline-parallel group.
if config.param_sync_func is not None:
param_sync_virtual_microbatch_id = virtual_microbatch_id + pipeline_parallel_rank
if (
param_sync_virtual_microbatch_id < total_num_microbatches
and is_first_microbatch_for_model_chunk(param_sync_virtual_microbatch_id)
):
param_sync_chunk_id = (
get_model_chunk_id(param_sync_virtual_microbatch_id, forward=True) + 1
)
if 1 < param_sync_chunk_id < num_model_chunks:
config.param_sync_func[param_sync_chunk_id](
model[param_sync_chunk_id].parameters()
)
# forward step
if parallel_state.is_pipeline_first_stage(ignore_virtual=False):
if len(input_tensors[model_chunk_id]) == len(output_tensors[model_chunk_id]):
input_tensors[model_chunk_id].append(None)
# For non-depth-first pipeline schedules, the first rank would buffer multiple received
# activation tensors for a model chunk until accessed during warmup.
# This input buffering is needed to overlap the computation with the receipt of
# the next inputs. To index the proper buffered inputs for forword_step, we use
# microbatch_id offset with number of released microbatches that have completed backprop.
offset = num_released_microbatches(virtual_microbatch_id, model_chunk_id)
input_tensor = input_tensors[model_chunk_id][microbatch_id - offset]
output_tensor, num_tokens = forward_step(
forward_step_func,
data_iterator[model_chunk_id],
model[model_chunk_id],
num_microbatches,
input_tensor,
forward_data_store,
config,
collect_non_loss_data,
checkpoint_activations_microbatch,
check_first_val_step(
first_val_step,
forward_only,
is_first_microbatch_for_model_chunk(virtual_microbatch_id),
),
current_microbatch=microbatch_id,
)
output_tensors[model_chunk_id].append(output_tensor)
nonlocal total_num_tokens
total_num_tokens += num_tokens
# If forward-only, no need to save tensors for a backward pass.
if forward_only:
# Release the tensor that have completed forward step.
input_tensors[model_chunk_id].pop(0)
output_tensors[model_chunk_id].pop()
return output_tensor
def backward_step_helper(virtual_microbatch_id):
"""Helper method to run backward step with model split into chunks
(run set_virtual_pipeline_model_parallel_rank() before calling
backward_step())."""
model_chunk_id = get_model_chunk_id(virtual_microbatch_id, forward=False)
parallel_state.set_virtual_pipeline_model_parallel_rank(model_chunk_id)
# launch grad synchronization (default)
if config.grad_sync_func is None and is_last_microbatch_for_model_chunk(
virtual_microbatch_id
):
enable_grad_sync()
synchronized_model_chunks.add(model_chunk_id)
# pylint: disable=E0606
if parallel_state.is_pipeline_last_stage(ignore_virtual=False):
if len(output_tensor_grads[model_chunk_id]) == 0:
output_tensor_grads[model_chunk_id].append(None)
input_tensor = input_tensors[model_chunk_id].pop(0)
output_tensor = output_tensors[model_chunk_id].pop(0)
output_tensor_grad = output_tensor_grads[model_chunk_id].pop(0)
input_tensor_grad = backward_step(
input_tensor, output_tensor, output_tensor_grad, model_type, config
)
# launch grad synchronization (custom grad sync)
# Note: Asynchronous communication tends to slow down compute.
# To reduce idling from mismatched microbatch times, we launch
# asynchronous communication at the same time across the
# pipeline-parallel group.
if config.grad_sync_func is not None:
grad_sync_virtual_microbatch_id = virtual_microbatch_id - pipeline_parallel_rank
if grad_sync_virtual_microbatch_id >= 0 and is_last_microbatch_for_model_chunk(
grad_sync_virtual_microbatch_id
):
grad_sync_chunk_id = get_model_chunk_id(
grad_sync_virtual_microbatch_id, forward=False
)
enable_grad_sync()
config.grad_sync_func[grad_sync_chunk_id](model[grad_sync_chunk_id].parameters())
synchronized_model_chunks.add(grad_sync_chunk_id)
disable_grad_sync()
return input_tensor_grad
# Run warmup forward passes.
parallel_state.set_virtual_pipeline_model_parallel_rank(0)
input_tensors[0].append(p2p_communication.recv_forward(tensor_shape, config))
fwd_wait_handles = None
fwd_wait_recv_handles = None
bwd_wait_handles = None
bwd_wait_recv_handles = None
if parallel_state.is_pipeline_first_stage(ignore_virtual=True):
fwd_recv_buffer_size = (
config.microbatch_group_size_per_vp_stage - pipeline_parallel_size + 1
)
else:
fwd_recv_buffer_size = 1
if parallel_state.is_pipeline_last_stage(ignore_virtual=True):
bwd_recv_buffer_size = (
config.microbatch_group_size_per_vp_stage - pipeline_parallel_size + 1
)
else:
bwd_recv_buffer_size = 1
fwd_recv_buffer = [None] * fwd_recv_buffer_size
bwd_recv_buffer = [None] * bwd_recv_buffer_size
recv_prev_wait_handles = []
send_next_wait_handle = None
send_prev_wait_handle = None
recv_next_wait_handles = []
for k in range(num_warmup_microbatches):
cur_model_chunk_id = get_model_chunk_id(k, forward=True)
parallel_state.set_virtual_pipeline_model_parallel_rank(cur_model_chunk_id)
if config.overlap_p2p_comm_warmup_flush:
if not parallel_state.is_pipeline_first_stage(ignore_virtual=False) and k != 0:
assert recv_prev_wait_handles, (
f'pp rank {pipeline_parallel_rank}, iteration {k},'
'should have registered recv handle'
)
recv_prev_wait_handle = recv_prev_wait_handles.pop(0)
recv_prev_wait_handle.wait()
# Determine if tensor should be received from previous stage.
recv_prev, next_forward_model_chunk_id = recv_tensor_from_previous_stage(k, forward=True)
# No receive in last iteration when recv iteration k+1.
if k == (total_num_microbatches - 1):
recv_prev = False
# Prefetch recv for iteration k+1 for non-first ranks.
if config.overlap_p2p_comm_warmup_flush and not parallel_state.is_pipeline_first_stage(
ignore_virtual=True
):
fwd_recv_buffer[k % fwd_recv_buffer_size], fwd_wait_recv_handles = (
p2p_communication.send_forward_recv_forward(
output_tensor=None, # No output_tensor to send.
recv_prev=recv_prev,
tensor_shape=tensor_shape,
config=config,
overlap_p2p_comm=True,
)
)
if fwd_wait_recv_handles:
recv_prev_wait_handles.append(fwd_wait_recv_handles.pop("recv_prev"))
# Decide to checkpoint all layers' activations of the current micro-batch.
if max_outstanding_backprops is not None:
checkpoint_activations_microbatch = (
k % max_outstanding_backprops
>= config.num_microbatches_with_partial_activation_checkpoints
)
else:
checkpoint_activations_microbatch = None
microbatch_id = get_microbatch_id_in_model_chunk(k, forward=True)
output_tensor = forward_step_helper(k, microbatch_id, checkpoint_activations_microbatch)
# Don't send tensor downstream if on last stage.
if parallel_state.is_pipeline_last_stage(ignore_virtual=False):
output_tensor = None
# Send and receive tensors as appropriate (send tensors computed
# in this iteration; receive tensors for next iteration).
if not config.overlap_p2p_comm_warmup_flush:
if (
k == (num_warmup_microbatches - 1)
and not config.overlap_p2p_comm
and not forward_only
and not are_all_microbatches_in_warmup
):
input_tensor_grad = None
recv_next = True
if parallel_state.is_pipeline_last_stage(ignore_virtual=True):
recv_next = False
(input_tensor, output_tensor_grad) = (
p2p_communication.send_forward_backward_recv_forward_backward(
output_tensor,
input_tensor_grad,
recv_prev=recv_prev,
recv_next=recv_next,
tensor_shape=tensor_shape,
config=config,
)
)
output_tensor_grads[num_model_chunks - 1].append(output_tensor_grad)
else:
input_tensor = p2p_communication.send_forward_recv_forward(
output_tensor, recv_prev=recv_prev, tensor_shape=tensor_shape, config=config
)
if recv_prev:
input_tensors[next_forward_model_chunk_id].append(input_tensor)
deallocate_output_tensor(output_tensor, config.deallocate_pipeline_outputs)
else:
if not parallel_state.is_pipeline_first_stage(ignore_virtual=True):
# Send only since recv prefetched.
_, fwd_wait_handles = p2p_communication.send_forward_recv_forward(
output_tensor,
recv_prev=False,
tensor_shape=tensor_shape,
config=config,
overlap_p2p_comm=True,
)
else: # No prefetch for first rank, so both send and recv initiated.
fwd_recv_buffer[k % fwd_recv_buffer_size], fwd_wait_handles = (
p2p_communication.send_forward_recv_forward(
output_tensor,
recv_prev=recv_prev,
tensor_shape=tensor_shape,
config=config,
overlap_p2p_comm=True,
)
)
if send_next_wait_handle is not None:
send_next_wait_handle.wait()
if fwd_wait_handles is not None:
send_next_wait_handle = (
fwd_wait_handles.pop("send_next") if "send_next" in fwd_wait_handles else None
)
if "recv_prev" in fwd_wait_handles:
recv_prev_wait_handles.append(fwd_wait_handles.pop("recv_prev"))
deallocate_output_tensor(output_tensor, config.deallocate_pipeline_outputs)
if recv_prev:
input_tensors[next_forward_model_chunk_id].append(
fwd_recv_buffer[k % fwd_recv_buffer_size]
)
fwd_recv_buffer[(k + 1) % fwd_recv_buffer_size] = None
if config.overlap_p2p_comm:
if (
k == (num_warmup_microbatches - 1)
and not forward_only
and not are_all_microbatches_in_warmup
):
input_tensor_grad = None
recv_next = True
if parallel_state.is_pipeline_last_stage(ignore_virtual=True):
recv_next = False
(bwd_recv_buffer[-1], bwd_wait_handles) = (
p2p_communication.send_backward_recv_backward(
input_tensor_grad,
recv_next=recv_next,
tensor_shape=tensor_shape,
config=config,
overlap_p2p_comm=True,
)
)
if send_prev_wait_handle is not None:
send_prev_wait_handle.wait()
if bwd_wait_handles is not None:
send_prev_wait_handle = (
bwd_wait_handles.pop("send_prev")
if "send_prev" in bwd_wait_handles
else None
)
if "recv_next" in bwd_wait_handles:
recv_next_wait_handles.append(bwd_wait_handles.pop("recv_next"))
if recv_next:
output_tensor_grads[num_model_chunks - 1].append(bwd_recv_buffer[-1])
# Run 1F1B in steady state.
for k in range(num_microbatches_remaining):
# Forward pass.
forward_k = k + num_warmup_microbatches
# Decide to checkpoint all layers' activations of the current micro-batch.
if max_outstanding_backprops is not None:
checkpoint_activations_microbatch = (
forward_k % max_outstanding_backprops
>= config.num_microbatches_with_partial_activation_checkpoints
)
else:
checkpoint_activations_microbatch = None
cur_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
parallel_state.set_virtual_pipeline_model_parallel_rank(cur_model_chunk_id)
microbatch_id = get_microbatch_id_in_model_chunk(forward_k, forward=True)
if config.overlap_p2p_comm:
if not parallel_state.is_pipeline_first_stage(ignore_virtual=False):
if config.overlap_p2p_comm_warmup_flush:
assert recv_prev_wait_handles, (
f'pp rank {pipeline_parallel_rank}, fwd iteration {forward_k}, '
'should have registered recv handle'
)
recv_prev_wait_handle = recv_prev_wait_handles.pop(0)
recv_prev_wait_handle.wait()
else:
if recv_prev_wait_handles is not None and recv_prev_wait_handles:
recv_prev_wait_handle = recv_prev_wait_handles.pop(0)
recv_prev_wait_handle.wait()
deallocate_output_tensor(output_tensor, config.deallocate_pipeline_outputs)
output_tensor = forward_step_helper(
forward_k, microbatch_id, checkpoint_activations_microbatch
)
# Determine if current stage has anything to send in either direction,
# otherwise set tensor to None.
forward_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
parallel_state.set_virtual_pipeline_model_parallel_rank(forward_model_chunk_id)
# Last virtual stage no activation tensor to send.
if parallel_state.is_pipeline_last_stage(ignore_virtual=False):
output_tensor = None
recv_prev, next_forward_model_chunk_id = recv_tensor_from_previous_stage(
forward_k, forward=True
)
# If last iteration, don't receive; we already received one extra
# before the start of the for loop.
if k == (num_microbatches_remaining - 1):
recv_prev = False
# Send activation tensor to the next stage and receive activation tensor from the
# previous stage
fwd_recv_buffer[forward_k % fwd_recv_buffer_size], fwd_wait_handles = (
p2p_communication.send_forward_recv_forward(
output_tensor,
recv_prev=recv_prev,
tensor_shape=tensor_shape,
config=config,
overlap_p2p_comm=True,
)
)
if send_next_wait_handle is not None:
send_next_wait_handle.wait()
if fwd_wait_handles is not None:
send_next_wait_handle = (
fwd_wait_handles.pop("send_next") if "send_next" in fwd_wait_handles else None
)
if "recv_prev" in fwd_wait_handles:
recv_prev_wait_handles.append(fwd_wait_handles.pop("recv_prev"))
# assert fwd_wait_handles is not None
# Backward pass.
backward_k = k
backward_model_chunk_id = get_model_chunk_id(backward_k, forward=False)
parallel_state.set_virtual_pipeline_model_parallel_rank(backward_model_chunk_id)
if not parallel_state.is_pipeline_last_stage(ignore_virtual=False):
if config.overlap_p2p_comm_warmup_flush:
assert recv_next_wait_handles, (
f'pp rank {pipeline_parallel_rank}, bwd iteration {backward_k}, '
'should have registered recv next handle'
)
recv_next_wait_handle = recv_next_wait_handles.pop(0)
recv_next_wait_handle.wait()
else:
if recv_next_wait_handles is not None and recv_next_wait_handles:
recv_next_wait_handle = recv_next_wait_handles.pop(0)
recv_next_wait_handle.wait()
input_tensor_grad = backward_step_helper(backward_k)
# First virtual stage no activation gradient tensor to send.
if parallel_state.is_pipeline_first_stage(ignore_virtual=False):
input_tensor_grad = None
recv_next, next_backward_model_chunk_id = recv_tensor_from_previous_stage(
backward_k, forward=False
)
(bwd_recv_buffer[backward_k % bwd_recv_buffer_size], bwd_wait_handles) = (
p2p_communication.send_backward_recv_backward(
input_tensor_grad,
recv_next=recv_next,
tensor_shape=tensor_shape,
config=config,
overlap_p2p_comm=True,
)
)
if send_prev_wait_handle is not None:
send_prev_wait_handle.wait()
if bwd_wait_handles is not None:
send_prev_wait_handle = (
bwd_wait_handles.pop("send_prev") if "send_prev" in bwd_wait_handles else None
)
if "recv_next" in bwd_wait_handles:
recv_next_wait_handles.append(bwd_wait_handles.pop("recv_next"))
# Put input_tensor and output_tensor_grad in data structures in the
# right location.
if recv_prev:
input_tensors[next_forward_model_chunk_id].append(
fwd_recv_buffer[forward_k % fwd_recv_buffer_size]
)
fwd_recv_buffer[(forward_k + 1) % fwd_recv_buffer_size] = None
if recv_next:
output_tensor_grads[next_backward_model_chunk_id].append(
bwd_recv_buffer[backward_k % bwd_recv_buffer_size]
)
bwd_recv_buffer[(backward_k + 1) % bwd_recv_buffer_size] = None
else: # No p2p overlap.
output_tensor = forward_step_helper(
forward_k, microbatch_id, checkpoint_activations_microbatch
)
# Backward pass.
backward_k = k
input_tensor_grad = backward_step_helper(backward_k)
# Send output_tensor and input_tensor_grad, receive input_tensor
# and output_tensor_grad.
# Determine if current stage has anything to send in either direction,
# otherwise set tensor to None.
forward_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
parallel_state.set_virtual_pipeline_model_parallel_rank(forward_model_chunk_id)
if parallel_state.is_pipeline_last_stage(ignore_virtual=False):
output_tensor = None
backward_model_chunk_id = get_model_chunk_id(backward_k, forward=False)
parallel_state.set_virtual_pipeline_model_parallel_rank(backward_model_chunk_id)
if parallel_state.is_pipeline_first_stage(ignore_virtual=False):
input_tensor_grad = None
recv_prev, next_forward_model_chunk_id = recv_tensor_from_previous_stage(
forward_k, forward=True
)
recv_next, next_backward_model_chunk_id = recv_tensor_from_previous_stage(
backward_k, forward=False
)
# If last iteration, don't receive; we already received one extra
# before the start of the for loop.
if k == (num_microbatches_remaining - 1):
recv_prev = False
# Communicate tensors.
(input_tensor, output_tensor_grad) = (
p2p_communication.send_forward_backward_recv_forward_backward(
output_tensor,
input_tensor_grad,
recv_prev=recv_prev,
recv_next=recv_next,
tensor_shape=tensor_shape,
config=config,
)
)
deallocate_output_tensor(output_tensor, config.deallocate_pipeline_outputs)
# Put input_tensor and output_tensor_grad in data structures in the
# right location.
if recv_prev:
input_tensors[next_forward_model_chunk_id].append(input_tensor)
if recv_next:
output_tensor_grads[next_backward_model_chunk_id].append(output_tensor_grad)
deallocate_output_tensor(output_tensor, config.deallocate_pipeline_outputs)
# Run cooldown backward passes (flush out pipeline).
if not forward_only:
if bwd_wait_handles is not None:
for bwd_wait_handle in bwd_wait_handles.values():
bwd_wait_handle.wait()
if are_all_microbatches_in_warmup:
output_tensor_grads[num_model_chunks - 1].append(
p2p_communication.recv_backward(tensor_shape, config=config)
)
for k in range(num_microbatches_remaining, total_num_microbatches):
cur_model_chunk_id = get_model_chunk_id(k, forward=False)
parallel_state.set_virtual_pipeline_model_parallel_rank(cur_model_chunk_id)
if not parallel_state.is_pipeline_last_stage(ignore_virtual=False) and k != 0:
if config.overlap_p2p_comm_warmup_flush:
assert recv_next_wait_handles, (
f'pp rank {pipeline_parallel_rank}, backward iteration {k}, '
'should have registered recv next handle'
)
recv_next_wait_handle = recv_next_wait_handles.pop(0)
recv_next_wait_handle.wait()
else:
if recv_next_wait_handles is not None and recv_next_wait_handles:
recv_next_wait_handle = recv_next_wait_handles.pop(0)
recv_next_wait_handle.wait()
recv_next, next_backward_model_chunk_id = recv_tensor_from_previous_stage(
k, forward=False
)
if k == (total_num_microbatches - 1):
recv_next = False
# Prefetch recv for backward iteration k+1 for non last ranks.
if config.overlap_p2p_comm_warmup_flush and not parallel_state.is_pipeline_last_stage(
ignore_virtual=True
):
bwd_recv_buffer[k % bwd_recv_buffer_size], bwd_wait_recv_handles = (
p2p_communication.send_backward_recv_backward(
input_tensor_grad=None, # No input_tensor_grad to send.
recv_next=recv_next,
tensor_shape=tensor_shape,
config=config,
overlap_p2p_comm=True,
)
)
if bwd_wait_recv_handles:
recv_next_wait_handles.append(bwd_wait_recv_handles.pop("recv_next"))
input_tensor_grad = backward_step_helper(k)
# First virtual stage no activation gradient tensor to send.
if parallel_state.is_pipeline_first_stage(ignore_virtual=False):
input_tensor_grad = None
if config.overlap_p2p_comm_warmup_flush:
if not parallel_state.is_pipeline_last_stage(ignore_virtual=True):
_, bwd_wait_handles = p2p_communication.send_backward_recv_backward(
input_tensor_grad,
recv_next=False,
tensor_shape=tensor_shape,
config=config,
overlap_p2p_comm=True,
)
else:
bwd_recv_buffer[k % bwd_recv_buffer_size], bwd_wait_handles = (
p2p_communication.send_backward_recv_backward(
input_tensor_grad,
recv_next=recv_next,
tensor_shape=tensor_shape,
config=config,
overlap_p2p_comm=True,
)
)
if send_prev_wait_handle is not None:
send_prev_wait_handle.wait()
if bwd_wait_handles is not None:
send_prev_wait_handle = (
bwd_wait_handles.pop("send_prev")
if "send_prev" in bwd_wait_handles
else None
)
if "recv_next" in bwd_wait_handles:
recv_next_wait_handles.append(bwd_wait_handles.pop("recv_next"))
if recv_next:
output_tensor_grads[next_backward_model_chunk_id].append(
bwd_recv_buffer[k % bwd_recv_buffer_size]
)
bwd_recv_buffer[(k + 1) % bwd_recv_buffer_size] = None
else:
output_tensor_grad = p2p_communication.send_backward_recv_backward(
input_tensor_grad, recv_next=recv_next, tensor_shape=tensor_shape, config=config
)
if recv_next:
output_tensor_grads[next_backward_model_chunk_id].append(output_tensor_grad)
if send_prev_wait_handle is not None:
send_prev_wait_handle.wait()
# Launch any remaining grad reductions.
enable_grad_sync()
if config.grad_sync_func is not None:
for model_chunk_id in range(num_model_chunks):
if model_chunk_id not in synchronized_model_chunks:
config.grad_sync_func[model_chunk_id](model[model_chunk_id].parameters())
synchronized_model_chunks.add(model_chunk_id)
assert (
not recv_prev_wait_handles
), 'recv_prev_wait_handles should be cleared at the end of a step'
assert (
not recv_next_wait_handles
), 'recv_next_wait_handles should be cleared at the end of a step'
if config.finalize_model_grads_func is not None and not forward_only:
# If defer_embedding_wgrad_compute is enabled we need to do the
# weight gradient GEMM's here.
finish_embedding_wgrad_compute(config, embedding_module)
# Finalize model grads (perform full grad all-reduce / reduce-scatter for
# data parallelism, layernorm all-reduce for sequence parallelism, and
# embedding all-reduce for pipeline parallelism).
config.finalize_model_grads_func(
model, total_num_tokens if config.calculate_per_token_loss else None
)
# Restore config.grad_sync_func and config.param_sync_func.
if forward_only:
config.grad_sync_func, config.param_sync_func = grad_sync_func, param_sync_func
if config.timers is not None:
config.timers('forward-backward').stop()
if hasattr(config, 'enable_cuda_graph') and config.enable_cuda_graph:
create_cudagraphs()
return forward_data_store
def get_tensor_shapes(
*,
rank: int,
model_type: ModelType,
seq_length: int,
micro_batch_size: int,
decoder_seq_length: int,
config,
encoder_decoder_xattn: bool,
):
"""
Determine right tensor sizes (based on position of rank with respect to split rank) and
model size.
Send two tensors if model decoder requires the encoder's output (via cross-attention) and
rank is in decoder stage.
First tensor is decoder. Second tensor is encoder.
If model has an encoder & decoder and rank is at the boundary, send one tensor.
Otherwise, send one tensor.
"""
tensor_shapes = []
seq_length = seq_length // parallel_state.get_context_parallel_world_size()
if model_type == ModelType.encoder_and_decoder:
decoder_seq_length = decoder_seq_length // parallel_state.get_context_parallel_world_size()
if config.sequence_parallel:
seq_length = seq_length // parallel_state.get_tensor_model_parallel_world_size()
if model_type == ModelType.encoder_and_decoder:
decoder_seq_length = (
decoder_seq_length // parallel_state.get_tensor_model_parallel_world_size()
)
if model_type == ModelType.encoder_and_decoder:
if parallel_state.is_inside_encoder(rank) and not parallel_state.is_inside_decoder(rank):
tensor_shapes.append((seq_length, micro_batch_size, config.hidden_size))
elif encoder_decoder_xattn:
tensor_shapes.append((decoder_seq_length, micro_batch_size, config.hidden_size))
tensor_shapes.append((seq_length, micro_batch_size, config.hidden_size))
else:
tensor_shapes.append((decoder_seq_length, micro_batch_size, config.hidden_size))
else: # model_type == ModelType.encoder_or_decoder
tensor_shapes.append((seq_length, micro_batch_size, config.hidden_size))
return tensor_shapes
def recv_forward(tensor_shapes, config):
"""Wrapper for p2p_communication.recv_forward used with non-interleaving schedule."""
input_tensors = []
for tensor_shape in tensor_shapes:
if tensor_shape is None:
input_tensors.append(None)
else:
input_tensors.append(p2p_communication.recv_forward(tensor_shape, config))
return input_tensors
def recv_backward(tensor_shapes, config):
"""Wrapper for p2p_communication.recv_backward used with non-interleaving schedule."""
output_tensor_grads = []
for tensor_shape in tensor_shapes:
if tensor_shape is None:
output_tensor_grads.append(None)
else:
output_tensor_grads.append(p2p_communication.recv_backward(tensor_shape, config))
return output_tensor_grads
def send_forward(output_tensors, tensor_shapes, config):
"""Wrapper for p2p_communication.send_forward used with non-interleaving schedule."""
if not isinstance(output_tensors, list):
output_tensors = [output_tensors]
for output_tensor, tensor_shape in zip(output_tensors, tensor_shapes):
if tensor_shape is None:
continue
p2p_communication.send_forward(output_tensor, config)
def send_backward(input_tensor_grads, tensor_shapes, config):
"""Wrapper for p2p_communication.send_backward used with non-interleaving schedule."""
if not isinstance(input_tensor_grads, list):
input_tensor_grads = [input_tensor_grads]
for input_tensor_grad, tensor_shape in zip(input_tensor_grads, tensor_shapes):
if tensor_shape is None:
continue
p2p_communication.send_backward(input_tensor_grad, config)
def send_forward_recv_backward(output_tensors, tensor_shapes, config):
"""Wrapper for p2p_communication.send_forward_recv_backward used
with non-interleaving schedule."""
if not isinstance(output_tensors, list):
output_tensors = [output_tensors]
output_tensor_grads = []
for output_tensor, tensor_shape in zip(output_tensors, tensor_shapes):
if tensor_shape is None:
output_tensor_grads.append(None)
continue
output_tensor_grad = p2p_communication.send_forward_recv_backward(
output_tensor, tensor_shape, config
)
output_tensor_grads.append(output_tensor_grad)
return output_tensor_grads
def send_backward_recv_forward(input_tensor_grads, tensor_shapes, config):
"""Wrapper for p2p_communication.send_backward_recv_forward used
with non-interleaving schedule."""
if not isinstance(input_tensor_grads, list):
input_tensor_grads = [input_tensor_grads]
input_tensors = []
for input_tensor_grad, tensor_shape in zip(input_tensor_grads, tensor_shapes):
if tensor_shape is None:
input_tensors.append(None)
continue
input_tensor = p2p_communication.send_backward_recv_forward(
input_tensor_grad, tensor_shape, config
)
input_tensors.append(input_tensor)
return input_tensors
def forward_backward_pipelining_without_interleaving(
*,
forward_step_func,
data_iterator: Union[Iterator, List[Iterator]],
model: Union[torch.nn.Module, List[torch.nn.Module]],
num_microbatches: int,
seq_length: int,
micro_batch_size: int,
decoder_seq_length: Optional[int] = None,
forward_only: bool = False,
collect_non_loss_data: bool = False,
first_val_step: Optional[bool] = None,
adjust_tensor_shapes_fn: Optional[Callable] = None,
):
"""Run non-interleaved 1F1B schedule, with communication between pipeline
stages. Returns dictionary with losses if the last stage, empty dict otherwise."""
if isinstance(model, list):
assert (
len(model) == 1
), "non-interleaved pipeline-parallel schedule does not support model chunking"
model = model[0]
if isinstance(data_iterator, list):
assert (
len(data_iterator) == 1
), "non-interleaved pipeline-parallel schedule does not support model chunking"
data_iterator = data_iterator[0]
config = get_model_config(model)
if config.overlap_p2p_comm:
raise ValueError(
"Non-interleaved pipeline parallelism does not support overlapping p2p communication"
)
# Needed only when gradients are finalized in M-Core
if config.finalize_model_grads_func is not None and not forward_only:
embedding_module = clear_embedding_activation_buffer(config, model)
if config.timers is not None:
config.timers('forward-backward', log_level=1).start(barrier=config.barrier_with_L1_time)
# Disable async grad reductions
no_sync_func = config.no_sync_func
if no_sync_func is None:
no_sync_func = contextlib.nullcontext
no_sync_context = None
def disable_grad_sync():
"""Disable asynchronous grad reductions"""
nonlocal no_sync_context
if no_sync_context is None:
no_sync_context = no_sync_func()
no_sync_context.__enter__()
def enable_grad_sync():
"""Enable asynchronous grad reductions"""
nonlocal no_sync_context
if no_sync_context is not None:
no_sync_context.__exit__(None, None, None)
no_sync_context = None
disable_grad_sync()
# Compute number of warmup microbatches.
num_warmup_microbatches = (
parallel_state.get_pipeline_model_parallel_world_size()
- parallel_state.get_pipeline_model_parallel_rank()
- 1
)
num_warmup_microbatches = min(num_warmup_microbatches, num_microbatches)
num_microbatches_remaining = num_microbatches - num_warmup_microbatches
# Checkpoint the activations of partial Transformer layers in a number of micro-batches
# within the maximum outstanding micro-batch backpropagations.
# Micro-batches with the ids less than 'num_microbatches_with_partial_activation_checkpoints'
# checkpoint partial Transformer layers (or skip checkpointing) and
# the rest of micro-batches within a window of micro-batches checkpoint
# all Transformer layers. The window of micro-batches is set by the maximum
# outstanding backpropagations and becomes smaller at later pipeline stages.
# Please refer the appendix C in https://arxiv.org/pdf/2205.05198.pdf
max_outstanding_backprops = None
if config.num_microbatches_with_partial_activation_checkpoints is not None:
max_outstanding_backprops = num_warmup_microbatches + 1
model_type = get_model_type(model)
encoder_decoder_xattn = get_model_xattn(model)
rank = parallel_state.get_pipeline_model_parallel_rank()
recv_tensor_shapes = get_tensor_shapes(
rank=rank - 1,
model_type=model_type,
seq_length=seq_length,
micro_batch_size=micro_batch_size,
decoder_seq_length=decoder_seq_length,
config=config,
encoder_decoder_xattn=encoder_decoder_xattn,
)
send_tensor_shapes = get_tensor_shapes(
rank=rank,
model_type=model_type,
seq_length=seq_length,
micro_batch_size=micro_batch_size,
decoder_seq_length=decoder_seq_length,
config=config,
encoder_decoder_xattn=encoder_decoder_xattn,
)
if adjust_tensor_shapes_fn is not None:
recv_tensor_shapes, send_tensor_shapes = adjust_tensor_shapes_fn(
recv_tensor_shapes, send_tensor_shapes
)
# Input, output tensors only need to be saved when doing backward passes
input_tensors = None
output_tensors = None
total_num_tokens = torch.tensor(0, dtype=torch.int).cuda()
if not forward_only:
input_tensors = []
output_tensors = []
forward_data_store = []
# Run warmup forward passes.
for i in range(num_warmup_microbatches):
# Decide to checkpoint all layers' activations of the current micro-batch
if max_outstanding_backprops is not None:
checkpoint_activations_microbatch = (
i % max_outstanding_backprops
>= config.num_microbatches_with_partial_activation_checkpoints
)
else:
checkpoint_activations_microbatch = None
input_tensor = recv_forward(recv_tensor_shapes, config)
output_tensor, num_tokens = forward_step(
forward_step_func,
data_iterator,
model,
num_microbatches,
input_tensor,
forward_data_store,
config,
collect_non_loss_data,
checkpoint_activations_microbatch,
check_first_val_step(first_val_step, forward_only, i == 0),
current_microbatch=i,
encoder_decoder_xattn=encoder_decoder_xattn,
)
send_forward(output_tensor, send_tensor_shapes, config)
total_num_tokens += num_tokens
if not forward_only:
input_tensors.append(input_tensor)
output_tensors.append(output_tensor)
deallocate_output_tensor(output_tensor[0], config.deallocate_pipeline_outputs)
# Before running 1F1B, need to receive first forward tensor.
# If all microbatches are run in warmup / cooldown phase, then no need to
# receive this tensor here.
if num_microbatches_remaining > 0:
input_tensor = recv_forward(recv_tensor_shapes, config)
# Run 1F1B in steady state.
for i in range(num_microbatches_remaining):
last_iteration = i == (num_microbatches_remaining - 1)
# Decide to checkpoint all layers' activations of the current micro-batch
if max_outstanding_backprops is not None:
checkpoint_activations_microbatch = (
(i + num_warmup_microbatches) % max_outstanding_backprops
) >= config.num_microbatches_with_partial_activation_checkpoints
else:
checkpoint_activations_microbatch = None
output_tensor, num_tokens = forward_step(
forward_step_func,
data_iterator,
model,
num_microbatches,
input_tensor,
forward_data_store,
config,
collect_non_loss_data,
checkpoint_activations_microbatch,
check_first_val_step(
first_val_step, forward_only, (i == 0) and (num_warmup_microbatches == 0)
),
current_microbatch=i + num_warmup_microbatches,
encoder_decoder_xattn=encoder_decoder_xattn,
)
total_num_tokens += num_tokens
if forward_only:
send_forward(output_tensor, send_tensor_shapes, config)
if not last_iteration:
input_tensor = recv_forward(recv_tensor_shapes, config)
else:
output_tensor_grad = send_forward_recv_backward(
output_tensor, send_tensor_shapes, config
)
# Add input_tensor and output_tensor to end of list.
input_tensors.append(input_tensor)
output_tensors.append(output_tensor)
deallocate_output_tensor(output_tensor[0], config.deallocate_pipeline_outputs)
# Pop input_tensor and output_tensor from the start of the list for
# the backward pass.
input_tensor = input_tensors.pop(0)
output_tensor = output_tensors.pop(0)
# Enable grad sync for the last microbatch in the batch if the full
# backward pass completes in the 1F1B stage.
if num_warmup_microbatches == 0 and last_iteration:
if config.grad_sync_func is None or rank == 0:
enable_grad_sync()
input_tensor_grad = backward_step(
input_tensor, output_tensor, output_tensor_grad, model_type, config
)
if last_iteration:
input_tensor = None
send_backward(input_tensor_grad, recv_tensor_shapes, config)
else:
input_tensor = send_backward_recv_forward(
input_tensor_grad, recv_tensor_shapes, config
)
# Run cooldown backward passes.
if not forward_only:
for i in range(num_warmup_microbatches):
# Enable async grad reduction in the last backward pass
# Note: If grad sync function is provided, only enable
# async grad reduction in first pipeline stage. Other
# pipeline stages do grad reduction during pipeline
# bubble.
if i == num_warmup_microbatches - 1:
if config.grad_sync_func is None or rank == 0:
enable_grad_sync()
input_tensor = input_tensors.pop(0)
output_tensor = output_tensors.pop(0)
output_tensor_grad = recv_backward(send_tensor_shapes, config)
input_tensor_grad = backward_step(
input_tensor, output_tensor, output_tensor_grad, model_type, config
)
send_backward(input_tensor_grad, recv_tensor_shapes, config)
# Launch any remaining grad reductions.
if no_sync_context is not None:
enable_grad_sync()
if config.grad_sync_func is not None:
config.grad_sync_func(model.parameters())
if config.finalize_model_grads_func is not None and not forward_only:
# If defer_embedding_wgrad_compute is enabled we need to do the
# weight gradient GEMM's here.
finish_embedding_wgrad_compute(config, embedding_module)
# Finalize model grads (perform full grad all-reduce / reduce-scatter for
# data parallelism, layernorm all-reduce for sequence parallelism, and
# embedding all-reduce for pipeline parallelism).
config.finalize_model_grads_func(
[model], total_num_tokens if config.calculate_per_token_loss else None
)
if config.timers is not None:
config.timers('forward-backward').stop()
if hasattr(config, 'enable_cuda_graph') and config.enable_cuda_graph:
create_cudagraphs()
return forward_data_store
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment