*This model was released on 2020-10-23 and added to Hugging Face Transformers on 2020-11-27.*
PyTorch
# BARThez [BARThez](https://huggingface.co/papers/2010.12321) is a [BART](./bart) model designed for French language tasks. Unlike existing French BERT models, BARThez includes a pretrained encoder-decoder, allowing it to generate text as well. This model is also available as a multilingual variant, mBARThez, by continuing pretraining multilingual BART on a French corpus. You can find all of the original BARThez checkpoints under the [BARThez](https://huggingface.co/collections/dascim/barthez-670920b569a07aa53e3b6887) collection. > [!TIP] > This model was contributed by [moussakam](https://huggingface.co/moussakam). > Refer to the [BART](./bart) docs for more usage examples. The example below demonstrates how to predict the `` token with [`Pipeline`], [`AutoModel`], and from the command line. ```py import torch from transformers import pipeline pipeline = pipeline( task="fill-mask", model="moussaKam/barthez", dtype=torch.float16, device=0 ) pipeline("Les plantes produisent grâce à un processus appelé photosynthèse.") ``` ```py import torch from transformers import AutoModelForMaskedLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "moussaKam/barthez", ) model = AutoModelForMaskedLM.from_pretrained( "moussaKam/barthez", dtype=torch.float16, device_map="auto", ) inputs = tokenizer("Les plantes produisent grâce à un processus appelé photosynthèse.", return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model(**inputs) predictions = outputs.logits masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1] predicted_token_id = predictions[0, masked_index].argmax(dim=-1) predicted_token = tokenizer.decode(predicted_token_id) print(f"The predicted token is: {predicted_token}") ``` ```bash echo -e "Les plantes produisent grâce à un processus appelé photosynthèse." | transformers run --task fill-mask --model moussaKam/barthez --device 0 ``` ## BarthezTokenizer [[autodoc]] BarthezTokenizer ## BarthezTokenizerFast [[autodoc]] BarthezTokenizerFast