# Semantic segmentation [[open-in-colab]] セマンティック セグメンテーションでは、画像の個々のピクセルにラベルまたはクラスを割り当てます。セグメンテーションにはいくつかのタイプがありますが、セマンティック セグメンテーションの場合、同じオブジェクトの一意のインスタンス間の区別は行われません。両方のオブジェクトに同じラベルが付けられます (たとえば、`car-1`と`car-2`の代わりに`car`)。セマンティック セグメンテーションの一般的な現実世界のアプリケーションには、歩行者や重要な交通情報を識別するための自動運転車のトレーニング、医療画像内の細胞と異常の識別、衛星画像からの環境変化の監視などが含まれます。 このガイドでは、次の方法を説明します。 1. [SceneParse150](https://huggingface.co/datasets/scene_parse_150) データセットの [SegFormer](https://huggingface.co/docs/transformers/main/en/model_doc/segformer#segformer) を微調整します。 2. 微調整したモデルを推論に使用します。 このタスクと互換性のあるすべてのアーキテクチャとチェックポイントを確認するには、[タスクページ](https://huggingface.co/tasks/image-segmentation) を確認することをお勧めします。 始める前に、必要なライブラリがすべてインストールされていることを確認してください。 ```bash pip install -q datasets transformers evaluate ``` モデルをアップロードしてコミュニティと共有できるように、Hugging Face アカウントにログインすることをお勧めします。プロンプトが表示されたら、トークンを入力してログインします。 ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## Load SceneParse150 dataset まず、SceneParse150 データセットの小さいサブセットを 🤗 データセット ライブラリから読み込みます。これにより、完全なデータセットのトレーニングにさらに時間を費やす前に、実験してすべてが機能することを確認する機会が得られます。 ```py >>> from datasets import load_dataset >>> ds = load_dataset("scene_parse_150", split="train[:50]") ``` [`~datasets.Dataset.train_test_split`] メソッドを使用して、データセットの `train` 分割をトレイン セットとテスト セットに分割します。 ```py >>> ds = ds.train_test_split(test_size=0.2) >>> train_ds = ds["train"] >>> test_ds = ds["test"] ``` 次に、例を見てみましょう。 ```py >>> train_ds[0] {'image': , 'annotation': , 'scene_category': 368} ``` - `image`: シーンの PIL イメージ。 - `annotation`: セグメンテーション マップの PIL イメージ。モデルのターゲットでもあります。 - `scene_category`: "kitchen"や"office"などの画像シーンを説明するカテゴリ ID。このガイドでは、`image`と`annotation`のみが必要になります。どちらも PIL イメージです。 また、ラベル ID をラベル クラスにマップする辞書を作成することもできます。これは、後でモデルを設定するときに役立ちます。ハブからマッピングをダウンロードし、`id2label` および `label2id` ディクショナリを作成します。 ```py >>> import json >>> from pathlib import Path >>> from huggingface_hub import hf_hub_download >>> repo_id = "huggingface/label-files" >>> filename = "ade20k-id2label.json" >>> id2label = json.loads(Path(hf_hub_download(repo_id, filename, repo_type="dataset")).read_text()) >>> id2label = {int(k): v for k, v in id2label.items()} >>> label2id = {v: k for k, v in id2label.items()} >>> num_labels = len(id2label) ``` ## Preprocess 次のステップでは、SegFormer 画像プロセッサをロードして、モデルの画像と注釈を準備します。このデータセットのような一部のデータセットは、バックグラウンド クラスとしてゼロインデックスを使用します。ただし、実際には背景クラスは 150 個のクラスに含まれていないため、`do_reduce_labels=True`を設定してすべてのラベルから 1 つを引く必要があります。ゼロインデックスは `255` に置き換えられるため、SegFormer の損失関数によって無視されます。 ```py >>> from transformers import AutoImageProcessor >>> checkpoint = "nvidia/mit-b0" >>> image_processor = AutoImageProcessor.from_pretrained(checkpoint, do_reduce_labels=True) ``` モデルを過学習に対してより堅牢にするために、画像データセットにいくつかのデータ拡張を適用するのが一般的です。このガイドでは、[torchvision](https://pytorch.org/vision/stable/index.html) の [`ColorJitter`](https://pytorch.org/vision/stable/generated/torchvision.transforms.ColorJitter.html) 関数を使用します。 ) を使用して画像の色のプロパティをランダムに変更しますが、任意の画像ライブラリを使用することもできます。 ```py >>> from torchvision.transforms import ColorJitter >>> jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1) ``` 次に、モデルの画像と注釈を準備するための 2 つの前処理関数を作成します。これらの関数は、画像を`pixel_values`に変換し、注釈を`labels`に変換します。トレーニング セットの場合、画像を画像プロセッサに提供する前に `jitter` が適用されます。テスト セットの場合、テスト中にデータ拡張が適用されないため、画像プロセッサは`images`を切り取って正規化し、`ラベル`のみを切り取ります。 ```py >>> def train_transforms(example_batch): ... images = [jitter(x) for x in example_batch["image"]] ... labels = [x for x in example_batch["annotation"]] ... inputs = image_processor(images, labels) ... return inputs >>> def val_transforms(example_batch): ... images = [x for x in example_batch["image"]] ... labels = [x for x in example_batch["annotation"]] ... inputs = image_processor(images, labels) ... return inputs ``` データセット全体に`jitter`を適用するには、🤗 Datasets [`~datasets.Dataset.set_transform`] 関数を使用します。変換はオンザフライで適用されるため、高速で消費するディスク容量が少なくなります。 ```py >>> train_ds.set_transform(train_transforms) >>> test_ds.set_transform(val_transforms) ``` ## Evaluate トレーニング中にメトリクスを含めると、多くの場合、モデルのパフォーマンスを評価するのに役立ちます。 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) ライブラリを使用して、評価メソッドをすばやくロードできます。このタスクでは、[Mean Intersection over Union](https://huggingface.co/spaces/evaluate-metric/accuracy) (IoU) メトリックをロードします (🤗 Evaluate [クイック ツアー](https://huggingface.co/docs/evaluate/a_quick_tour) を参照して、メトリクスをロードして計算する方法の詳細を確認してください)。 ```py >>> import evaluate >>> metric = evaluate.load("mean_iou") ``` 次に、メトリクスを [`~evaluate.EvaluationModule.compute`] する関数を作成します。予測を次のように変換する必要があります 最初にロジットを作成し、次に [`~evaluate.EvaluationModule.compute`] を呼び出す前にラベルのサイズに一致するように再形成します。 ```py >>> import numpy as np >>> import torch >>> from torch import nn >>> def compute_metrics(eval_pred): ... with torch.no_grad(): ... logits, labels = eval_pred ... logits_tensor = torch.from_numpy(logits) ... logits_tensor = nn.functional.interpolate( ... logits_tensor, ... size=labels.shape[-2:], ... mode="bilinear", ... align_corners=False, ... ).argmax(dim=1) ... pred_labels = logits_tensor.detach().cpu().numpy() ... metrics = metric.compute( ... predictions=pred_labels, ... references=labels, ... num_labels=num_labels, ... ignore_index=255, ... reduce_labels=False, ... ) ... for key, value in metrics.items(): ... if type(value) is np.ndarray: ... metrics[key] = value.tolist() ... return metrics ``` これで`compute_metrics`関数の準備が整いました。トレーニングをセットアップするときにこの関数に戻ります。 ## Train [`Trainer`] を使用したモデルの微調整に慣れていない場合は、[ここ](../training#finetune-with-trainer) の基本的なチュートリアルをご覧ください。 これでモデルのトレーニングを開始する準備が整いました。 [`AutoModelForSemanticSegmentation`] を使用して SegFormer をロードし、ラベル ID とラベル クラス間のマッピングをモデルに渡します。 ```py >>> from transformers import AutoModelForSemanticSegmentation, TrainingArguments, Trainer >>> model = AutoModelForSemanticSegmentation.from_pretrained(checkpoint, id2label=id2label, label2id=label2id) ``` この時点で残っている手順は次の 3 つだけです。 1. [`TrainingArguments`] でトレーニング ハイパーパラメータを定義します。 `image` 列が削除されるため、未使用の列を削除しないことが重要です。 `image` 列がないと、`pixel_values` を作成できません。この動作を防ぐには、`remove_unused_columns=False`を設定してください。他に必要なパラメータは、モデルの保存場所を指定する `output_dir` だけです。 `push_to_hub=True`を設定して、このモデルをハブにプッシュします (モデルをアップロードするには、Hugging Face にサインインする必要があります)。各エポックの終了時に、[`Trainer`] は IoU メトリックを評価し、トレーニング チェックポイントを保存します。 2. トレーニング引数を、モデル、データセット、トークナイザー、データ照合器、および `compute_metrics` 関数とともに [`Trainer`] に渡します。 3. [`~Trainer.train`] を呼び出してモデルを微調整します。 ```py >>> training_args = TrainingArguments( ... output_dir="segformer-b0-scene-parse-150", ... learning_rate=6e-5, ... num_train_epochs=50, ... per_device_train_batch_size=2, ... per_device_eval_batch_size=2, ... save_total_limit=3, ... eval_strategy="steps", ... save_strategy="steps", ... save_steps=20, ... eval_steps=20, ... logging_steps=1, ... eval_accumulation_steps=5, ... remove_unused_columns=False, ... push_to_hub=True, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=train_ds, ... eval_dataset=test_ds, ... compute_metrics=compute_metrics, ... ) >>> trainer.train() ``` トレーニングが完了したら、 [`~transformers.Trainer.push_to_hub`] メソッドを使用してモデルをハブに共有し、誰もがモデルを使用できるようにします。 ```py >>> trainer.push_to_hub() ``` ## Inference モデルを微調整したので、それを推論に使用できるようになりました。 推論のために画像をロードします。 ```py >>> image = ds[0]["image"] >>> image ```
Image of bedroom
推論用に微調整されたモデルを試す最も簡単な方法は、それを [`pipeline`] で使用することです。モデルを使用して画像セグメンテーション用の `pipeline`をインスタンス化し、それに画像を渡します。 ```py >>> from transformers import pipeline >>> segmenter = pipeline("image-segmentation", model="my_awesome_seg_model") >>> segmenter(image) [{'score': None, 'label': 'wall', 'mask': }, {'score': None, 'label': 'sky', 'mask': }, {'score': None, 'label': 'floor', 'mask': }, {'score': None, 'label': 'ceiling', 'mask': }, {'score': None, 'label': 'bed ', 'mask': }, {'score': None, 'label': 'windowpane', 'mask': }, {'score': None, 'label': 'cabinet', 'mask': }, {'score': None, 'label': 'chair', 'mask': }, {'score': None, 'label': 'armchair', 'mask': }] ``` 必要に応じて、`pipeline`の結果を手動で複製することもできます。画像を画像プロセッサで処理し、`pixel_values` を GPU に配置します。 ```py >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # use GPU if available, otherwise use a CPU >>> encoding = image_processor(image, return_tensors="pt") >>> pixel_values = encoding.pixel_values.to(device) ``` 入力をモデルに渡し、`logits`を返します。 ```py >>> outputs = model(pixel_values=pixel_values) >>> logits = outputs.logits.cpu() ``` 次に、ロジットを元の画像サイズに再スケールします。 ```py >>> upsampled_logits = nn.functional.interpolate( ... logits, ... size=image.size[::-1], ... mode="bilinear", ... align_corners=False, ... ) >>> pred_seg = upsampled_logits.argmax(dim=1)[0] ``` 結果を視覚化するには、[データセット カラー パレット](https://github.com/tensorflow/models/blob/3f1ca33afe3c1631b733ea7e40c294273b9e406d/research/deeplab/utils/get_dataset_colormap.py#L51) を、それぞれをマップする `ade_palette()` としてロードします。クラスを RGB 値に変換します。次に、画像と予測されたセグメンテーション マップを組み合わせてプロットできます。 ```py >>> import matplotlib.pyplot as plt >>> import numpy as np >>> color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8) >>> palette = np.array(ade_palette()) >>> for label, color in enumerate(palette): ... color_seg[pred_seg == label, :] = color >>> color_seg = color_seg[..., ::-1] # convert to BGR >>> img = np.array(image) * 0.5 + color_seg * 0.5 # plot the image with the segmentation map >>> img = img.astype(np.uint8) >>> plt.figure(figsize=(15, 10)) >>> plt.imshow(img) >>> plt.show() ```
Image of bedroom overlaid with segmentation map