Commit c289ecc0 authored by xinghao's avatar xinghao
Browse files

Initial commit

parents
Pipeline #3004 canceled with stages
from mmengine.config import read_base
with read_base():
from .SuperGLUE_BoolQ_gen_883d50 import BoolQ_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BoolQDatasetV2
from opencompass.utils.text_postprocessors import first_capital_postprocess
BoolQ_reader_cfg = dict(
input_columns=['question', 'passage'],
output_column='label',
)
BoolQ_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='{passage}\nQuestion: {question}\nA. Yes\nB. No\nAnswer:'),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
BoolQ_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_capital_postprocess),
)
BoolQ_datasets = [
dict(
abbr='BoolQ',
type=BoolQDatasetV2,
path='opencompass/boolq',
reader_cfg=BoolQ_reader_cfg,
infer_cfg=BoolQ_infer_cfg,
eval_cfg=BoolQ_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_BoolQ_ppl_314b96 import BoolQ_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BoolQDatasetV2
BoolQ_reader_cfg = dict(
input_columns=['question', 'passage'],
output_column='label',
)
BoolQ_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'A':
dict(round=[
dict(role='HUMAN', prompt='{passage}\nQuestion: {question}?'),
dict(role='BOT', prompt='Yes'),
]),
'B':
dict(round=[
dict(role='HUMAN', prompt='{passage}\nQuestion: {question}?'),
dict(role='BOT', prompt='No'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
BoolQ_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
BoolQ_datasets = [
dict(
abbr='BoolQ',
type=BoolQDatasetV2,
path='opencompass/boolq',
reader_cfg=BoolQ_reader_cfg,
infer_cfg=BoolQ_infer_cfg,
eval_cfg=BoolQ_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BoolQDatasetV3
BoolQ_reader_cfg = dict(
input_columns=['question', 'passage'],
output_column='label',
test_split='train')
BoolQ_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'false':
dict(round=[
dict(role='HUMAN', prompt='Passage: {passage}\nQuestion: {question}?'),
dict(role='BOT', prompt='Answer: No'),
]),
'true':
dict(round=[
dict(role='HUMAN', prompt='Passage: {passage}\nQuestion: {question}?'),
dict(role='BOT', prompt='Answer: Yes'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
BoolQ_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
BoolQ_datasets = [
dict(
abbr='BoolQ',
type=BoolQDatasetV3,
path='opencompass/boolq',
reader_cfg=BoolQ_reader_cfg,
infer_cfg=BoolQ_infer_cfg,
eval_cfg=BoolQ_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BoolQDataset
BoolQ_reader_cfg = dict(
input_columns=['question', 'passage'],
output_column='answer',
test_split='train')
BoolQ_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0:
dict(round=[
dict(role='HUMAN', prompt='{passage}\nQuestion: {question}?'),
dict(role='BOT', prompt='No'),
]),
1:
dict(round=[
dict(role='HUMAN', prompt='{passage}\nQuestion: {question}?'),
dict(role='BOT', prompt='Yes'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
BoolQ_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
BoolQ_datasets = [
dict(
type=BoolQDataset,
abbr='BoolQ',
path='json',
data_files='opencompass/boolq',
split='train',
reader_cfg=BoolQ_reader_cfg,
infer_cfg=BoolQ_infer_cfg,
eval_cfg=BoolQ_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BoolQDataset
BoolQ_reader_cfg = dict(
input_columns=['question', 'passage'],
output_column='answer',
test_split='train')
BoolQ_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0:
dict(round=[
dict(role='HUMAN', prompt='{passage}\nQuestion: {question}'),
dict(role='BOT', prompt='No.'),
]),
1:
dict(round=[
dict(role='HUMAN', prompt='{passage}\nQuestion: {question}'),
dict(role='BOT', prompt='Yes.'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
BoolQ_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
BoolQ_datasets = [
dict(
type=BoolQDataset,
abbr='BoolQ',
path='json',
data_files='opencompass/boolq',
split='train',
reader_cfg=BoolQ_reader_cfg,
infer_cfg=BoolQ_infer_cfg,
eval_cfg=BoolQ_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BoolQDataset
BoolQ_reader_cfg = dict(
input_columns=['question', 'passage'],
output_column='answer',
test_split='train')
BoolQ_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0: 'Passage:{passage}。\nQuestion:{question}。\nAnswer: No.',
1: 'Passage:{passage}。\nQuestion:{question}。\nAnswer: Yes.',
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
BoolQ_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
BoolQ_datasets = [
dict(
type=BoolQDataset,
abbr='BoolQ',
path='json',
data_files='opencompass/boolq',
split='train',
reader_cfg=BoolQ_reader_cfg,
infer_cfg=BoolQ_infer_cfg,
eval_cfg=BoolQ_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_CB_gen_854c6c import CB_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CBDatasetV2
from opencompass.utils.text_postprocessors import first_option_postprocess
CB_reader_cfg = dict(
input_columns=['premise', 'hypothesis'],
output_column='label',
)
CB_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt=
'{premise}\n{hypothesis}\nWhat is the relation between the two sentences?\nA. Contradiction\nB. Entailment\nC. Neutral\nAnswer:'
),
], ),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
CB_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_option_postprocess, options='ABC'),
)
CB_datasets = [
dict(
abbr='CB',
type=CBDatasetV2,
path='./data/SuperGLUE/CB/val.jsonl',
reader_cfg=CB_reader_cfg,
infer_cfg=CB_infer_cfg,
eval_cfg=CB_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_CB_ppl_0143fe import CB_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
CB_reader_cfg = dict(
input_columns=['premise', 'hypothesis'],
output_column='label',
)
CB_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'contradiction':
dict(round=[
dict(
role='HUMAN',
prompt=
'{premise}\n{hypothesis}\nWhat is the relation between the two sentences?'
),
dict(role='BOT', prompt='Contradiction'),
]),
'entailment':
dict(round=[
dict(
role='HUMAN',
prompt=
'{premise}\n{hypothesis}\nWhat is the relation between the two sentences?'
),
dict(role='BOT', prompt='Entailment'),
]),
'neutral':
dict(round=[
dict(
role='HUMAN',
prompt=
'{premise}\n{hypothesis}\nWhat is the relation between the two sentences?'
),
dict(role='BOT', prompt='Neutral'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
CB_eval_cfg = dict(evaluator=dict(type=AccEvaluator), )
CB_datasets = [
dict(
type=HFDataset,
abbr='CB',
path='json',
split='train',
data_files='./data/SuperGLUE/CB/val.jsonl',
reader_cfg=CB_reader_cfg,
infer_cfg=CB_infer_cfg,
eval_cfg=CB_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
CB_reader_cfg = dict(
input_columns=['premise', 'hypothesis'], output_column='label')
CB_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'contradiction': '{premise}?contradiction, {hypothesis}',
'entailment': '{premise}?entailment, {hypothesis}',
'neutral': '{premise}?neutral, {hypothesis}'
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
CB_eval_cfg = dict(evaluator=dict(type=AccEvaluator), )
CB_datasets = [
dict(
type=HFDataset,
abbr='CB',
path='json',
split='train',
data_files='./data/SuperGLUE/CB/val.jsonl',
reader_cfg=CB_reader_cfg,
infer_cfg=CB_infer_cfg,
eval_cfg=CB_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_COPA_gen_91ca53 import COPA_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import COPADatasetV2
from opencompass.utils.text_postprocessors import first_option_postprocess
COPA_reader_cfg = dict(
input_columns=['question', 'premise', 'choice1', 'choice2'],
output_column='label',
)
COPA_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt=
'{premise}\nQuestion: Which may be the {question}?\nA. {choice1}\nB. {choice2}\nAnswer:'
),
], ),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
COPA_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_option_postprocess, options='AB'),
)
COPA_datasets = [
dict(
abbr='COPA',
type=COPADatasetV2,
path='./data/SuperGLUE/COPA/val.jsonl',
reader_cfg=COPA_reader_cfg,
infer_cfg=COPA_infer_cfg,
eval_cfg=COPA_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_COPA_ppl_9f3618 import COPA_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
COPA_reader_cfg = dict(
input_columns=['question', 'premise', 'choice1', 'choice2'],
output_column='label',
test_split='train')
COPA_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0: 'Premise:{premise}。\nQuestion:{question}。\nAnswer: {choice1}.',
1: 'Passage:{premise}。\nQuestion:{question}。\nAnswer: {choice2}.',
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
COPA_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
COPA_datasets = [
dict(
type=HFDataset,
abbr='COPA',
path='json',
data_files='./data/SuperGLUE/COPA/val.jsonl',
split='train',
reader_cfg=COPA_reader_cfg,
infer_cfg=COPA_infer_cfg,
eval_cfg=COPA_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
COPA_reader_cfg = dict(
input_columns=['question', 'premise', 'choice1', 'choice2'],
output_column='label',
test_split='train')
COPA_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0:
dict(round=[
dict(role='HUMAN', prompt='{premise}\nQuestion: {question}\nAnswer:'),
dict(role='BOT', prompt='{choice1}'),
]),
1:
dict(round=[
dict(role='HUMAN', prompt='{premise}\nQuestion: {question}\nAnswer:'),
dict(role='BOT', prompt='{choice2}'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
COPA_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
COPA_datasets = [
dict(
type=HFDataset,
abbr='COPA',
path='json',
data_files='./data/SuperGLUE/COPA/val.jsonl',
split='train',
reader_cfg=COPA_reader_cfg,
infer_cfg=COPA_infer_cfg,
eval_cfg=COPA_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
COPA_reader_cfg = dict(
input_columns=['question', 'premise', 'choice1', 'choice2'],
output_column='label',
test_split='train')
COPA_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0:
dict(round=[
dict(
role='HUMAN',
prompt='{premise}\nQuestion: What may be the {question}?\nAnswer:'),
dict(role='BOT', prompt='{choice1}'),
]),
1:
dict(round=[
dict(
role='HUMAN',
prompt='{premise}\nQuestion: What may be the {question}?\nAnswer:'),
dict(role='BOT', prompt='{choice2}'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
COPA_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
COPA_datasets = [
dict(
type=HFDataset,
abbr='COPA',
path='json',
data_files='./data/SuperGLUE/COPA/val.jsonl',
split='train',
reader_cfg=COPA_reader_cfg,
infer_cfg=COPA_infer_cfg,
eval_cfg=COPA_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_MultiRC_gen_27071f import MultiRC_datasets # noqa: F401, F403
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment