# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Description: generate inputs and targets for the dlrm benchmark # The inpts and outputs are generated according to the following three option(s) # 1) random distribution # 2) synthetic distribution, based on unique accesses and distances between them # i) R. Hassan, A. Harris, N. Topham and A. Efthymiou "Synthetic Trace-Driven # Simulation of Cache Memory", IEEE AINAM'07 # 3) public data set # i) Criteo Kaggle Display Advertising Challenge Dataset # https://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset # ii) Criteo Terabyte Dataset # https://labs.criteo.com/2013/12/download-terabyte-click-logs from __future__ import absolute_import, division, print_function, unicode_literals import bisect import collections # others # from os import path import sys import data_utils # numpy import numpy as np # pytorch import torch from numpy import random as ra from torch.utils.data import Dataset # Kaggle Display Advertising Challenge Dataset # dataset (str): name of dataset (Kaggle or Terabyte) # randomize (str): determines randomization scheme # 'none': no randomization # 'day': randomizes each day's data (only works if split = True) # 'total': randomizes total dataset # split (bool) : to split into train, test, validation data-sets class CriteoDatasetWMemoryMap(Dataset): def __init__( self, dataset, max_ind_range, sub_sample_rate, randomize, split="train", raw_path="", pro_data="", ): # dataset # tar_fea = 1 # single target den_fea = 13 # 13 dense features # spa_fea = 26 # 26 sparse features # tad_fea = tar_fea + den_fea # tot_fea = tad_fea + spa_fea if dataset == "kaggle": days = 7 elif dataset == "terabyte": days = 24 else: raise (ValueError("Data set option is not supported")) self.max_ind_range = max_ind_range # split the datafile into path and filename lstr = raw_path.split("/") self.d_path = "/".join(lstr[0:-1]) + "/" self.d_file = lstr[-1].split(".")[0] if dataset == "kaggle" else lstr[-1] self.npzfile = self.d_path + ( (self.d_file + "_day") if dataset == "kaggle" else self.d_file ) self.trafile = self.d_path + ( (self.d_file + "_fea") if dataset == "kaggle" else "fea" ) # get a number of samples per day total_file = self.d_path + self.d_file + "_day_count.npz" with np.load(total_file) as data: total_per_file = data["total_per_file"] # compute offsets per file self.offset_per_file = np.array([0] + list(total_per_file)) for i in range(days): self.offset_per_file[i + 1] += self.offset_per_file[i] # print(self.offset_per_file) # setup data self.split = split if split == "none" or split == "train": self.day = 0 self.max_day_range = days if split == "none" else days - 1 elif split == "test" or split == "val": self.day = days - 1 num_samples = self.offset_per_file[days] - self.offset_per_file[days - 1] self.test_size = int(np.ceil(num_samples / 2.0)) self.val_size = num_samples - self.test_size else: sys.exit("ERROR: dataset split is neither none, nor train or test.") # load unique counts with np.load(self.d_path + self.d_file + "_fea_count.npz") as data: self.counts = data["counts"] self.m_den = den_fea # X_int.shape[1] self.n_emb = len(self.counts) print("Sparse features= %d, Dense features= %d" % (self.n_emb, self.m_den)) # Load the test data # Only a single day is used for testing if self.split == "test" or self.split == "val": # only a single day is used for testing fi = self.npzfile + "_{0}_reordered.npz".format(self.day) with np.load(fi) as data: self.X_int = data["X_int"] # continuous feature self.X_cat = data["X_cat"] # categorical feature self.y = data["y"] # target def __getitem__(self, index): if isinstance(index, slice): return [ self[idx] for idx in range( index.start or 0, index.stop or len(self), index.step or 1 ) ] if self.split == "none" or self.split == "train": # check if need to swicth to next day and load data if index == self.offset_per_file[self.day]: # print("day_boundary switch", index) self.day_boundary = self.offset_per_file[self.day] fi = self.npzfile + "_{0}_reordered.npz".format(self.day) # print('Loading file: ', fi) with np.load(fi) as data: self.X_int = data["X_int"] # continuous feature self.X_cat = data["X_cat"] # categorical feature self.y = data["y"] # target self.day = (self.day + 1) % self.max_day_range i = index - self.day_boundary elif self.split == "test" or self.split == "val": # only a single day is used for testing i = index + (0 if self.split == "test" else self.test_size) else: sys.exit("ERROR: dataset split is neither none, nor train or test.") if self.max_ind_range > 0: return self.X_int[i], self.X_cat[i] % self.max_ind_range, self.y[i] else: return self.X_int[i], self.X_cat[i], self.y[i] def _default_preprocess(self, X_int, X_cat, y): X_int = torch.log(torch.tensor(X_int, dtype=torch.float) + 1) if self.max_ind_range > 0: X_cat = torch.tensor(X_cat % self.max_ind_range, dtype=torch.long) else: X_cat = torch.tensor(X_cat, dtype=torch.long) y = torch.tensor(y.astype(np.float32)) return X_int, X_cat, y def __len__(self): if self.split == "none": return self.offset_per_file[-1] elif self.split == "train": return self.offset_per_file[-2] elif self.split == "test": return self.test_size elif self.split == "val": return self.val_size else: sys.exit("ERROR: dataset split is neither none, nor train nor test.") def collate_wrapper_criteo(list_of_tuples): # where each tuple is (X_int, X_cat, y) transposed_data = list(zip(*list_of_tuples)) X_int = torch.log(torch.tensor(transposed_data[0], dtype=torch.float) + 1) X_cat = torch.tensor(transposed_data[1], dtype=torch.long) T = torch.tensor(transposed_data[2], dtype=torch.float32).view(-1, 1) batchSize = X_cat.shape[0] featureCnt = X_cat.shape[1] lS_i = [X_cat[:, i] for i in range(featureCnt)] lS_o = [torch.tensor(range(batchSize)) for _ in range(featureCnt)] return X_int, torch.stack(lS_o), torch.stack(lS_i), T # Conversion from offset to length def offset_to_length_convertor(lS_o, lS_i): def diff(tensor): return tensor[1:] - tensor[:-1] return torch.stack( [ diff(torch.cat((S_o, torch.tensor(lS_i[ind].shape))).int()) for ind, S_o in enumerate(lS_o) ] ) def unpack_batch(b, data_gen, data_set): return b[0], b[1], b[2], b[3], torch.ones(b[3].size()) def read_dataset( dataset, max_ind_range, sub_sample_rate, mini_batch_size, num_batches, randomize, split="train", raw_data="", processed_data="", memory_map=False, inference_only=False, test_mini_batch_size=1, ): # split the datafile into path and filename lstr = raw_data.split("/") d_path = "/".join(lstr[0:-1]) + "/" d_file = lstr[-1].split(".")[0] if dataset == "kaggle" else lstr[-1] # npzfile = d_path + ((d_file + "_day") if dataset == "kaggle" else d_file) # trafile = d_path + ((d_file + "_fea") if dataset == "kaggle" else "fea") # load print("Loading %s dataset..." % dataset) nbatches = 0 file, days = data_utils.loadDataset( dataset, max_ind_range, sub_sample_rate, randomize, split, raw_data, processed_data, memory_map, ) if memory_map: # WARNING: at this point the data has been reordered and shuffled across files # e.g. day__reordered.npz, what remains is simply to read and feed # the data from each file, going in the order of days file-by-file, to the # model during training. train_data = CriteoDatasetWMemoryMap( dataset, max_ind_range, sub_sample_rate, randomize, "train", raw_data, processed_data, ) test_data = CriteoDatasetWMemoryMap( dataset, max_ind_range, sub_sample_rate, randomize, "test", raw_data, processed_data, ) train_loader = torch.utils.data.DataLoader( train_data, batch_size=mini_batch_size, shuffle=False, num_workers=0, collate_fn=collate_wrapper_criteo, pin_memory=False, drop_last=False, # True ) test_loader = torch.utils.data.DataLoader( test_data, batch_size=test_mini_batch_size, shuffle=False, num_workers=0, collate_fn=collate_wrapper_criteo, pin_memory=False, drop_last=False, # True ) return train_data, train_loader, test_data, test_loader else: # load and preprocess data with np.load(file) as data: X_int = data["X_int"] X_cat = data["X_cat"] y = data["y"] counts = data["counts"] # get a number of samples per day total_file = d_path + d_file + "_day_count.npz" with np.load(total_file) as data: total_per_file = data["total_per_file"] # transform ( X_cat_train, X_int_train, y_train, X_cat_val, X_int_val, y_val, X_cat_test, X_int_test, y_test, ) = data_utils.transformCriteoAdData( X_cat, X_int, y, days, split, randomize, total_per_file ) ln_emb = counts m_den = X_int_train.shape[1] n_emb = len(counts) print("Sparse features = %d, Dense features = %d" % (n_emb, m_den)) # adjust parameters def assemble_samples(X_cat, X_int, y, max_ind_range, print_message): if max_ind_range > 0: X_cat = X_cat % max_ind_range nsamples = len(y) data_size = nsamples # using floor is equivalent to dropping last mini-batch (drop_last = True) nbatches = int(np.floor((data_size * 1.0) / mini_batch_size)) print(print_message) if num_batches != 0 and num_batches < nbatches: print( "Limiting to %d batches of the total % d batches" % (num_batches, nbatches) ) nbatches = num_batches else: print("Total number of batches %d" % nbatches) # data main loop lX = [] lS_lengths = [] lS_indices = [] lT = [] for j in range(0, nbatches): # number of data points in a batch print("Reading in batch: %d / %d" % (j + 1, nbatches), end="\r") n = min(mini_batch_size, data_size - (j * mini_batch_size)) # dense feature idx_start = j * mini_batch_size lX.append((X_int[idx_start : (idx_start + n)]).astype(np.float32)) # Targets - outputs lT.append( (y[idx_start : idx_start + n]).reshape(-1, 1).astype(np.int32) ) # sparse feature (sparse indices) lS_emb_indices = [] # for each embedding generate a list of n lookups, # where each lookup is composed of multiple sparse indices for size in range(n_emb): lS_batch_indices = [] for _b in range(n): # num of sparse indices to be used per embedding, e.g. for # store lengths and indices lS_batch_indices += ( (X_cat[idx_start + _b][size].reshape(-1)).astype(np.int32) ).tolist() lS_emb_indices.append(lS_batch_indices) lS_indices.append(lS_emb_indices) # Criteo Kaggle data it is 1 because data is categorical lS_lengths.append( [(list(np.ones(n).astype(np.int32))) for _ in range(n_emb)] ) print("\n") return nbatches, lX, lS_lengths, lS_indices, lT # adjust training data (nbatches, lX, lS_lengths, lS_indices, lT) = assemble_samples( X_cat_train, X_int_train, y_train, max_ind_range, "Training data" ) # adjust testing data (nbatches_t, lX_t, lS_lengths_t, lS_indices_t, lT_t) = assemble_samples( X_cat_test, X_int_test, y_test, max_ind_range, "Testing data" ) # end if memory_map return ( nbatches, lX, lS_lengths, lS_indices, lT, nbatches_t, lX_t, lS_lengths_t, lS_indices_t, lT_t, ln_emb, m_den, ) def generate_random_data( m_den, ln_emb, data_size, num_batches, mini_batch_size, num_indices_per_lookup, num_indices_per_lookup_fixed, num_targets=1, round_targets=False, data_generation="random", trace_file="", enable_padding=False, ): nbatches = int(np.ceil((data_size * 1.0) / mini_batch_size)) if num_batches != 0: nbatches = num_batches data_size = nbatches * mini_batch_size # print("Total number of batches %d" % nbatches) # inputs and targets lT = [] lX = [] lS_lengths = [] lS_indices = [] for j in range(0, nbatches): # number of data points in a batch n = min(mini_batch_size, data_size - (j * mini_batch_size)) # generate a batch of dense and sparse features if data_generation == "random": (Xt, lS_emb_lengths, lS_emb_indices) = generate_uniform_input_batch( m_den, ln_emb, n, num_indices_per_lookup, num_indices_per_lookup_fixed ) elif data_generation == "synthetic": (Xt, lS_emb_lengths, lS_emb_indices) = generate_synthetic_input_batch( m_den, ln_emb, n, num_indices_per_lookup, num_indices_per_lookup_fixed, trace_file, enable_padding, ) else: sys.exit( "ERROR: --data-generation=" + data_generation + " is not supported" ) # dense feature lX.append(Xt) # sparse feature (sparse indices) lS_lengths.append(lS_emb_lengths) lS_indices.append(lS_emb_indices) # generate a batch of target (probability of a click) P = generate_random_output_batch(n, num_targets, round_targets) lT.append(P) return (nbatches, lX, lS_lengths, lS_indices, lT) def generate_random_output_batch(n, num_targets=1, round_targets=False): # target (probability of a click) if round_targets: P = np.round(ra.rand(n, num_targets).astype(np.float32)).astype(np.int32) else: P = ra.rand(n, num_targets).astype(np.float32) return P # uniform ditribution (input data) def generate_uniform_input_batch( m_den, ln_emb, n, num_indices_per_lookup, num_indices_per_lookup_fixed, ): # dense feature Xt = ra.rand(n, m_den).astype(np.float32) # sparse feature (sparse indices) lS_emb_lengths = [] lS_emb_indices = [] # for each embedding generate a list of n lookups, # where each lookup is composed of multiple sparse indices for size in ln_emb: lS_batch_lengths = [] lS_batch_indices = [] for _ in range(n): # num of sparse indices to be used per embedding (between if num_indices_per_lookup_fixed: sparse_group_size = np.int32(num_indices_per_lookup) else: # random between [1,num_indices_per_lookup]) r = ra.random(1) sparse_group_size = np.int32( max(1, np.round(r * min(size, num_indices_per_lookup))[0]) ) # sparse indices to be used per embedding r = ra.random(sparse_group_size) sparse_group = np.unique(np.round(r * (size - 1)).astype(np.int32)) # reset sparse_group_size in case some index duplicates were removed sparse_group_size = np.int32(sparse_group.size) # store lengths and indices lS_batch_lengths += [sparse_group_size] lS_batch_indices += sparse_group.tolist() lS_emb_lengths.append(lS_batch_lengths) lS_emb_indices.append(lS_batch_indices) return (Xt, lS_emb_lengths, lS_emb_indices) # synthetic distribution (input data) def generate_synthetic_input_batch( m_den, ln_emb, n, num_indices_per_lookup, num_indices_per_lookup_fixed, trace_file, enable_padding=False, ): # dense feature Xt = ra.rand(n, m_den).astype(np.float32) # sparse feature (sparse indices) lS_emb_lengths = [] lS_emb_indices = [] # for each embedding generate a list of n lookups, # where each lookup is composed of multiple sparse indices for i, size in enumerate(ln_emb): lS_batch_lengths = [] lS_batch_indices = [] for _ in range(n): # num of sparse indices to be used per embedding (between if num_indices_per_lookup_fixed: sparse_group_size = np.int32(num_indices_per_lookup) else: # random between [1,num_indices_per_lookup]) r = ra.random(1) sparse_group_size = np.int32( max(1, np.round(r * min(size, num_indices_per_lookup))[0]) ) # sparse indices to be used per embedding file_path = trace_file line_accesses, list_sd, cumm_sd = read_dist_from_file( file_path.replace("j", str(i)) ) # debug print # print('input') # print(line_accesses); print(list_sd); print(cumm_sd); # print(sparse_group_size) # approach 1: rand # r = trace_generate_rand( # line_accesses, list_sd, cumm_sd, sparse_group_size, enable_padding # ) # approach 2: lru r = trace_generate_lru( line_accesses, list_sd, cumm_sd, sparse_group_size, enable_padding ) # WARNING: if the distribution in the file is not consistent with # embedding table dimensions, below mod guards against out of # range access sparse_group = np.unique(r).astype(np.int32) minsg = np.min(sparse_group) maxsg = np.max(sparse_group) if (minsg < 0) or (size <= maxsg): print( "WARNING: distribution is inconsistent with embedding " + "table size (using mod to recover and continue)" ) sparse_group = np.mod(sparse_group, size).astype(np.int32) # sparse_group = np.unique(np.array(np.mod(r, size-1)).astype(np.int32)) # reset sparse_group_size in case some index duplicates were removed sparse_group_size = np.int32(sparse_group.size) # store lengths and indices lS_batch_lengths += [sparse_group_size] lS_batch_indices += sparse_group.tolist() lS_emb_lengths.append(lS_batch_lengths) lS_emb_indices.append(lS_batch_indices) return (Xt, lS_emb_lengths, lS_emb_indices) def generate_stack_distance(cumm_val, cumm_dist, max_i, i, enable_padding=False): u = ra.rand(1) if i < max_i: # only generate stack distances up to the number of new references seen so far j = bisect.bisect(cumm_val, i) - 1 fi = cumm_dist[j] u *= fi # shrink distribution support to exclude last values elif enable_padding: # WARNING: disable generation of new references (once all have been seen) fi = cumm_dist[0] u = (1.0 - fi) * u + fi # remap distribution support to exclude first value for j, f in enumerate(cumm_dist): if u <= f: return cumm_val[j] # WARNING: global define, must be consistent across all synthetic functions cache_line_size = 1 def trace_generate_lru( line_accesses, list_sd, cumm_sd, out_trace_len, enable_padding=False ): max_sd = list_sd[-1] l = len(line_accesses) i = 0 ztrace = [] for _ in range(out_trace_len): sd = generate_stack_distance(list_sd, cumm_sd, max_sd, i, enable_padding) mem_ref_within_line = 0 # floor(ra.rand(1)*cache_line_size) #0 # generate memory reference if sd == 0: # new reference # line_ref = line_accesses.pop(0) line_accesses.append(line_ref) mem_ref = np.uint64(line_ref * cache_line_size + mem_ref_within_line) i += 1 else: # existing reference # line_ref = line_accesses[l - sd] mem_ref = np.uint64(line_ref * cache_line_size + mem_ref_within_line) line_accesses.pop(l - sd) line_accesses.append(line_ref) # save generated memory reference ztrace.append(mem_ref) return ztrace def trace_generate_rand( line_accesses, list_sd, cumm_sd, out_trace_len, enable_padding=False ): max_sd = list_sd[-1] l = len(line_accesses) # !!!Unique, i = 0 ztrace = [] for _ in range(out_trace_len): sd = generate_stack_distance(list_sd, cumm_sd, max_sd, i, enable_padding) mem_ref_within_line = 0 # floor(ra.rand(1)*cache_line_size) #0 # generate memory reference if sd == 0: # new reference # line_ref = line_accesses.pop(0) line_accesses.append(line_ref) mem_ref = np.uint64(line_ref * cache_line_size + mem_ref_within_line) i += 1 else: # existing reference # line_ref = line_accesses[l - sd] mem_ref = np.uint64(line_ref * cache_line_size + mem_ref_within_line) ztrace.append(mem_ref) return ztrace def trace_profile(trace, enable_padding=False): # number of elements in the array (assuming 1D) # n = trace.size rstack = [] # S stack_distances = [] # SDS line_accesses = [] # L for x in trace: r = np.uint64(x / cache_line_size) l = len(rstack) try: # found # i = rstack.index(r) # WARNING: I believe below is the correct depth in terms of meaning of the # algorithm, but that is not what seems to be in the paper alg. # -1 can be subtracted if we defined the distance between # consecutive accesses (e.g. r, r) as 0 rather than 1. sd = l - i # - 1 # push r to the end of stack_distances stack_distances.insert(0, sd) # remove r from its position and insert to the top of stack rstack.pop(i) # rstack.remove(r) rstack.insert(l - 1, r) except ValueError: # not found # sd = 0 # -1 # push r to the end of stack_distances/line_accesses stack_distances.insert(0, sd) line_accesses.insert(0, r) # push r to the top of stack rstack.insert(l, r) if enable_padding: # WARNING: notice that as the ratio between the number of samples (l) # and cardinality [c] of a sample increases the probability of # generating a sample gets smaller and smaller because there are # few new samples compared to repeated samples. This means that for a # long trace with relatively small cardinality it will take longer to # generate all new samples and therefore obtain full distribution support # and hence it takes longer for distribution to resemble the original. # Therefore, we may pad the number of new samples to be on par with # average number of samples l/c artificially. l = len(stack_distances) c = max(stack_distances) padding = int(np.ceil(l / c)) stack_distances = stack_distances + [0] * padding return (rstack, stack_distances, line_accesses) # auxiliary read/write routines def read_trace_from_file(file_path): try: with open(file_path) as f: if args.trace_file_binary_type: array = np.fromfile(f, dtype=np.uint64) trace = array.astype(np.uint64).tolist() else: line = f.readline() trace = list(map(lambda x: np.uint64(x), line.split(", "))) return trace except Exception: print("ERROR: no input trace file has been provided") def write_trace_to_file(file_path, trace): try: if args.trace_file_binary_type: with open(file_path, "wb+") as f: np.array(trace).astype(np.uint64).tofile(f) else: with open(file_path, "w+") as f: s = str(trace) f.write(s[1 : len(s) - 1]) except Exception: print("ERROR: no output trace file has been provided") def read_dist_from_file(file_path): try: with open(file_path, "r") as f: lines = f.read().splitlines() except Exception: print("Wrong file or file path") # read unique accesses unique_accesses = [int(el) for el in lines[0].split(", ")] # read cumulative distribution (elements are passed as two separate lists) list_sd = [int(el) for el in lines[1].split(", ")] cumm_sd = [float(el) for el in lines[2].split(", ")] return unique_accesses, list_sd, cumm_sd def write_dist_to_file(file_path, unique_accesses, list_sd, cumm_sd): try: with open(file_path, "w") as f: # unique_acesses s = str(unique_accesses) f.write(s[1 : len(s) - 1] + "\n") # list_sd s = str(list_sd) f.write(s[1 : len(s) - 1] + "\n") # cumm_sd s = str(cumm_sd) f.write(s[1 : len(s) - 1] + "\n") except Exception: print("Wrong file or file path") if __name__ == "__main__": import argparse import operator import sys ### parse arguments ### parser = argparse.ArgumentParser(description="Generate Synthetic Distributions") parser.add_argument("--trace-file", type=str, default="./input/trace.log") parser.add_argument("--trace-file-binary-type", type=bool, default=False) parser.add_argument("--trace-enable-padding", type=bool, default=False) parser.add_argument("--dist-file", type=str, default="./input/dist.log") parser.add_argument( "--synthetic-file", type=str, default="./input/trace_synthetic.log" ) parser.add_argument("--numpy-rand-seed", type=int, default=123) parser.add_argument("--print-precision", type=int, default=5) args = parser.parse_args() ### some basic setup ### np.random.seed(args.numpy_rand_seed) np.set_printoptions(precision=args.print_precision) ### read trace ### trace = read_trace_from_file(args.trace_file) # print(trace) ### profile trace ### (_, stack_distances, line_accesses) = trace_profile( trace, args.trace_enable_padding ) stack_distances.reverse() line_accesses.reverse() # print(line_accesses) # print(stack_distances) ### compute probability distribution ### # count items l = len(stack_distances) dc = sorted( collections.Counter(stack_distances).items(), key=operator.itemgetter(0) ) # create a distribution list_sd = list(map(lambda tuple_x_k: tuple_x_k[0], dc)) # x = tuple_x_k[0] dist_sd = list( map(lambda tuple_x_k: tuple_x_k[1] / float(l), dc) ) # k = tuple_x_k[1] cumm_sd = [] # np.cumsum(dc).tolist() #prefixsum for i, (_, k) in enumerate(dc): if i == 0: cumm_sd.append(k / float(l)) else: # add the 2nd element of the i-th tuple in the dist_sd list cumm_sd.append(cumm_sd[i - 1] + (k / float(l))) ### write stack_distance and line_accesses to a file ### write_dist_to_file(args.dist_file, line_accesses, list_sd, cumm_sd) ### generate correspondinf synthetic ### # line_accesses, list_sd, cumm_sd = read_dist_from_file(args.dist_file) synthetic_trace = trace_generate_lru( line_accesses, list_sd, cumm_sd, len(trace), args.trace_enable_padding ) # synthetic_trace = trace_generate_rand( # line_accesses, list_sd, cumm_sd, len(trace), args.trace_enable_padding # ) write_trace_to_file(args.synthetic_file, synthetic_trace)