# flake8: noqa from mmengine.config import read_base from opencompass.partitioners import NaivePartitioner, NumWorkerPartitioner from opencompass.runners import LocalRunner from opencompass.tasks import OpenICLEvalTask, OpenICLInferTask ####################################################################### # PART 0 Essential Configs # ####################################################################### with read_base(): # Models (add your models here) from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat import \ models as hf_internlm2_5_7b_chat_model # Datasets from opencompass.configs.chatml_datasets.MaScQA.MaScQA_gen import datasets as MaScQA_chatml from opencompass.configs.chatml_datasets.CPsyExam.CPsyExam_gen import datasets as CPsyExam_chatml models = sum([v for k, v in locals().items() if k.endswith('_model')], []) chatml_datasets = sum( (v for k, v in locals().items() if k.endswith('_chatml')), [], ) # Your Judge Model Configs Here judge_cfg = dict() for dataset in chatml_datasets: if dataset['evaluator']['type'] == 'llm_evaluator': dataset['evaluator']['judge_cfg'] = judge_cfg if dataset['evaluator']['type'] == 'cascade_evaluator': dataset['evaluator']['llm_evaluator']['judge_cfg'] = judge_cfg infer = dict( partitioner=dict(type=NumWorkerPartitioner, num_worker=8), runner=dict(type=LocalRunner, task=dict(type=OpenICLInferTask)), ) eval = dict( partitioner=dict(type=NaivePartitioner, n=8), runner=dict( type=LocalRunner, task=dict(type=OpenICLEvalTask), max_num_workers=32 ), ) work_dir = 'outputs/ChatML_Datasets'