*This model was released on 2022-07-11 and added to Hugging Face Transformers on 2022-07-18.*
# NLLB
## Overview
[NLLB: No Language Left Behind](https://huggingface.co/papers/2207.04672) is a multilingual translation model. It's trained on data using data mining techniques tailored for low-resource languages and supports over 200 languages. NLLB features a conditional compute architecture using a Sparsely Gated Mixture of Experts.
You can find all the original NLLB checkpoints under the [AI at Meta](https://huggingface.co/facebook/models?search=nllb) organization.
> [!TIP]
> This model was contributed by [Lysandre](https://huggingface.co/lysandre).
> Click on the NLLB models in the right sidebar for more examples of how to apply NLLB to different translation tasks.
The example below demonstrates how to translate text with [`Pipeline`] or the [`AutoModel`] class.
```python
import torch
from transformers import pipeline
pipeline = pipeline(task="translation", model="facebook/nllb-200-distilled-600M", src_lang="eng_Latn", tgt_lang="fra_Latn", dtype=torch.float16, device=0)
pipeline("UN Chief says there is no military solution in Syria")
```
```python
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M", dtype="auto", attn_implementation="sdpa")
article = "UN Chief says there is no military solution in Syria"
inputs = tokenizer(article, return_tensors="pt")
translated_tokens = model.generate(
**inputs, forced_bos_token_id=tokenizer.convert_tokens_to_ids("fra_Latn"), max_length=30
)
print(tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0])
```
```bash
echo -e "UN Chief says there is no military solution in Syria" | transformers run --task "translation_en_to_fr" --model facebook/nllb-200-distilled-600M --device 0
```
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to quantize the weights to 8-bits.
```python
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-1.3B", quantization_config=bnb_config)
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-1.3B")
article = "UN Chief says there is no military solution in Syria"
inputs = tokenizer(article, return_tensors="pt").to(model.device)
translated_tokens = model.generate(
**inputs, forced_bos_token_id=tokenizer.convert_tokens_to_ids("fra_Latn"), max_length=30,
)
print(tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0])
```
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/main/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
```python
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
visualizer = AttentionMaskVisualizer("facebook/nllb-200-distilled-600M")
visualizer("UN Chief says there is no military solution in Syria")
```
## Notes
- The tokenizer was updated in April 2023 to prefix the source sequence with the source language rather than the target language. This prioritizes zero-shot performance at a minor cost to supervised performance.
```python
>>> from transformers import NllbTokenizer
>>> tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
>>> tokenizer("How was your day?").input_ids
[256047, 13374, 1398, 4260, 4039, 248130, 2]
```
To revert to the legacy behavior, use the code example below.
```python
>>> from transformers import NllbTokenizer
>>> tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M", legacy_behaviour=True)
```
- For non-English languages, specify the language's [BCP-47](https://github.com/facebookresearch/flores/blob/main/flores200/README.md#languages-in-flores-200) code with the `src_lang` keyword as shown below.
- See example below for a translation from Romanian to German.
```python
>>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
>>> article = "UN Chief says there is no military solution in Syria"
>>> inputs = tokenizer(article, return_tensors="pt")
>>> translated_tokens = model.generate(
... **inputs, forced_bos_token_id=tokenizer.convert_tokens_to_ids("fra_Latn"), max_length=30
... )
>>> tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
Le chef de l'ONU dit qu'il n'y a pas de solution militaire en Syrie
```
## NllbTokenizer
[[autodoc]] NllbTokenizer
- build_inputs_with_special_tokens
## NllbTokenizerFast
[[autodoc]] NllbTokenizerFast