*This model was released on 2021-06-01 and added to Hugging Face Transformers on 2022-05-02.*
PyTorch FlashAttention SDPA
# YOLOS [YOLOS](https://huggingface.co/papers/2106.00666) uses a [Vision Transformer (ViT)](./vit) for object detection with minimal modifications and region priors. It can achieve performance comparable to specialized object detection models and frameworks with knowledge about 2D spatial structures. You can find all the original YOLOS checkpoints under the [HUST Vision Lab](https://huggingface.co/hustvl/models?search=yolos) organization. drawing YOLOS architecture. Taken from the original paper. > [!TIP] > This model wasa contributed by [nielsr](https://huggingface.co/nielsr). > Click on the YOLOS models in the right sidebar for more examples of how to apply YOLOS to different object detection tasks. The example below demonstrates how to detect objects with [`Pipeline`] or the [`AutoModel`] class. ```py import torch from transformers import pipeline detector = pipeline( task="object-detection", model="hustvl/yolos-base", dtype=torch.float16, device=0 ) detector("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png") ``` ```py import torch from PIL import Image import requests from transformers import AutoImageProcessor, AutoModelForObjectDetection from accelerate import Accelerator device = Accelerator().device processor = AutoImageProcessor.from_pretrained("hustvl/yolos-base") model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-base", dtype=torch.float16, attn_implementation="sdpa").to(device) url = "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") inputs = processor(images=image, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits.softmax(-1) scores, labels = logits[..., :-1].max(-1) boxes = outputs.pred_boxes threshold = 0.3 keep = scores[0] > threshold filtered_scores = scores[0][keep] filtered_labels = labels[0][keep] filtered_boxes = boxes[0][keep] width, height = image.size pixel_boxes = filtered_boxes * torch.tensor([width, height, width, height], device=boxes.device) for score, label, box in zip(filtered_scores, filtered_labels, pixel_boxes): x0, y0, x1, y1 = box.tolist() print(f"Label {model.config.id2label[label.item()]}: {score:.2f} at [{x0:.0f}, {y0:.0f}, {x1:.0f}, {y1:.0f}]") ``` ## Notes - Use [`YolosImageProcessor`] for preparing images (and optional targets) for the model. Contrary to [DETR](./detr), YOLOS doesn't require a `pixel_mask`. ## Resources - Refer to these [notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/YOLOS) for inference and fine-tuning with [`YolosForObjectDetection`] on a custom dataset. ## YolosConfig [[autodoc]] YolosConfig ## YolosImageProcessor [[autodoc]] YolosImageProcessor - preprocess ## YolosImageProcessorFast [[autodoc]] YolosImageProcessorFast - preprocess - pad - post_process_object_detection ## YolosModel [[autodoc]] YolosModel - forward ## YolosForObjectDetection [[autodoc]] YolosForObjectDetection - forward