"ts/nni_manager/common/trainingService.ts" did not exist on "3e62e60b0376e54a33b7f8a2aed90560a61f7fe7"
Commit c289ecc0 authored by xinghao's avatar xinghao
Browse files

Initial commit

parents
Pipeline #3004 canceled with stages
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import MDLRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import commonsenseqaDataset
commonsenseqa_reader_cfg = dict(
input_columns=['question', 'A', 'B', 'C', 'D', 'E'],
output_column='answerKey',
test_split='validation')
_ice_template = dict(
type=PromptTemplate,
template={
ans: dict(
begin='</E>',
round=[
dict(role='HUMAN', prompt='Question: {question}\nAnswer: '),
dict(role='BOT', prompt=ans_token),
])
for ans, ans_token in [['A', '{A}'], ['B', '{B}'],
['C', '{C}'], ['D', '{D}'],
['E', '{E}']]
},
ice_token='</E>')
commonsenseqa_infer_cfg = dict(
ice_template=_ice_template,
retriever=dict(
type=MDLRetriever,
ice_num=8,
candidate_num=30,
select_time=10,
seed=1,
batch_size=12,
ice_template=_ice_template),
inferencer=dict(type=PPLInferencer))
commonsenseqa_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
commonsenseqa_datasets = [
dict(
abbr='commonsense_qa',
type=commonsenseqaDataset,
path='opencompass/commonsense_qa',
reader_cfg=commonsenseqa_reader_cfg,
infer_cfg=commonsenseqa_infer_cfg,
eval_cfg=commonsenseqa_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import MDLRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import commonsenseqaDataset
commonsenseqa_reader_cfg = dict(
input_columns=['question', 'A', 'B', 'C', 'D', 'E'],
output_column='answerKey',
test_split='validation')
_ice_template = dict(
type=PromptTemplate,
template={
'A': '</E>Answer the following question:\n{question}\nAnswer: {A}',
'B': '</E>Answer the following question:\n{question}\nAnswer: {B}',
'C': '</E>Answer the following question:\n{question}\nAnswer: {C}',
'D': '</E>Answer the following question:\n{question}\nAnswer: {D}',
'E': '</E>Answer the following question:\n{question}\nAnswer: {E}',
},
ice_token='</E>')
commonsenseqa_infer_cfg = dict(
ice_template=_ice_template,
retriever=dict(
type=MDLRetriever,
ice_num=8,
candidate_num=30,
select_time=10,
seed=1,
batch_size=12,
ice_template=_ice_template),
inferencer=dict(type=PPLInferencer))
commonsenseqa_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
commonsenseqa_datasets = [
dict(
abbr='commonsense_qa',
type=commonsenseqaDataset,
path='opencompass/commonsense_qa',
reader_cfg=commonsenseqa_reader_cfg,
infer_cfg=commonsenseqa_infer_cfg,
eval_cfg=commonsenseqa_eval_cfg)
]
# Use FixKRetriever to avoid hang caused by the Huggingface
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import commonsenseqaDataset
commonsenseqa_reader_cfg = dict(
input_columns=['question', 'A', 'B', 'C', 'D', 'E'],
output_column='answerKey',
test_split='validation')
_ice_template = dict(
type=PromptTemplate,
template={
ans: dict(
begin='</E>',
round=[
dict(role='HUMAN', prompt='Question: {question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nE. {E}\nAnswer: '),
dict(role='BOT', prompt=f'{ans}'),
])
for ans in ['A', 'B', 'C', 'D', 'E']
},
ice_token='</E>')
commonsenseqa_infer_cfg = dict(
ice_template=_ice_template,
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4, 5, 6, 7]),
inferencer=dict(type=PPLInferencer))
commonsenseqa_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
commonsenseqa_datasets = [
dict(
abbr='commonsense_qa',
type=commonsenseqaDataset,
path='opencompass/commonsense_qa',
reader_cfg=commonsenseqa_reader_cfg,
infer_cfg=commonsenseqa_infer_cfg,
eval_cfg=commonsenseqa_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import commonsenseqaDataset
commonsenseqa_reader_cfg = dict(
input_columns=['question', 'A', 'B', 'C', 'D', 'E'],
output_column='answerKey',
test_split='validation')
_ice_template = dict(
type=PromptTemplate,
template={
ans: dict(
begin='</E>',
round=[
dict(role='HUMAN', prompt='Question: {question}\nAnswer: '),
dict(role='BOT', prompt=ans_token),
])
for ans, ans_token in [['A', '{A}'], ['B', '{B}'],
['C', '{C}'], ['D', '{D}'],
['E', '{E}']]
},
ice_token='</E>')
commonsenseqa_infer_cfg = dict(
ice_template=_ice_template,
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4, 5, 6, 7]),
inferencer=dict(type=PPLInferencer))
commonsenseqa_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
commonsenseqa_datasets = [
dict(
abbr='commonsense_qa',
type=commonsenseqaDataset,
path='opencompass/commonsense_qa',
reader_cfg=commonsenseqa_reader_cfg,
infer_cfg=commonsenseqa_infer_cfg,
eval_cfg=commonsenseqa_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .commonsenseqacn_gen_d380d0 import commonsenseqacn_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CommonsenseQADataset_CN
from opencompass.utils.text_postprocessors import first_capital_postprocess
commonsenseqacn_reader_cfg = dict(
input_columns=['question', 'A', 'B', 'C', 'D', 'E'],
output_column='answerKey',
test_split='validation',
)
_ice_template = dict(
type=PromptTemplate,
template=dict(
begin='</E>',
round=[
dict(
role='HUMAN',
prompt='{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nE. {E}\n答案:',
),
dict(role='BOT', prompt='{answerKey}'),
],
),
ice_token='</E>',
)
commonsenseqacn_infer_cfg = dict(
prompt_template=_ice_template,
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
commonsenseqacn_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(type=first_capital_postprocess),
)
commonsenseqacn_datasets = [
dict(
abbr='commonsenseqa_cn',
type=CommonsenseQADataset_CN,
path='./data/commonsenseqa_cn/validation.jsonl',
reader_cfg=commonsenseqacn_reader_cfg,
infer_cfg=commonsenseqacn_infer_cfg,
eval_cfg=commonsenseqacn_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .commonsenseqacn_ppl_971f48 import commonsenseqacn_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CommonsenseQADataset_CN
commonsenseqacn_reader_cfg = dict(
input_columns=['question', 'A', 'B', 'C', 'D', 'E'],
output_column='answerKey',
test_split='validation',
)
_ice_template = dict(
type=PromptTemplate,
template={
ans: dict(
begin='</E>',
round=[
dict(role='HUMAN', prompt='问题: {question}\n答案: '),
dict(role='BOT', prompt=ans_token),
],
)
for ans, ans_token in [
['A', '{A}'],
['B', '{B}'],
['C', '{C}'],
['D', '{D}'],
['E', '{E}'],
]
},
ice_token='</E>',
)
commonsenseqacn_infer_cfg = dict(
prompt_template=_ice_template,
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
commonsenseqacn_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
commonsenseqacn_datasets = [
dict(
abbr='commonsenseqa_cn',
type=CommonsenseQADataset_CN,
path='./data/commonsenseqa_cn/validation.jsonl',
reader_cfg=commonsenseqacn_reader_cfg,
infer_cfg=commonsenseqacn_infer_cfg,
eval_cfg=commonsenseqacn_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import AgentInferencer
from opencompass.datasets import CIBenchDataset, CIBenchEvaluator
libs = [
'/lightgbm',
'/matplotlib',
'/nltk',
'/opencv',
'/pandas',
'/pytorch',
'/scipy',
'/seaborn',
'/sklearn',
'/tensorflow',
'_chinese/lightgbm',
'_chinese/matplotlib',
'_chinese/nltk',
'_chinese/opencv',
'_chinese/pandas',
'_chinese/pytorch',
'_chinese/scipy',
'_chinese/seaborn',
'_chinese/sklearn',
'_chinese/tensorflow',
]
cibench_datasets = []
for lib in libs:
cibench_reader_cfg = dict(
input_columns=['questions'], output_column='references', train_split='test', test_split='test'
)
cibench_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template='{questions}',
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=AgentInferencer, infer_mode='every'),
)
cibench_eval_cfg = dict(evaluator=dict(type=CIBenchEvaluator), pred_role='BOT')
cibench_datasets.append(
dict(
abbr=f'cibench_template{lib}',
type=CIBenchDataset,
path=f'data/compassbench_v1.1/agent-cibench/cibench_template{lib}',
internet_check=False,
reader_cfg=cibench_reader_cfg,
infer_cfg=cibench_infer_cfg,
eval_cfg=cibench_eval_cfg,
)
)
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import ChatInferencer
from opencompass.openicl.icl_evaluator import TEvalEvaluator
from opencompass.datasets import teval_postprocess, TEvalDataset
plugin_eval_subject_mapping = {
'instruct': ['instruct_v1'],
'instruct_zh': ['instruct_v1_zh'],
'plan': ['plan_json_v1', 'plan_str_v1'],
'plan_zh': ['plan_json_v1_zh', 'plan_str_v1_zh'],
'review': ['review_str_v1'],
'review_zh': ['review_str_v1_zh'],
'reason_retrieve_understand': ['reason_retrieve_understand_json_v1'],
'reason_retrieve_understand_zh': ['reason_retrieve_understand_json_v1_zh'],
'reason': ['reason_str_v1'],
'reason_zh': ['reason_str_v1_zh'],
'retrieve': ['retrieve_str_v1'],
'retrieve_zh': ['retrieve_str_v1_zh'],
'understand': ['understand_str_v1'],
'understand_zh': ['understand_str_v1_zh'],
}
plugin_eval_datasets = []
for _name in plugin_eval_subject_mapping:
plugin_eval_reader_cfg = dict(input_columns=['prompt'], output_column='ground_truth')
plugin_eval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{prompt}'),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=ChatInferencer),
)
plugin_eval_eval_cfg = dict(
evaluator=dict(type=TEvalEvaluator, subset=_name),
pred_postprocessor=dict(type=teval_postprocess),
num_gpus=1,
)
for subset in plugin_eval_subject_mapping[_name]:
plugin_eval_datasets.append(
dict(
abbr='plugin_eval-mus-p10-' + subset,
type=TEvalDataset,
path='data/compassbench_v1.1/agent-teval-p10',
name=subset,
reader_cfg=plugin_eval_reader_cfg,
infer_cfg=plugin_eval_infer_cfg,
eval_cfg=plugin_eval_eval_cfg,
)
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment