"git@developer.sourcefind.cn:zhaoyu6/sglang.git" did not exist on "c9bff5fcc80e3c5edad31d1998bf11cfc7781f57"
Commit fd5309bc authored by yangzhong's avatar yangzhong
Browse files

bert-large infer

parents
Pipeline #3012 canceled with stages
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Ein Modell teilen
Die letzten beiden Tutorials haben gezeigt, wie man ein Modell mit PyTorch, Keras und 🤗 Accelerate für verteilte Setups feinabstimmen kann. Der nächste Schritt besteht darin, Ihr Modell mit der Community zu teilen! Bei Hugging Face glauben wir an den offenen Austausch von Wissen und Ressourcen, um künstliche Intelligenz für alle zu demokratisieren. Wir ermutigen Sie, Ihr Modell mit der Community zu teilen, um anderen zu helfen, Zeit und Ressourcen zu sparen.
In diesem Tutorial lernen Sie zwei Methoden kennen, wie Sie ein trainiertes oder verfeinertes Modell auf dem [Model Hub](https://huggingface.co/models) teilen können:
- Programmgesteuertes Übertragen Ihrer Dateien auf den Hub.
- Ziehen Sie Ihre Dateien per Drag-and-Drop über die Weboberfläche in den Hub.
<iframe width="560" height="315" src="https://www.youtube.com/embed/XvSGPZFEjDY" title="YouTube video player"
frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope;
picture-in-picture" allowfullscreen></iframe>
<Tip>
Um ein Modell mit der Öffentlichkeit zu teilen, benötigen Sie ein Konto auf [huggingface.co](https://huggingface.co/join). Sie können auch einer bestehenden Organisation beitreten oder eine neue Organisation gründen.
</Tip>
## Repository-Funktionen
Jedes Repository im Model Hub verhält sich wie ein typisches GitHub-Repository. Unsere Repositorys bieten Versionierung, Commit-Historie und die Möglichkeit, Unterschiede zu visualisieren.
Die integrierte Versionierung des Model Hub basiert auf Git und [git-lfs](https://git-lfs.github.com/). Mit anderen Worten: Sie können ein Modell als ein Repository behandeln, was eine bessere Zugriffskontrolle und Skalierbarkeit ermöglicht. Die Versionskontrolle ermöglicht *Revisionen*, eine Methode zum Anheften einer bestimmten Version eines Modells mit einem Commit-Hash, Tag oder Branch.
Folglich können Sie eine bestimmte Modellversion mit dem Parameter "Revision" laden:
```py
>>> model = AutoModel.from_pretrained(
... "julien-c/EsperBERTo-small", revision="4c77982" # tag name, or branch name, or commit hash
... )
```
Dateien lassen sich auch in einem Repository leicht bearbeiten, und Sie können die Commit-Historie sowie die Unterschiede einsehen:
![vis_diff](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vis_diff.png)
## Einrichtung
Bevor Sie ein Modell für den Hub freigeben, benötigen Sie Ihre Hugging Face-Anmeldedaten. Wenn Sie Zugang zu einem Terminal haben, führen Sie den folgenden Befehl in der virtuellen Umgebung aus, in der 🤗 Transformers installiert ist. Dadurch werden Ihre Zugangsdaten in Ihrem Hugging Face-Cache-Ordner (standardmäßig `~/.cache/`) gespeichert:
```bash
hf auth login
```
Wenn Sie ein Notebook wie Jupyter oder Colaboratory verwenden, stellen Sie sicher, dass Sie die [`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library) Bibliothek installiert haben. Diese Bibliothek ermöglicht Ihnen die programmatische Interaktion mit dem Hub.
```bash
pip install huggingface_hub
```
Verwenden Sie dann `notebook_login`, um sich beim Hub anzumelden, und folgen Sie dem Link [hier](https://huggingface.co/settings/token), um ein Token für die Anmeldung zu generieren:
```py
>>> from huggingface_hub import notebook_login
>>> notebook_login()
```
## Ein Modell für alle Frameworks konvertieren
Um sicherzustellen, dass Ihr Modell von jemandem verwendet werden kann, der mit einem anderen Framework arbeitet, empfehlen wir Ihnen, Ihr Modell sowohl mit PyTorch- als auch mit TensorFlow-Checkpoints zu konvertieren und hochzuladen. Während Benutzer immer noch in der Lage sind, Ihr Modell von einem anderen Framework zu laden, wenn Sie diesen Schritt überspringen, wird es langsamer sein, weil 🤗 Transformers den Checkpoint on-the-fly konvertieren müssen.
Die Konvertierung eines Checkpoints für ein anderes Framework ist einfach. Stellen Sie sicher, dass Sie PyTorch und TensorFlow installiert haben (siehe [hier](installation) für Installationsanweisungen), und finden Sie dann das spezifische Modell für Ihre Aufgabe in dem anderen Framework.
Geben Sie `from_tf=True` an, um einen Prüfpunkt von TensorFlow nach PyTorch zu konvertieren:
```py
>>> pt_model = DistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_tf=True)
>>> pt_model.save_pretrained("path/to/awesome-name-you-picked")
```
## Ein Modell während des Trainings hochladen
<Youtube id="Z1-XMy-GNLQ"/>
Die Weitergabe eines Modells an den Hub ist so einfach wie das Hinzufügen eines zusätzlichen Parameters oder Rückrufs. Erinnern Sie sich an das [Feinabstimmungs-Tutorial](training), in der Klasse [`TrainingArguments`] geben Sie Hyperparameter und zusätzliche Trainingsoptionen an. Eine dieser Trainingsoptionen beinhaltet die Möglichkeit, ein Modell direkt an den Hub zu pushen. Setzen Sie `push_to_hub=True` in Ihrer [`TrainingArguments`]:
```py
>>> training_args = TrainingArguments(output_dir="my-awesome-model", push_to_hub=True)
```
Übergeben Sie Ihre Trainingsargumente wie gewohnt an [`Trainer`]:
```py
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=small_train_dataset,
... eval_dataset=small_eval_dataset,
... compute_metrics=compute_metrics,
... )
```
Nach der Feinabstimmung Ihres Modells rufen Sie [`~transformers.Trainer.push_to_hub`] auf [`Trainer`] auf, um das trainierte Modell an den Hub zu übertragen. Transformers fügt sogar automatisch Trainings-Hyperparameter, Trainingsergebnisse und Framework-Versionen zu Ihrer Modellkarte hinzu!
```py
>>> trainer.push_to_hub()
```
## Verwenden Sie die Funktion `push_to_hub`.
Sie können `push_to_hub` auch direkt für Ihr Modell aufrufen, um es in den Hub hochzuladen.
Geben Sie den Namen Ihres Modells in "push_to_hub" an:
```py
>>> pt_model.push_to_hub("my-awesome-model")
```
Dadurch wird ein Repository unter Ihrem Benutzernamen mit dem Modellnamen `my-awesome-model` erstellt. Benutzer können nun Ihr Modell mit der Funktion `from_pretrained` laden:
```py
>>> from transformers import AutoModel
>>> model = AutoModel.from_pretrained("your_username/my-awesome-model")
```
Wenn Sie zu einer Organisation gehören und Ihr Modell stattdessen unter dem Namen der Organisation pushen wollen, fügen Sie diesen einfach zur `repo_id` hinzu:
```py
>>> pt_model.push_to_hub("my-awesome-org/my-awesome-model")
```
Die Funktion "push_to_hub" kann auch verwendet werden, um andere Dateien zu einem Modell-Repository hinzuzufügen. Zum Beispiel kann man einen Tokenizer zu einem Modell-Repository hinzufügen:
```py
>>> tokenizer.push_to_hub("my-awesome-model")
```
Oder vielleicht möchten Sie die TensorFlow-Version Ihres fein abgestimmten PyTorch-Modells hinzufügen:
```py
>>> tf_model.push_to_hub("my-awesome-model")
```
Wenn Sie nun zu Ihrem Hugging Face-Profil navigieren, sollten Sie Ihr neu erstelltes Modell-Repository sehen. Wenn Sie auf die Registerkarte **Dateien** klicken, werden alle Dateien angezeigt, die Sie in das Repository hochgeladen haben.
Weitere Einzelheiten zum Erstellen und Hochladen von Dateien in ein Repository finden Sie in der Hub-Dokumentation [hier](https://huggingface.co/docs/hub/how-to-upstream).
## Hochladen mit der Weboberfläche
Benutzer, die einen no-code Ansatz bevorzugen, können ein Modell über das Webinterface des Hubs hochladen. Besuchen Sie [huggingface.co/new](https://huggingface.co/new) um ein neues Repository zu erstellen:
![new_model_repo](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/new_model_repo.png)
Fügen Sie von hier aus einige Informationen über Ihr Modell hinzu:
- Wählen Sie den **Besitzer** des Repositorys. Dies können Sie selbst oder eine der Organisationen sein, denen Sie angehören.
- Wählen Sie einen Namen für Ihr Modell, der auch der Name des Repositorys sein wird.
- Wählen Sie, ob Ihr Modell öffentlich oder privat ist.
- Geben Sie die Lizenzverwendung für Ihr Modell an.
Klicken Sie nun auf die Registerkarte **Dateien** und klicken Sie auf die Schaltfläche **Datei hinzufügen**, um eine neue Datei in Ihr Repository hochzuladen. Ziehen Sie dann eine Datei per Drag-and-Drop hoch und fügen Sie eine Übergabemeldung hinzu.
![upload_file](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/upload_file.png)
## Hinzufügen einer Modellkarte
Um sicherzustellen, dass die Benutzer die Fähigkeiten, Grenzen, möglichen Verzerrungen und ethischen Aspekte Ihres Modells verstehen, fügen Sie bitte eine Modellkarte zu Ihrem Repository hinzu. Die Modellkarte wird in der Datei `README.md` definiert. Sie können eine Modellkarte hinzufügen, indem Sie:
* Manuelles Erstellen und Hochladen einer "README.md"-Datei.
* Klicken Sie auf die Schaltfläche **Modellkarte bearbeiten** in Ihrem Modell-Repository.
Werfen Sie einen Blick auf die DistilBert [model card](https://huggingface.co/distilbert/distilbert-base-uncased) als gutes Beispiel für die Art von Informationen, die eine Modellkarte enthalten sollte. Weitere Details über andere Optionen, die Sie in der Datei "README.md" einstellen können, wie z.B. den Kohlenstoff-Fußabdruck eines Modells oder Beispiele für Widgets, finden Sie in der Dokumentation [hier](https://huggingface.co/docs/hub/models-cards).
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Adapter mit 🤗 PEFT laden
[[open-in-colab]]
Die [Parameter-Efficient Fine Tuning (PEFT)](https://huggingface.co/blog/peft) Methoden frieren die vorab trainierten Modellparameter während der Feinabstimmung ein und fügen eine kleine Anzahl trainierbarer Parameter (die Adapter) hinzu. Die Adapter werden trainiert, um aufgabenspezifische Informationen zu lernen. Es hat sich gezeigt, dass dieser Ansatz sehr speichereffizient ist und weniger Rechenleistung beansprucht, während die Ergebnisse mit denen eines vollständig feinabgestimmten Modells vergleichbar sind.
Adapter, die mit PEFT trainiert wurden, sind in der Regel um eine Größenordnung kleiner als das vollständige Modell, so dass sie bequem gemeinsam genutzt, gespeichert und geladen werden können.
<div class="flex flex-col justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/PEFT-hub-screenshot.png"/>
<figcaption class="text-center">Die Adaptergewichte für ein OPTForCausalLM-Modell, die auf dem Hub gespeichert sind, sind nur ~6MB groß, verglichen mit der vollen Größe der Modellgewichte, die ~700MB betragen können.</figcaption>
</div>
Wenn Sie mehr über die 🤗 PEFT-Bibliothek erfahren möchten, sehen Sie sich die [Dokumentation](https://huggingface.co/docs/peft/index) an.
## Setup
Starten Sie mit der Installation von 🤗 PEFT:
```bash
pip install peft
```
Wenn Sie die brandneuen Funktionen ausprobieren möchten, sollten Sie die Bibliothek aus dem Quellcode installieren:
```bash
pip install git+https://github.com/huggingface/peft.git
```
## Unterstützte PEFT-Modelle
Transformers unterstützt nativ einige PEFT-Methoden, d.h. Sie können lokal oder auf dem Hub gespeicherte Adaptergewichte laden und sie mit wenigen Zeilen Code einfach ausführen oder trainieren. Die folgenden Methoden werden unterstützt:
- [Low Rank Adapters](https://huggingface.co/docs/peft/conceptual_guides/lora)
- [IA3](https://huggingface.co/docs/peft/conceptual_guides/ia3)
- [AdaLoRA](https://huggingface.co/papers/2303.10512)
Wenn Sie andere PEFT-Methoden, wie z.B. Prompt Learning oder Prompt Tuning, verwenden möchten, oder über die 🤗 PEFT-Bibliothek im Allgemeinen, lesen Sie bitte die [Dokumentation](https://huggingface.co/docs/peft/index).
## Laden Sie einen PEFT-Adapter
Um ein PEFT-Adaptermodell von 🤗 Transformers zu laden und zu verwenden, stellen Sie sicher, dass das Hub-Repository oder das lokale Verzeichnis eine `adapter_config.json`-Datei und die Adaptergewichte enthält, wie im obigen Beispielbild gezeigt. Dann können Sie das PEFT-Adaptermodell mit der Klasse `AutoModelFor` laden. Um zum Beispiel ein PEFT-Adaptermodell für die kausale Sprachmodellierung zu laden:
1. Geben Sie die PEFT-Modell-ID an.
2. übergeben Sie es an die Klasse [`AutoModelForCausalLM`].
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id)
```
<Tip>
Sie können einen PEFT-Adapter entweder mit einer `AutoModelFor`-Klasse oder der Basismodellklasse wie `OPTForCausalLM` oder `LlamaForCausalLM` laden.
</Tip>
Sie können einen PEFT-Adapter auch laden, indem Sie die Methode `load_adapter` aufrufen:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "facebook/opt-350m"
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(model_id)
model.load_adapter(peft_model_id)
```
## Laden in 8bit oder 4bit
Die `bitsandbytes`-Integration unterstützt Datentypen mit 8bit und 4bit Genauigkeit, was für das Laden großer Modelle nützlich ist, weil es Speicher spart (lesen Sie den `bitsandbytes`-Integrations [guide](./quantization#bitsandbytes-integration), um mehr zu erfahren). Fügen Sie die Parameter `load_in_8bit` oder `load_in_4bit` zu [`~PreTrainedModel.from_pretrained`] hinzu und setzen Sie `device_map="auto"`, um das Modell effektiv auf Ihre Hardware zu verteilen:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id, quantization_config=BitsAndBytesConfig(load_in_8bit=True))
```
## Einen neuen Adapter hinzufügen
Sie können [`~peft.PeftModel.add_adapter`] verwenden, um einen neuen Adapter zu einem Modell mit einem bestehenden Adapter hinzuzufügen, solange der neue Adapter vom gleichen Typ ist wie der aktuelle Adapter. Wenn Sie zum Beispiel einen bestehenden LoRA-Adapter an ein Modell angehängt haben:
```py
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
from peft import PeftConfig
model_id = "facebook/opt-350m"
model = AutoModelForCausalLM.from_pretrained(model_id)
lora_config = LoraConfig(
target_modules=["q_proj", "k_proj"],
init_lora_weights=False
)
model.add_adapter(lora_config, adapter_name="adapter_1")
```
Um einen neuen Adapter hinzuzufügen:
```py
# attach new adapter with same config
model.add_adapter(lora_config, adapter_name="adapter_2")
```
Jetzt können Sie mit [`~peft.PeftModel.set_adapter`] festlegen, welcher Adapter verwendet werden soll:
```py
# use adapter_1
model.set_adapter("adapter_1")
output = model.generate(**inputs)
print(tokenizer.decode(output_disabled[0], skip_special_tokens=True))
# use adapter_2
model.set_adapter("adapter_2")
output_enabled = model.generate(**inputs)
print(tokenizer.decode(output_enabled[0], skip_special_tokens=True))
```
## Aktivieren und Deaktivieren von Adaptern
Sobald Sie einen Adapter zu einem Modell hinzugefügt haben, können Sie das Adaptermodul aktivieren oder deaktivieren. So aktivieren Sie das Adaptermodul:
```py
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
from peft import PeftConfig
model_id = "facebook/opt-350m"
adapter_model_id = "ybelkada/opt-350m-lora"
tokenizer = AutoTokenizer.from_pretrained(model_id)
text = "Hello"
inputs = tokenizer(text, return_tensors="pt")
model = AutoModelForCausalLM.from_pretrained(model_id)
peft_config = PeftConfig.from_pretrained(adapter_model_id)
# to initiate with random weights
peft_config.init_lora_weights = False
model.add_adapter(peft_config)
model.enable_adapters()
output = model.generate(**inputs)
```
So deaktivieren Sie das Adaptermodul:
```py
model.disable_adapters()
output = model.generate(**inputs)
```
## PEFT-Adapter trainieren
PEFT-Adapter werden von der Klasse [`Trainer`] unterstützt, so dass Sie einen Adapter für Ihren speziellen Anwendungsfall trainieren können. Dazu müssen Sie nur ein paar weitere Codezeilen hinzufügen. Zum Beispiel, um einen LoRA-Adapter zu trainieren:
<Tip>
Wenn Sie mit der Feinabstimmung eines Modells mit [`Trainer`] noch nicht vertraut sind, werfen Sie einen Blick auf das Tutorial [Feinabstimmung eines vortrainierten Modells](Training).
</Tip>
1. Definieren Sie Ihre Adapterkonfiguration mit dem Aufgabentyp und den Hyperparametern (siehe [`~peft.LoraConfig`] für weitere Details darüber, was die Hyperparameter tun).
```py
from peft import LoraConfig
peft_config = LoraConfig(
lora_alpha=16,
lora_dropout=0.1,
r=64,
bias="none",
task_type="CAUSAL_LM",
)
```
2. Fügen Sie dem Modell einen Adapter hinzu.
```py
model.add_adapter(peft_config)
```
3. Jetzt können Sie das Modell an [`Trainer`] übergeben!
```py
trainer = Trainer(model=model, ...)
trainer.train()
```
So speichern Sie Ihren trainierten Adapter und laden ihn wieder:
```py
model.save_pretrained(save_dir)
model = AutoModelForCausalLM.from_pretrained(save_dir)
```
<!--
TODO: (@younesbelkada @stevhliu)
- Link to PEFT docs for further details
- Trainer
- 8-bit / 4-bit examples ?
-->
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Pipelines für Inferenzen
Die [`pipeline`] macht es einfach, jedes beliebige Modell aus dem [Hub](https://huggingface.co/models) für die Inferenz auf jede Sprache, Computer Vision, Sprache und multimodale Aufgaben zu verwenden. Selbst wenn Sie keine Erfahrung mit einer bestimmten Modalität haben oder nicht mit dem zugrundeliegenden Code hinter den Modellen vertraut sind, können Sie sie mit der [`pipeline`] für Inferenzen verwenden! In diesem Beispiel lernen Sie, wie:
* Eine [`pipeline`] für Inferenz zu verwenden.
* Einen bestimmten Tokenizer oder ein bestimmtes Modell zu verwenden.
* Eine [`pipeline`] für Audio-, Vision- und multimodale Aufgaben zu verwenden.
<Tip>
Eine vollständige Liste der unterstützten Aufgaben und verfügbaren Parameter finden Sie in der [`pipeline`]-Dokumentation.
</Tip>
## Verwendung von Pipelines
Obwohl jede Aufgabe eine zugehörige [`pipeline`] hat, ist es einfacher, die allgemeine [`pipeline`]-Abstraktion zu verwenden, die alle aufgabenspezifischen Pipelines enthält. Die [`pipeline`] lädt automatisch ein Standardmodell und eine Vorverarbeitungsklasse, die für Ihre Aufgabe inferenzfähig ist.
1. Beginnen Sie mit der Erstellung einer [`pipeline`] und geben Sie eine Inferenzaufgabe an:
```py
>>> from transformers import pipeline
>>> generator = pipeline(task="text-generation")
```
2. Übergeben Sie Ihren Eingabetext an die [`pipeline`]:
```py
>>> generator(
... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone"
... ) # doctest: +SKIP
[{'generated_text': 'Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone, Seven for the Iron-priests at the door to the east, and thirteen for the Lord Kings at the end of the mountain'}]
```
Wenn Sie mehr als eine Eingabe haben, übergeben Sie die Eingabe als Liste:
```py
>>> generator(
... [
... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone",
... "Nine for Mortal Men, doomed to die, One for the Dark Lord on his dark throne",
... ]
... ) # doctest: +SKIP
```
Alle zusätzlichen Parameter für Ihre Aufgabe können auch in die [`pipeline`] aufgenommen werden. Die Aufgabe `Text-Generierung` hat eine [`~generation.GenerationMixin.generate`]-Methode mit mehreren Parametern zur Steuerung der Ausgabe. Wenn Sie zum Beispiel mehr als eine Ausgabe erzeugen wollen, setzen Sie den Parameter `num_return_sequences`:
```py
>>> generator(
... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone",
... num_return_sequences=2,
... ) # doctest: +SKIP
```
### Wählen Sie ein Modell und einen Tokenizer
Die [`pipeline`] akzeptiert jedes Modell aus dem [Hub](https://huggingface.co/models). Auf dem Hub gibt es Tags, mit denen Sie nach einem Modell filtern können, das Sie für Ihre Aufgabe verwenden möchten. Sobald Sie ein passendes Modell ausgewählt haben, laden Sie es mit der entsprechenden `AutoModelFor` und [`AutoTokenizer`] Klasse. Laden Sie zum Beispiel die Klasse [`AutoModelForCausalLM`] für eine kausale Sprachmodellierungsaufgabe:
```py
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2")
>>> model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
```
Erstellen Sie eine [`pipeline`] für Ihre Aufgabe, und geben Sie das Modell und den Tokenizer an, die Sie geladen haben:
```py
>>> from transformers import pipeline
>>> generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
```
Übergeben Sie Ihren Eingabetext an die [`pipeline`] , um einen Text zu erzeugen:
```py
>>> generator(
... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone"
... ) # doctest: +SKIP
[{'generated_text': 'Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone, Seven for the Dragon-lords (for them to rule in a world ruled by their rulers, and all who live within the realm'}]
```
## Audio-Pipeline
Die [`pipeline`] unterstützt auch Audioaufgaben wie Audioklassifizierung und automatische Spracherkennung.
Lassen Sie uns zum Beispiel die Emotion in diesem Audioclip klassifizieren:
```py
>>> from datasets import load_dataset
>>> import torch
>>> torch.manual_seed(42) # doctest: +IGNORE_RESULT
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> audio_file = ds[0]["audio"]["path"]
```
Finden Sie ein [Audioklassifikation](https://huggingface.co/models?pipeline_tag=audio-classification) Modell auf dem Model Hub für Emotionserkennung und laden Sie es in die [`pipeline`]:
```py
>>> from transformers import pipeline
>>> audio_classifier = pipeline(
... task="audio-classification", model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
... )
```
Übergeben Sie die Audiodatei an die [`pipeline`]:
```py
>>> preds = audio_classifier(audio_file)
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
>>> preds
[{'score': 0.1315, 'label': 'calm'}, {'score': 0.1307, 'label': 'neutral'}, {'score': 0.1274, 'label': 'sad'}, {'score': 0.1261, 'label': 'fearful'}, {'score': 0.1242, 'label': 'happy'}]
```
## Bildverarbeitungs-Pipeline
Die Verwendung einer [`pipeline`] für Bildverarbeitungsaufgaben ist praktisch identisch.
Geben Sie Ihre Aufgabe an und übergeben Sie Ihr Bild an den Klassifikator. Das Bild kann ein Link oder ein lokaler Pfad zu dem Bild sein. Zum Beispiel: Welche Katzenart ist unten abgebildet?
![pipeline-cat-chonk](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg)
```py
>>> from transformers import pipeline
>>> vision_classifier = pipeline(task="image-classification")
>>> preds = vision_classifier(
... images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
... )
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
>>> preds
[{'score': 0.4335, 'label': 'lynx, catamount'}, {'score': 0.0348, 'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor'}, {'score': 0.0324, 'label': 'snow leopard, ounce, Panthera uncia'}, {'score': 0.0239, 'label': 'Egyptian cat'}, {'score': 0.0229, 'label': 'tiger cat'}]
```
## Multimodale Pipeline
Die [`pipeline`] unterstützt mehr als eine Modalität. Eine Aufgabe zur Beantwortung visueller Fragen (VQA) kombiniert zum Beispiel Text und Bild. Verwenden Sie einen beliebigen Bildlink und eine Frage, die Sie zu dem Bild stellen möchten. Das Bild kann eine URL oder ein lokaler Pfad zu dem Bild sein.
Wenn Sie zum Beispiel das gleiche Bild wie in der obigen Vision-Pipeline verwenden:
```py
>>> image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
>>> question = "Where is the cat?"
```
Erstellen Sie eine Pipeline für "vqa" und übergeben Sie ihr das Bild und die Frage:
```py
>>> from transformers import pipeline
>>> vqa = pipeline(task="vqa")
>>> preds = vqa(image=image, question=question)
>>> preds = [{"score": round(pred["score"], 4), "answer": pred["answer"]} for pred in preds]
>>> preds
[{'score': 0.9112, 'answer': 'snow'}, {'score': 0.8796, 'answer': 'in snow'}, {'score': 0.6717, 'answer': 'outside'}, {'score': 0.0291, 'answer': 'on ground'}, {'score': 0.027, 'answer': 'ground'}]
```
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Überprüfungen bei einer Pull-Anfrage
Wenn Sie eine Pull-Anfrage für 🤗 Transformers öffnen, wird eine ganze Reihe von Prüfungen durchgeführt, um sicherzustellen, dass der Patch, den Sie hinzufügen, nichts Bestehendes zerstört. Es gibt vier Arten von Prüfungen:
- reguläre Tests
- Erstellung der Dokumentation
- Stil von Code und Dokumentation
- allgemeine Konsistenz des Repository
In diesem Dokument werden wir versuchen zu erklären, worum es sich bei diesen verschiedenen Prüfungen handelt und wie Sie sie lokal debuggen können, wenn eine der Prüfungen in Ihrer PR fehlschlägt.
Beachten Sie, dass Sie im Idealfall eine Dev-Installation benötigen:
```bash
pip install transformers[dev]
```
oder für eine bearbeitbare Installation:
```bash
pip install -e .[dev]
```
innerhalb des Transformers Repo. Da die Anzahl der optionalen Abhängigkeiten von Transformers stark zugenommen hat, ist es möglich, dass Sie nicht alle davon bekommen können. Wenn die Dev-Installation fehlschlägt, stellen Sie sicher, dass Sie das Deep Learning-Framework, mit dem Sie arbeiten, installieren (PyTorch, TensorFlow und/oder Flax).
```bash
pip install transformers[quality]
```
oder für eine bearbeitbare Installation:
```bash
pip install -e .[quality]
```
## Tests
Alle Jobs, die mit `ci/circleci: run_tests_` beginnen, führen Teile der Transformers-Testsuite aus. Jeder dieser Jobs konzentriert sich auf einen Teil der Bibliothek in einer bestimmten Umgebung: `ci/circleci: run_tests_pipelines_tf` zum Beispiel führt den Pipelines-Test in einer Umgebung aus, in der nur TensorFlow installiert ist.
Beachten Sie, dass nur ein Teil der Testsuite jedes Mal ausgeführt wird, um zu vermeiden, dass Tests ausgeführt werden, wenn es keine wirkliche Änderung in den Modulen gibt, die sie testen: ein Dienstprogramm wird ausgeführt, um die Unterschiede in der Bibliothek zwischen vor und nach dem PR zu ermitteln (was GitHub Ihnen auf der Registerkarte "Files changes" anzeigt) und die Tests auszuwählen, die von diesem Unterschied betroffen sind. Dieses Dienstprogramm kann lokal mit ausgeführt werden:
```bash
python utils/tests_fetcher.py
```
aus dem Stammverzeichnis des Transformers-Repositoriums. Es wird:
1. Überprüfen Sie für jede Datei im Diff, ob die Änderungen im Code oder nur in Kommentaren oder Docstrings enthalten sind. Nur die Dateien mit echten Codeänderungen werden beibehalten.
2. Erstellen Sie eine interne Map, die für jede Datei des Quellcodes der Bibliothek alle Dateien angibt, auf die sie rekursiv Einfluss nimmt. Von Modul A wird gesagt, dass es sich auf Modul B auswirkt, wenn Modul B Modul A importiert. Für die rekursive Auswirkung benötigen wir eine Kette von Modulen, die von Modul A zu Modul B führt und in der jedes Modul das vorherige importiert.
3. Wenden Sie diese Zuordnung auf die in Schritt 1 gesammelten Dateien an. So erhalten wir die Liste der Modelldateien, die von der PR betroffen sind.
4. Ordnen Sie jede dieser Dateien der/den entsprechenden Testdatei(en) zu und erhalten Sie die Liste der auszuführenden Tests.
Wenn Sie das Skript lokal ausführen, sollten Sie die Ergebnisse von Schritt 1, 3 und 4 ausgegeben bekommen und somit wissen, welche Tests ausgeführt werden. Das Skript erstellt außerdem eine Datei namens `test_list.txt`, die die Liste der auszuführenden Tests enthält, die Sie mit dem folgenden Befehl lokal ausführen können:
```bash
python -m pytest -n 8 --dist=loadfile -rA -s $(cat test_list.txt)
```
Für den Fall, dass Ihnen etwas entgangen ist, wird die komplette Testreihe ebenfalls täglich ausgeführt.
## Dokumentation erstellen
Der Job `build_pr_documentation` erstellt und generiert eine Vorschau der Dokumentation, um sicherzustellen, dass alles in Ordnung ist, wenn Ihr PR zusammengeführt wird. Ein Bot fügt einen Link zur Vorschau der Dokumentation zu Ihrem PR hinzu. Alle Änderungen, die Sie an dem PR vornehmen, werden automatisch in der Vorschau aktualisiert. Wenn die Dokumentation nicht erstellt werden kann, klicken Sie auf **Details** neben dem fehlgeschlagenen Auftrag, um zu sehen, wo der Fehler liegt. Oft ist der Fehler so einfach wie eine fehlende Datei im `toctree`.
Wenn Sie daran interessiert sind, die Dokumentation lokal zu erstellen oder in der Vorschau anzusehen, werfen Sie einen Blick in die [`README.md`](https://github.com/huggingface/transformers/tree/main/docs) im Ordner docs.
## Code und Dokumentationsstil
Die Formatierung des Codes erfolgt für alle Quelldateien, die Beispiele und die Tests mit `black` und `ruff`. Wir haben auch ein benutzerdefiniertes Tool, das sich um die Formatierung von docstrings und `rst`-Dateien kümmert (`utils/style_doc.py`), sowie um die Reihenfolge der Lazy-Importe, die in den Transformers `__init__.py`-Dateien durchgeführt werden (`utils/custom_init_isort.py`). All dies können Sie starten, indem Sie Folgendes ausführen
```bash
make style
```
Das CI prüft, ob diese innerhalb der Prüfung `ci/circleci: check_code_quality` angewendet wurden. Es führt auch `ruff` aus, das einen grundlegenden Blick auf Ihren Code wirft und sich beschwert, wenn es eine undefinierte Variable findet oder eine, die nicht verwendet wird. Um diese Prüfung lokal auszuführen, verwenden Sie
```bash
make quality
```
Dies kann sehr viel Zeit in Anspruch nehmen. Um dasselbe nur für die Dateien zu tun, die Sie im aktuellen Zweig geändert haben, führen Sie
```bash
make fixup
```
Dieser letzte Befehl führt auch alle zusätzlichen Prüfungen für die Konsistenz des Repositorys durch. Schauen wir uns diese an.
## Repository-Konsistenz
Dies fasst alle Tests zusammen, die sicherstellen, dass Ihr PR das Repository in einem guten Zustand verlässt. Sie können diese Prüfung lokal durchführen, indem Sie Folgendes ausführen:
```bash
make repo-consistency
```
Dies überprüft, ob:
- Alle zum Init hinzugefügten Objekte sind dokumentiert (ausgeführt von `utils/check_repo.py`)
- Alle `__init__.py`-Dateien haben in ihren beiden Abschnitten den gleichen Inhalt (ausgeführt von `utils/check_inits.py`)
- Der gesamte Code, der als Kopie eines anderen Moduls identifiziert wurde, stimmt mit dem Original überein (ausgeführt von `utils/check_copies.py`)
- Alle Konfigurationsklassen haben mindestens einen gültigen Prüfpunkt, der in ihren Dokumentationen erwähnt wird (ausgeführt von `utils/check_config_docstrings.py`)
- Alle Konfigurationsklassen enthalten nur Attribute, die in den entsprechenden Modellierungsdateien verwendet werden (ausgeführt von `utils/check_config_attributes.py`)
- Die Übersetzungen der READMEs und der Index des Dokuments haben die gleiche Modellliste wie die Haupt-README (durchgeführt von `utils/check_copies.py`)
- Die automatisch generierten Tabellen in der Dokumentation sind auf dem neuesten Stand (ausgeführt von `utils/check_table.py`)
- Die Bibliothek verfügt über alle Objekte, auch wenn nicht alle optionalen Abhängigkeiten installiert sind (ausgeführt von `utils/check_dummies.py`)
Sollte diese Prüfung fehlschlagen, müssen die ersten beiden Punkte manuell korrigiert werden, die letzten vier können automatisch für Sie korrigiert werden, indem Sie den Befehl
```bash
make fix-copies
```
Zusätzliche Prüfungen betreffen PRs, die neue Modelle hinzufügen, vor allem, dass:
- Alle hinzugefügten Modelle befinden sich in einer Auto-Zuordnung (durchgeführt von `utils/check_repo.py`)
<!-- TODO Sylvain, add a check that makes sure the common tests are implemented.-->
- Alle Modelle werden ordnungsgemäß getestet (ausgeführt von `utils/check_repo.py`)
<!-- TODO Sylvain, add the following
- All models are added to the main README, inside the main doc
- All checkpoints used actually exist on the Hub
-->
### Kopien prüfen
Da die Transformers-Bibliothek in Bezug auf den Modellcode sehr eigenwillig ist und jedes Modell vollständig in einer einzigen Datei implementiert sein sollte, ohne sich auf andere Modelle zu stützen, haben wir einen Mechanismus hinzugefügt, der überprüft, ob eine Kopie des Codes einer Ebene eines bestimmten Modells mit dem Original übereinstimmt. Auf diese Weise können wir bei einer Fehlerbehebung alle anderen betroffenen Modelle sehen und entscheiden, ob wir die Änderung weitergeben oder die Kopie zerstören.
<Tip>
Wenn eine Datei eine vollständige Kopie einer anderen Datei ist, sollten Sie sie in der Konstante `FULL_COPIES` von `utils/check_copies.py` registrieren.
</Tip>
Dieser Mechanismus stützt sich auf Kommentare der Form `# Kopiert von xxx`. Das `xxx` sollte den gesamten Pfad zu der Klasse der Funktion enthalten, die darunter kopiert wird. Zum Beispiel ist `RobertaSelfOutput` eine direkte Kopie der Klasse `BertSelfOutput`. Sie können also [hier](https://github.com/huggingface/transformers/blob/2bd7a27a671fd1d98059124024f580f8f5c0f3b5/src/transformers/models/roberta/modeling_roberta.py#L289) sehen, dass sie einen Kommentar hat:
```py
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
```
Beachten Sie, dass Sie dies nicht auf eine ganze Klasse anwenden, sondern auf die entsprechenden Methoden, von denen kopiert wird. Zum Beispiel [hier](https://github.com/huggingface/transformers/blob/2bd7a27a671fd1d98059124024f580f8f5c0f3b5/src/transformers/models/roberta/modeling_roberta.py#L598) können Sie sehen, wie `RobertaPreTrainedModel._init_weights` von der gleichen Methode in `BertPreTrainedModel` mit dem Kommentar kopiert wird:
```py
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
```
Manchmal ist die Kopie bis auf die Namen genau gleich: zum Beispiel verwenden wir in `RobertaAttention` `RobertaSelfAttention` anstelle von `BertSelfAttention`, aber ansonsten ist der Code genau derselbe. Aus diesem Grund unterstützt `#Copied from` einfache String-Ersetzungen mit der folgenden Syntax: `Kopiert von xxx mit foo->bar`. Das bedeutet, dass der Code kopiert wird, wobei alle Instanzen von "foo" durch "bar" ersetzt werden. Sie können sehen, wie es [hier](https://github.com/huggingface/transformers/blob/2bd7a27a671fd1d98059124024f580f8f5c0f3b5/src/transformers/models/roberta/modeling_roberta.py#L304C1-L304C86) in `RobertaAttention` mit dem Kommentar verwendet wird:
```py
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta
```
Beachten Sie, dass um den Pfeil herum keine Leerzeichen stehen sollten (es sei denn, das Leerzeichen ist Teil des zu ersetzenden Musters, natürlich).
Sie können mehrere Muster durch ein Komma getrennt hinzufügen. Zum Beispiel ist hier `CamemberForMaskedLM` eine direkte Kopie von `RobertaForMaskedLM` mit zwei Ersetzungen: `Roberta` zu `Camembert` und `ROBERTA` zu `CAMEMBERT`. Sie können [hier](https://github.com/huggingface/transformers/blob/15082a9dc6950ecae63a0d3e5060b2fc7f15050a/src/transformers/models/camembert/modeling_camembert.py#L929) sehen, wie dies mit dem Kommentar gemacht wird:
```py
# Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM with Roberta->Camembert, ROBERTA->CAMEMBERT
```
Wenn die Reihenfolge eine Rolle spielt (weil eine der Ersetzungen mit einer vorherigen in Konflikt geraten könnte), werden die Ersetzungen von links nach rechts ausgeführt.
<Tip>
Wenn die Ersetzungen die Formatierung ändern (wenn Sie z.B. einen kurzen Namen durch einen sehr langen Namen ersetzen), wird die Kopie nach Anwendung des automatischen Formats überprüft.
</Tip>
Eine andere Möglichkeit, wenn es sich bei den Mustern nur um verschiedene Umschreibungen derselben Ersetzung handelt (mit einer groß- und einer kleingeschriebenen Variante), besteht darin, die Option `all-casing` hinzuzufügen. [Hier](https://github.com/huggingface/transformers/blob/15082a9dc6950ecae63a0d3e5060b2fc7f15050a/src/transformers/models/mobilebert/modeling_mobilebert.py#L1237) ist ein Beispiel in `MobileBertForSequenceClassification` mit dem Kommentar:
```py
# Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification with Bert->MobileBert all-casing
```
In diesem Fall wird der Code von `BertForSequenceClassification` kopiert, indem er ersetzt wird:
- `Bert` durch `MobileBert` (zum Beispiel bei der Verwendung von `MobileBertModel` in der Init)
- `bert` durch `mobilebert` (zum Beispiel bei der Definition von `self.mobilebert`)
- `BERT` durch `MOBILEBERT` (in der Konstante `MOBILEBERT_INPUTS_DOCSTRING`)
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Vorverarbeiten
[[open-in-colab]]
Bevor Sie Ihre Daten in einem Modell verwenden können, müssen die Daten in ein für das Modell akzeptables Format gebracht werden. Ein Modell versteht keine Rohtexte, Bilder oder Audiodaten. Diese Eingaben müssen in Zahlen umgewandelt und zu Tensoren zusammengesetzt werden. In dieser Anleitung werden Sie:
* Textdaten mit einem Tokenizer vorverarbeiten.
* Bild- oder Audiodaten mit einem Feature Extractor vorverarbeiten.
* Daten für eine multimodale Aufgabe mit einem Prozessor vorverarbeiten.
## NLP
<Youtube id="Yffk5aydLzg"/>
Das wichtigste Werkzeug zur Verarbeitung von Textdaten ist ein [Tokenizer](main_classes/tokenizer). Ein Tokenizer zerlegt Text zunächst nach einer Reihe von Regeln in *Token*. Die Token werden in Zahlen umgewandelt, die zum Aufbau von Tensoren als Eingabe für ein Modell verwendet werden. Alle zusätzlichen Eingaben, die ein Modell benötigt, werden ebenfalls vom Tokenizer hinzugefügt.
<Tip>
Wenn Sie ein vortrainiertes Modell verwenden möchten, ist es wichtig, den zugehörigen vortrainierten Tokenizer zu verwenden. Dadurch wird sichergestellt, dass der Text auf die gleiche Weise aufgeteilt wird wie das Pretraining-Korpus und die gleichen entsprechenden Token-zu-Index (in der Regel als *vocab* bezeichnet) während des Pretrainings verwendet werden.
</Tip>
Laden Sie einen vortrainierten Tokenizer mit der Klasse [AutoTokenizer], um schnell loszulegen. Damit wird das *vocab* heruntergeladen, das verwendet wird, wenn ein Modell vortrainiert wird.
### Tokenize
Laden Sie einen vortrainierten Tokenizer mit [`AutoTokenizer.from_pretrained`]:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
```
Dann übergeben Sie Ihren Satz an den Tokenizer:
```py
>>> encoded_input = tokenizer("Do not meddle in the affairs of wizards, for they are subtle and quick to anger.")
>>> print(encoded_input)
{'input_ids': [101, 2079, 2025, 19960, 10362, 1999, 1996, 3821, 1997, 16657, 1010, 2005, 2027, 2024, 11259, 1998, 4248, 2000, 4963, 1012, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
Der Tokenizer gibt ein Wörterbuch mit drei wichtigen Elementen zurück:
* [input_ids](glossary#input-ids) sind die Indizes, die den einzelnen Token im Satz entsprechen.
* [attention_mask](glossary#attention-mask) gibt an, ob ein Token beachtet werden soll oder nicht.
* [token_type_ids](glossary#token-type-ids) gibt an, zu welcher Sequenz ein Token gehört, wenn es mehr als eine Sequenz gibt.
Sie können die `input_ids` dekodieren, um die ursprüngliche Eingabe zurückzugeben:
```py
>>> tokenizer.decode(encoded_input["input_ids"])
'[CLS] Do not meddle in the affairs of wizards, for they are subtle and quick to anger. [SEP]'
```
Wie Sie sehen können, hat der Tokenisierer zwei spezielle Token - `CLS` und `SEP` (Klassifikator und Separator) - zum Satz hinzugefügt. Nicht alle Modelle benötigen
spezielle Token, aber wenn dies der Fall ist, fügt der Tokenisierer sie automatisch für Sie hinzu.
Wenn Sie mehrere Sätze verarbeiten wollen, übergeben Sie die Sätze als Liste an den Tokenizer:
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_inputs = tokenizer(batch_sentences)
>>> print(encoded_inputs)
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102]],
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1]]}
```
### Pad
Dies bringt uns zu einem wichtigen Thema. Wenn Sie einen Haufen von Sätzen verarbeiten, sind diese nicht immer gleich lang. Das ist ein Problem, weil Tensoren, die Eingabe für das Modell, eine einheitliche Form haben müssen. Padding ist eine Strategie, die sicherstellt, dass Tensoren rechteckig sind, indem ein spezielles *Padding-Token* zu Sätzen mit weniger Token hinzugefügt wird.
Setzen Sie den Parameter "padding" auf "true", um die kürzeren Sequenzen im Stapel so aufzufüllen, dass sie der längsten Sequenz entsprechen:
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True)
>>> print(encoded_input)
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}
```
Beachten Sie, dass der Tokenizer den ersten und den dritten Satz mit einer "0" aufgefüllt hat, weil sie kürzer sind!
### Kürzung
Auf der anderen Seite des Spektrums kann es vorkommen, dass eine Sequenz zu lang für ein Modell ist. In diesem Fall müssen Sie die Sequenz auf eine kürzere Länge kürzen.
Setzen Sie den Parameter "truncation" auf "true", um eine Sequenz auf die vom Modell akzeptierte Höchstlänge zu kürzen:
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True)
>>> print(encoded_input)
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}
```
### Tensoren erstellen
Schließlich möchten Sie, dass der Tokenizer die tatsächlichen Tensoren zurückgibt, die dem Modell zugeführt werden.
Setzen Sie den Parameter `return_tensors` entweder auf `pt` für PyTorch, oder `tf` für TensorFlow:
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="pt")
>>> print(encoded_input)
{'input_ids': tensor([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]]),
'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),
'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])}
```
## Audio
Audioeingaben werden anders vorverarbeitet als Texteingaben, aber das Endziel bleibt dasselbe: numerische Sequenzen zu erstellen, die das Modell verstehen kann. Ein [feature extractor](main_classes/feature_extractor) dient dem ausdrücklichen Zweck, Merkmale aus Rohbild- oder Audiodaten zu extrahieren und in Tensoren zu konvertieren. Bevor Sie beginnen, installieren Sie 🤗 Datasets, um einen Audio-Datensatz zu laden, mit dem Sie experimentieren können:
```bash
pip install datasets
```
Laden Sie den [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) Datensatz (weitere Informationen zum Laden eines Datensatzes finden Sie im 🤗 [Datasets tutorial](https://huggingface.co/docs/datasets/load_hub)):
```py
>>> from datasets import load_dataset, Audio
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
```
Greifen Sie auf das erste Element der `audio`-Spalte zu, um einen Blick auf die Eingabe zu werfen. Durch den Aufruf der Spalte "audio" wird die Audiodatei automatisch geladen und neu gesampelt:
```py
>>> dataset[0]["audio"]
{'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414,
0. , 0. ], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
'sampling_rate': 8000}
```
Dies gibt drei Elemente zurück:
* "array" ist das Sprachsignal, das als 1D-Array geladen - und möglicherweise neu gesampelt - wurde.
* Pfad" zeigt auf den Speicherort der Audiodatei.
* `sampling_rate` bezieht sich darauf, wie viele Datenpunkte im Sprachsignal pro Sekunde gemessen werden.
### Resample
Für dieses Tutorial werden Sie das Modell [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base) verwenden. Wie Sie aus der Modellkarte ersehen können, ist das Wav2Vec2-Modell auf 16kHz abgetastetes Sprachaudio vortrainiert. Es ist wichtig, dass die Abtastrate Ihrer Audiodaten mit der Abtastrate des Datensatzes übereinstimmt, der für das Pre-Training des Modells verwendet wurde. Wenn die Abtastrate Ihrer Daten nicht dieselbe ist, müssen Sie Ihre Audiodaten neu abtasten.
Der Datensatz [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) hat zum Beispiel eine Abtastrate von 8000 kHz. Um das Wav2Vec2-Modell mit diesem Datensatz verwenden zu können, müssen Sie die Abtastrate auf 16 kHz erhöhen:
```py
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
>>> dataset[0]["audio"]
{'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414,
0. , 0. ], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
'sampling_rate': 8000}
```
1. Verwenden Sie die Methode [`~datasets.Dataset.cast_column`] von 🤗 Datasets, um die Abtastrate auf 16kHz zu erhöhen:
```py
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000))
```
2. Laden Sie die Audiodatei:
```py
>>> dataset[0]["audio"]
{'array': array([ 2.3443763e-05, 2.1729663e-04, 2.2145823e-04, ...,
3.8356509e-05, -7.3497440e-06, -2.1754686e-05], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
'sampling_rate': 16000}
```
Wie Sie sehen können, ist die Abtastrate jetzt 16kHz!
### Merkmalsextraktor
Der nächste Schritt ist das Laden eines Merkmalsextraktors, um die Eingabe zu normalisieren und aufzufüllen. Beim Auffüllen von Textdaten wird für kürzere Sequenzen ein `0` hinzugefügt. Die gleiche Idee gilt für Audiodaten, und der Audio-Feature-Extraktor fügt eine `0` - interpretiert als Stille - zu `array` hinzu.
Laden Sie den Merkmalsextraktor mit [`AutoFeatureExtractor.from_pretrained`]:
```py
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
```
Übergeben Sie das Audio-"Array" an den Feature-Extraktor. Wir empfehlen auch, das Argument `sampling_rate` im Feature Extractor hinzuzufügen, um eventuell auftretende stille Fehler besser zu beheben.
```py
>>> audio_input = [dataset[0]["audio"]["array"]]
>>> feature_extractor(audio_input, sampling_rate=16000)
{'input_values': [array([ 3.8106556e-04, 2.7506407e-03, 2.8015103e-03, ...,
5.6335266e-04, 4.6588284e-06, -1.7142107e-04], dtype=float32)]}
```
### Auffüllen und Kürzen
Genau wie beim Tokenizer können Sie variable Sequenzen in einem Stapel durch Auffüllen oder Abschneiden behandeln. Werfen Sie einen Blick auf die Sequenzlänge dieser beiden Audiobeispiele:
```py
>>> dataset[0]["audio"]["array"].shape
(173398,)
>>> dataset[1]["audio"]["array"].shape
(106496,)
```
Wie Sie sehen können, hat das erste Beispiel eine längere Sequenz als das zweite Beispiel. Lassen Sie uns eine Funktion erstellen, die den Datensatz vorverarbeitet. Geben Sie eine maximale Länge der Probe an, und der Feature-Extraktor wird die Sequenzen entweder auffüllen oder abschneiden, damit sie dieser Länge entsprechen:
```py
>>> def preprocess_function(examples):
... audio_arrays = [x["array"] for x in examples["audio"]]
... inputs = feature_extractor(
... audio_arrays,
... sampling_rate=16000,
... padding=True,
... max_length=100000,
... truncation=True,
... )
... return inputs
```
Wenden Sie die Funktion auf die ersten paar Beispiele im Datensatz an:
```py
>>> processed_dataset = preprocess_function(dataset[:5])
```
Schauen Sie sich nun noch einmal die verarbeiteten Beispiel-Längen an:
```py
>>> processed_dataset["input_values"][0].shape
(100000,)
>>> processed_dataset["input_values"][1].shape
(100000,)
```
Die Länge der ersten beiden Beispiele entspricht nun der von Ihnen angegebenen Maximallänge.
## Bildverarbeitung
Ein Merkmalsextraktor wird auch verwendet, um Bilder für Bildverarbeitungsaufgaben zu verarbeiten. Auch hier besteht das Ziel darin, das Rohbild in eine Reihe von Tensoren als Eingabe zu konvertieren.
Laden wir den [food101](https://huggingface.co/datasets/food101) Datensatz für dieses Tutorial. Verwenden Sie den Parameter 🤗 Datasets `split`, um nur eine kleine Stichprobe aus dem Trainingssplit zu laden, da der Datensatz recht groß ist:
```py
>>> from datasets import load_dataset
>>> dataset = load_dataset("food101", split="train[:100]")
```
Als Nächstes sehen Sie sich das Bild mit dem Merkmal 🤗 Datensätze [Bild](https://huggingface.co/docs/datasets/package_reference/main_classes?highlight=image#datasets.Image) an:
```py
>>> dataset[0]["image"]
```
![vision-preprocess-tutorial.png](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vision-preprocess-tutorial.png)
### Merkmalsextraktor
Laden Sie den Merkmalsextraktor mit [`AutoImageProcessor.from_pretrained`]:
```py
>>> from transformers import AutoImageProcessor
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
```
### Datenerweiterung
Bei Bildverarbeitungsaufgaben ist es üblich, den Bildern als Teil der Vorverarbeitung eine Art von Datenerweiterung hinzuzufügen. Sie können Erweiterungen mit jeder beliebigen Bibliothek hinzufügen, aber in diesem Tutorial werden Sie das Modul [`transforms`](https://pytorch.org/vision/stable/transforms.html) von torchvision verwenden.
1. Normalisieren Sie das Bild und verwenden Sie [`Compose`](https://pytorch.org/vision/master/generated/torchvision.transforms.Compose.html), um einige Transformationen - [`RandomResizedCrop`](https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html) und [`ColorJitter`](https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html) - miteinander zu verknüpfen:
```py
>>> from torchvision.transforms import Compose, Normalize, RandomResizedCrop, ColorJitter, ToTensor
>>> normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
>>> _transforms = Compose(
... [RandomResizedCrop(image_processor.size["height"]), ColorJitter(brightness=0.5, hue=0.5), ToTensor(), normalize]
... )
```
2. Das Modell akzeptiert [`pixel_values`](model_doc/visionencoderdecoder#transformers.VisionEncoderDecoderModel.forward.pixel_values) als Eingabe. Dieser Wert wird vom Merkmalsextraktor erzeugt. Erstellen Sie eine Funktion, die `pixel_values` aus den Transformationen erzeugt:
```py
>>> def transforms(examples):
... examples["pixel_values"] = [_transforms(image.convert("RGB")) for image in examples["image"]]
... return examples
```
3. Dann verwenden Sie 🤗 Datasets [`set_transform`](https://huggingface.co/docs/datasets/process#format-transform), um die Transformationen im laufenden Betrieb anzuwenden:
```py
>>> dataset.set_transform(transforms)
```
4. Wenn Sie nun auf das Bild zugreifen, werden Sie feststellen, dass der Feature Extractor die Modelleingabe "pixel_values" hinzugefügt hat:
```py
>>> dataset[0]["image"]
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x512 at 0x7F1A7B0630D0>,
'label': 6,
'pixel_values': tensor([[[ 0.0353, 0.0745, 0.1216, ..., -0.9922, -0.9922, -0.9922],
[-0.0196, 0.0667, 0.1294, ..., -0.9765, -0.9843, -0.9922],
[ 0.0196, 0.0824, 0.1137, ..., -0.9765, -0.9686, -0.8667],
...,
[ 0.0275, 0.0745, 0.0510, ..., -0.1137, -0.1216, -0.0824],
[ 0.0667, 0.0824, 0.0667, ..., -0.0588, -0.0745, -0.0980],
[ 0.0353, 0.0353, 0.0431, ..., -0.0039, -0.0039, -0.0588]],
[[ 0.2078, 0.2471, 0.2863, ..., -0.9451, -0.9373, -0.9451],
[ 0.1608, 0.2471, 0.3098, ..., -0.9373, -0.9451, -0.9373],
[ 0.2078, 0.2706, 0.3020, ..., -0.9608, -0.9373, -0.8275],
...,
[-0.0353, 0.0118, -0.0039, ..., -0.2392, -0.2471, -0.2078],
[ 0.0196, 0.0353, 0.0196, ..., -0.1843, -0.2000, -0.2235],
[-0.0118, -0.0039, -0.0039, ..., -0.0980, -0.0980, -0.1529]],
[[ 0.3961, 0.4431, 0.4980, ..., -0.9216, -0.9137, -0.9216],
[ 0.3569, 0.4510, 0.5216, ..., -0.9059, -0.9137, -0.9137],
[ 0.4118, 0.4745, 0.5216, ..., -0.9137, -0.8902, -0.7804],
...,
[-0.2314, -0.1922, -0.2078, ..., -0.4196, -0.4275, -0.3882],
[-0.1843, -0.1686, -0.2000, ..., -0.3647, -0.3804, -0.4039],
[-0.1922, -0.1922, -0.1922, ..., -0.2941, -0.2863, -0.3412]]])}
```
Hier sehen Sie, wie das Bild nach der Vorverarbeitung aussieht. Wie von den angewandten Transformationen zu erwarten, wurde das Bild willkürlich beschnitten und seine Farbeigenschaften sind anders.
```py
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> img = dataset[0]["pixel_values"]
>>> plt.imshow(img.permute(1, 2, 0))
```
![preprocessed_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/preprocessed_image.png)
## Multimodal
Für multimodale Aufgaben werden Sie eine Kombination aus allem, was Sie bisher gelernt haben, verwenden und Ihre Fähigkeiten auf eine Aufgabe der automatischen Spracherkennung (ASR) anwenden. Dies bedeutet, dass Sie einen:
* Feature Extractor zur Vorverarbeitung der Audiodaten.
* Tokenizer, um den Text zu verarbeiten.
Kehren wir zum [LJ Speech](https://huggingface.co/datasets/lj_speech) Datensatz zurück:
```py
>>> from datasets import load_dataset
>>> lj_speech = load_dataset("lj_speech", split="train")
```
Da Sie hauptsächlich an den Spalten "Audio" und "Text" interessiert sind, entfernen Sie die anderen Spalten:
```py
>>> lj_speech = lj_speech.map(remove_columns=["file", "id", "normalized_text"])
```
Schauen Sie sich nun die Spalten "Audio" und "Text" an:
```py
>>> lj_speech[0]["audio"]
{'array': array([-7.3242188e-04, -7.6293945e-04, -6.4086914e-04, ...,
7.3242188e-04, 2.1362305e-04, 6.1035156e-05], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/917ece08c95cf0c4115e45294e3cd0dee724a1165b7fc11798369308a465bd26/LJSpeech-1.1/wavs/LJ001-0001.wav',
'sampling_rate': 22050}
>>> lj_speech[0]["text"]
'Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition'
```
Erinnern Sie sich an den früheren Abschnitt über die Verarbeitung von Audiodaten: Sie sollten immer die Abtastrate Ihrer Audiodaten [resample](preprocessing#audio), damit sie mit der Abtastrate des Datensatzes übereinstimmt, der für das Vortraining eines Modells verwendet wird:
```py
>>> lj_speech = lj_speech.cast_column("audio", Audio(sampling_rate=16_000))
```
### Prozessor
Ein Processor kombiniert einen Feature-Extraktor und einen Tokenizer. Laden Sie einen Processor mit [`AutoProcessor.from_pretrained`]:
```py
>>> from transformers import AutoProcessor
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
```
1. Erstellen Sie eine Funktion, die die Audiodaten zu `input_values` verarbeitet und den Text zu `labels` tokenisiert. Dies sind Ihre Eingaben für das Modell:
```py
>>> def prepare_dataset(example):
... audio = example["audio"]
... example.update(processor(audio=audio["array"], text=example["text"], sampling_rate=16000))
... return example
```
2. Wenden Sie die Funktion "prepare_dataset" auf ein Beispiel an:
```py
>>> prepare_dataset(lj_speech[0])
```
Beachten Sie, dass der Processor `input_values` und `labels` hinzugefügt hat. Auch die Abtastrate wurde korrekt auf 16kHz heruntergerechnet.
Toll, Sie sollten jetzt in der Lage sein, Daten für jede Modalität vorzuverarbeiten und sogar verschiedene Modalitäten zu kombinieren! Im nächsten Kurs lernen Sie, wie Sie ein Modell mit Ihren neu aufbereiteten Daten feinabstimmen können.
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Schnellstart
[[open-in-colab]]
Mit 🤗 Transformers können Sie sofort loslegen! Verwenden Sie die [`pipeline`] für schnelle Inferenz und laden Sie schnell ein vortrainiertes Modell und einen Tokenizer mit einer [AutoClass](./model_doc/auto), um Ihre Text-, Bild- oder Audioaufgabe zu lösen.
<Tip>
Alle in der Dokumentation vorgestellten Codebeispiele haben oben links einen Umschalter für PyTorch und TensorFlow. Wenn
nicht, wird erwartet, dass der Code für beide Backends ohne Änderungen funktioniert.
</Tip>
## Pipeline
[`pipeline`] ist der einfachste Weg, ein vortrainiertes Modell für eine bestimmte Aufgabe zu verwenden.
<Youtube id="tiZFewofSLM"/>
Die [`pipeline`] unterstützt viele gängige Aufgaben:
**Text**:
* Stimmungsanalyse: Klassifizierung der Polarität eines gegebenen Textes.
* Textgenerierung (auf Englisch): Generierung von Text aus einer gegebenen Eingabe.
* Name-Entity-Recognition (NER): Kennzeichnung jedes Worts mit der Entität, die es repräsentiert (Person, Datum, Ort usw.).
* Beantwortung von Fragen: Extrahieren der Antwort aus dem Kontext, wenn ein gewisser Kontext und eine Frage gegeben sind.
* Fill-mask: Ausfüllen von Lücken in einem Text mit maskierten Wörtern.
* Zusammenfassung: Erstellung einer Zusammenfassung einer langen Text- oder Dokumentensequenz.
* Übersetzung: Übersetzen eines Textes in eine andere Sprache.
* Merkmalsextraktion: Erstellen einer Tensordarstellung des Textes.
**Bild**:
* Bildklassifizierung: Klassifizierung eines Bildes.
* Bildsegmentierung: Klassifizierung jedes Pixels in einem Bild.
* Objekterkennung: Erkennen von Objekten innerhalb eines Bildes.
**Audio**:
* Audioklassifizierung: Zuweisung eines Labels zu einem bestimmten Audiosegment.
* Automatische Spracherkennung (ASR): Transkription von Audiodaten in Text.
<Tip>
Für mehr Details über die [`pipeline`] und assoziierte Aufgaben, schauen Sie in die Dokumentation [hier](./main_classes/pipelines).
</Tip>
### Verwendung der Pipeline
Im folgenden Beispiel werden Sie die [`pipeline`] für die Stimmungsanalyse verwenden.
Installieren Sie die folgenden Abhängigkeiten, falls Sie dies nicht bereits getan haben:
```bash
pip install torch
```
Importieren sie die [`pipeline`] und spezifizieren sie die Aufgabe, welche sie lösen möchten:
```py
>>> from transformers import pipeline
>>> classifier = pipeline("sentiment-analysis")
```
Die Pipeline lädt ein standardmäßiges [vortrainiertes Modell](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english) und einen Tokenizer für die Stimmungs-Analyse herunter und speichert sie. Jetzt können Sie den "Klassifikator" auf Ihren Zieltext anwenden:
```py
>>> classifier("We are very happy to show you the 🤗 Transformers library.")
[{'label': 'POSITIVE', 'score': 0.9998}]
```
For more than one sentence, pass a list of sentences to the [`pipeline`] which returns a list of dictionaries:
```py
>>> results = classifier(["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."])
>>> for result in results:
... print(f"label: {result['label']}, with score: {round(result['score'], 4)}")
label: POSITIVE, with score: 0.9998
label: NEGATIVE, with score: 0.5309
```
Die [`pipeline`] kann auch über einen ganzen Datensatz iterieren. Starten wir mit der Installation der [🤗 Datasets](https://huggingface.co/docs/datasets/) Bibliothek:
```bash
pip install datasets
```
Erstellen wir eine [`pipeline`] mit der Aufgabe die wir lösen und dem Modell welches wir nutzen möchten.
```py
>>> import torch
>>> from transformers import pipeline
>>> speech_recognizer = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
```
Als nächstes laden wir den Datensatz (siehe 🤗 Datasets [Quick Start](https://huggingface.co/docs/datasets/quickstart) für mehr Details) welches wir nutzen möchten. Zum Beispiel laden wir den [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) Datensatz:
```py
>>> from datasets import load_dataset, Audio
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") # doctest: +IGNORE_RESULT
```
Wir müssen sicherstellen, dass die Abtastrate des Datensatzes der Abtastrate entspricht, mit der `facebook/wav2vec2-base-960h` trainiert wurde.
```py
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=speech_recognizer.feature_extractor.sampling_rate))
```
Audiodateien werden automatisch geladen und neu abgetastet, wenn die Spalte "audio" aufgerufen wird.
Extrahieren wir die rohen Wellenform-Arrays der ersten 4 Beispiele und übergeben wir sie als Liste an die Pipeline:
```py
>>> result = speech_recognizer(dataset[:4]["audio"])
>>> print([d["text"] for d in result])
['I WOULD LIKE TO SET UP A JOINT ACCOUNT WITH MY PARTNER HOW DO I PROCEED WITH DOING THAT', "FODING HOW I'D SET UP A JOIN TO HET WITH MY WIFE AND WHERE THE AP MIGHT BE", "I I'D LIKE TOY SET UP A JOINT ACCOUNT WITH MY PARTNER I'M NOT SEEING THE OPTION TO DO IT ON THE AP SO I CALLED IN TO GET SOME HELP CAN I JUST DO IT OVER THE PHONE WITH YOU AND GIVE YOU THE INFORMATION OR SHOULD I DO IT IN THE AP AND I'M MISSING SOMETHING UQUETTE HAD PREFERRED TO JUST DO IT OVER THE PHONE OF POSSIBLE THINGS", 'HOW DO I THURN A JOIN A COUNT']
```
Bei einem größeren Datensatz mit vielen Eingaben (wie bei Sprache oder Bildverarbeitung) sollten Sie einen Generator anstelle einer Liste übergeben, der alle Eingaben in den Speicher lädt. Weitere Informationen finden Sie in der [Pipeline-Dokumentation](./main_classes/pipelines).
### Ein anderes Modell und einen anderen Tokenizer in der Pipeline verwenden
Die [`pipeline`] kann jedes Modell aus dem [Model Hub](https://huggingface.co/models) verwenden, wodurch es einfach ist, die [`pipeline`] für andere Anwendungsfälle anzupassen. Wenn Sie beispielsweise ein Modell wünschen, das französischen Text verarbeiten kann, verwenden Sie die Tags im Model Hub, um nach einem geeigneten Modell zu filtern. Das oberste gefilterte Ergebnis liefert ein mehrsprachiges [BERT-Modell](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment), das auf die Stimmungsanalyse abgestimmt ist. Großartig, verwenden wir dieses Modell!
```py
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
```
Use the [`AutoModelForSequenceClassification`] and [`AutoTokenizer`] to load the pretrained model and its associated tokenizer (more on an `AutoClass` below):
```py
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```
Dann können Sie das Modell und den Tokenizer in der [`pipeline`] angeben und den `Klassifikator` auf Ihren Zieltext anwenden:
```py
>>> classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
>>> classifier("Nous sommes très heureux de vous présenter la bibliothèque 🤗 Transformers.")
[{'label': '5 stars', 'score': 0.7273}]
```
Wenn Sie kein Modell für Ihren Anwendungsfall finden können, müssen Sie ein vortrainiertes Modell auf Ihren Daten feinabstimmen. Schauen Sie sich unser [Feinabstimmungs-Tutorial](./training) an, um zu erfahren, wie das geht. Und schließlich, nachdem Sie Ihr trainiertes Modell verfeinert haben, sollten Sie es mit der Community im Model Hub teilen (siehe Tutorial [hier](./model_sharing)), um NLP für alle zu demokratisieren! 🤗
## AutoClass
<Youtube id="AhChOFRegn4"/>
Unter der Haube arbeiten die Klassen [`AutoModelForSequenceClassification`] und [`AutoTokenizer`] zusammen, um die [`pipeline`] zu betreiben. Eine [`AutoClass`](./model_doc/auto) ist eine Abkürzung, die automatisch die Architektur eines trainierten Modells aus dessen Namen oder Pfad abruft. Sie müssen nur die passende `AutoClass` für Ihre Aufgabe und den zugehörigen Tokenizer mit [`AutoTokenizer`] auswählen.
Kehren wir zu unserem Beispiel zurück und sehen wir uns an, wie Sie die `AutoClass` verwenden können, um die Ergebnisse der [`pipeline`] zu replizieren.
### AutoTokenizer
Ein Tokenizer ist für die Vorverarbeitung von Text in ein für das Modell verständliches Format zuständig. Zunächst zerlegt der Tokenisierer den Text in Wörter, die *Token* genannt werden. Es gibt mehrere Regeln für den Tokenisierungsprozess, z. B. wie und auf welcher Ebene ein Wort aufgespalten wird (weitere Informationen über Tokenisierung [hier](./tokenizer_summary)). Das Wichtigste ist jedoch, dass Sie den Tokenizer mit demselben Modellnamen instanziieren müssen, um sicherzustellen, dass Sie dieselben Tokenisierungsregeln verwenden, mit denen ein Modell zuvor trainiert wurde.
Laden sie einen Tokenizer mit [`AutoTokenizer`]:
```py
>>> from transformers import AutoTokenizer
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```
Anschließend wandelt der Tokenizer die Token in Zahlen um, um einen Tensor als Eingabe für das Modell zu konstruieren. Dieser wird als *Vokabular* des Modells bezeichnet.
Übergeben Sie Ihren Text an den Tokenizer:
```py
>>> encoding = tokenizer("We are very happy to show you the 🤗 Transformers library.")
>>> print(encoding)
{'input_ids': [101, 11312, 10320, 12495, 19308, 10114, 11391, 10855, 10103, 100, 58263, 13299, 119, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
Der Tokenizer gibt ein Wörterbuch zurück, das Folgendes enthält:
* [input_ids](./glossary#input-ids): numerische Repräsentationen Ihrer Token.
* [attention_mask](.glossary#attention-mask): gibt an, welche Token beachtet werden sollen.
Genau wie die [`pipeline`] akzeptiert der Tokenizer eine Liste von Eingaben. Darüber hinaus kann der Tokenizer den Text auch auffüllen und kürzen, um einen Stapel mit einheitlicher Länge zurückzugeben:
```py
>>> pt_batch = tokenizer(
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
... padding=True,
... truncation=True,
... max_length=512,
... return_tensors="pt",
... )
```
Lesen Sie das Tutorial [preprocessing](./preprocessing) für weitere Details zur Tokenisierung.
### AutoModel
🤗 Transformers bietet eine einfache und einheitliche Möglichkeit, vortrainierte Instanzen zu laden. Das bedeutet, dass Sie ein [`AutoModel`] laden können, wie Sie einen [`AutoTokenizer`] laden würden. Der einzige Unterschied ist die Auswahl des richtigen [`AutoModel`] für die Aufgabe. Da Sie eine Text- oder Sequenzklassifizierung vornehmen, laden Sie [`AutoModelForSequenceClassification`]:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(model_name)
```
<Tip>
In der [Aufgabenzusammenfassung](./task_summary) steht, welche [AutoModel]-Klasse für welche Aufgabe zu verwenden ist.
</Tip>
Jetzt können Sie Ihren vorverarbeiteten Stapel von Eingaben direkt an das Modell übergeben. Sie müssen nur das Wörterbuch entpacken, indem Sie `**` hinzufügen:
```py
>>> pt_outputs = pt_model(**pt_batch)
```
Das Modell gibt die endgültigen Aktivierungen in dem Attribut "logits" aus. Wenden Sie die Softmax-Funktion auf die "logits" an, um die Wahrscheinlichkeiten zu erhalten:
```py
>>> from torch import nn
>>> pt_predictions = nn.functional.softmax(pt_outputs.logits, dim=-1)
>>> print(pt_predictions)
tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
[0.2084, 0.1826, 0.1969, 0.1755, 0.2365]], grad_fn=<SoftmaxBackward0>)
```
<Tip>
Alle 🤗 Transformers-Modelle (PyTorch oder TensorFlow) geben die Tensoren *vor* der endgültigen Aktivierungsfunktion
Funktion (wie Softmax) aus, da die endgültige Aktivierungsfunktion oft mit dem Verlusten verschmolzen ist.
</Tip>
Modelle sind ein standardmäßiges [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) oder ein [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model), sodass Sie sie in Ihrer üblichen Trainingsschleife verwenden können. Um jedoch die Dinge einfacher zu machen, bietet 🤗 Transformers eine [`Trainer`]-Klasse für PyTorch, die Funktionalität für verteiltes Training, gemischte Präzision und mehr bietet. Für TensorFlow können Sie die Methode `fit` aus [Keras](https://keras.io/) verwenden. Siehe das [training tutorial](./training) für weitere Details.
<Tip>
Transformers-Modellausgaben sind spezielle Datenklassen, so dass ihre Attribute in einer IDE automatisch vervollständigt werden.
Die Modellausgänge verhalten sich auch wie ein Tupel oder ein Wörterbuch (z.B. können Sie mit einem Integer, einem Slice oder einem String indexieren), wobei die Attribute, die "None" sind, ignoriert werden.
</Tip>
### Modell speichern
Sobald Ihr Modell feinabgestimmt ist, können Sie es mit seinem Tokenizer speichern, indem Sie [`PreTrainedModel.save_pretrained`] verwenden:
```py
>>> pt_save_directory = "./pt_save_pretrained"
>>> tokenizer.save_pretrained(pt_save_directory) # doctest: +IGNORE_RESULT
>>> pt_model.save_pretrained(pt_save_directory)
```
Wenn Sie bereit sind, das Modell erneut zu verwenden, laden Sie es mit [`PreTrainedModel.from_pretrained`]:
```py
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("./pt_save_pretrained")
```
Ein besonders cooles 🤗 Transformers-Feature ist die Möglichkeit, ein Modell zu speichern und es entweder als PyTorch- oder TensorFlow-Modell wieder zu laden. Der Parameter "from_pt" oder "from_tf" kann das Modell von einem Framework in das andere konvertieren:
```py
>>> from transformers import AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
```
## Custom model builds
Sie können die Konfigurationsklasse des Modells ändern, um zu bestimmen, wie ein Modell aufgebaut ist. Die Konfiguration legt die Attribute eines Modells fest, z. B. die Anzahl der verborgenen Schichten oder der Aufmerksamkeitsköpfe. Wenn Sie ein Modell aus einer benutzerdefinierten Konfigurationsklasse initialisieren, beginnen Sie bei Null. Die Modellattribute werden zufällig initialisiert, und Sie müssen das Modell trainieren, bevor Sie es verwenden können, um aussagekräftige Ergebnisse zu erhalten.
Beginnen Sie mit dem Import von [`AutoConfig`] und laden Sie dann das trainierte Modell, das Sie ändern möchten. Innerhalb von [`AutoConfig.from_pretrained`] können Sie das Attribut angeben, das Sie ändern möchten, z. B. die Anzahl der Aufmerksamkeitsköpfe:
```py
>>> from transformers import AutoConfig
>>> my_config = AutoConfig.from_pretrained("distilbert/distilbert-base-uncased", n_heads=12)
```
Create a model from your custom configuration with [`AutoModel.from_config`]:
```py
>>> from transformers import AutoModel
>>> my_model = AutoModel.from_config(my_config)
```
Weitere Informationen zur Erstellung von benutzerdefinierten Konfigurationen finden Sie in der Anleitung [Erstellen einer benutzerdefinierten Architektur](./create_a_model).
## Wie geht es weiter?
Nachdem Sie nun die 🤗 Transformers-Kurztour abgeschlossen haben, schauen Sie sich unsere Anleitungen an und erfahren Sie, wie Sie spezifischere Dinge tun können, wie das Schreiben eines benutzerdefinierten Modells, die Feinabstimmung eines Modells für eine Aufgabe und wie man ein Modell mit einem Skript trainiert. Wenn Sie mehr über die Kernkonzepte von 🤗 Transformers erfahren möchten, nehmen Sie sich eine Tasse Kaffee und werfen Sie einen Blick auf unsere konzeptionellen Leitfäden!
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Trainieren mit einem Skript
Neben den 🤗 Transformers [notebooks](./notebooks) gibt es auch Beispielskripte, die zeigen, wie man ein Modell für eine Aufgabe mit [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch), [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow) oder [JAX/Flax](https://github.com/huggingface/transformers/tree/main/examples/flax) trainiert.
Sie werden auch Skripte finden, die wir in unseren [Forschungsprojekten](https://github.com/huggingface/transformers-research-projects/) und [Legacy-Beispielen](https://github.com/huggingface/transformers/tree/main/examples/legacy) verwendet haben und die größtenteils von der Community stammen. Diese Skripte werden nicht aktiv gepflegt und erfordern eine bestimmte Version von 🤗 Transformers, die höchstwahrscheinlich nicht mit der neuesten Version der Bibliothek kompatibel ist.
Es wird nicht erwartet, dass die Beispielskripte bei jedem Problem sofort funktionieren. Möglicherweise müssen Sie das Skript an das Problem anpassen, das Sie zu lösen versuchen. Um Ihnen dabei zu helfen, legen die meisten Skripte vollständig offen, wie die Daten vorverarbeitet werden, so dass Sie sie nach Bedarf für Ihren Anwendungsfall bearbeiten können.
Für jede Funktion, die Sie in einem Beispielskript implementieren möchten, diskutieren Sie bitte im [Forum](https://discuss.huggingface.co/) oder in einem [issue](https://github.com/huggingface/transformers/issues), bevor Sie einen Pull Request einreichen. Wir freuen uns zwar über Fehlerkorrekturen, aber es ist unwahrscheinlich, dass wir einen Pull Request zusammenführen, der mehr Funktionalität auf Kosten der Lesbarkeit hinzufügt.
Diese Anleitung zeigt Ihnen, wie Sie ein Beispiel für ein Trainingsskript zur Zusammenfassung in [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) und [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization) ausführen können. Sofern nicht anders angegeben, sollten alle Beispiele mit beiden Frameworks funktionieren.
## Einrichtung
Um die neueste Version der Beispielskripte erfolgreich auszuführen, **müssen Sie 🤗 Transformers aus dem Quellcode** in einer neuen virtuellen Umgebung installieren:
```bash
git clone https://github.com/huggingface/transformers
cd transformers
pip install .
```
Für ältere Versionen der Beispielskripte klicken Sie auf die Umschalttaste unten:
<details>
<summary>Beispiele für ältere Versionen von 🤗 Transformers</summary>
<ul>
<li><a href="https://github.com/huggingface/transformers/tree/v4.5.1/examples">v4.5.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v4.4.2/examples">v4.4.2</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v4.3.3/examples">v4.3.3</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v4.2.2/examples">v4.2.2</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v4.1.1/examples">v4.1.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v4.0.1/examples">v4.0.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.5.1/examples">v3.5.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.4.0/examples">v3.4.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.3.1/examples">v3.3.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.2.0/examples">v3.2.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.1.0/examples">v3.1.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.0.2/examples">v3.0.2</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.11.0/examples">v2.11.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.10.0/examples">v2.10.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.9.1/examples">v2.9.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.8.0/examples">v2.8.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.7.0/examples">v2.7.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.6.0/examples">v2.6.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.5.1/examples">v2.5.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.4.0/examples">v2.4.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.3.0/examples">v2.3.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.2.0/examples">v2.2.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.1.0/examples">v2.1.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.0.0/examples">v2.0.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v1.2.0/examples">v1.2.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v1.1.0/examples">v1.1.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v1.0.0/examples">v1.0.0</a></li>
</ul>
</details>
Dann stellen Sie Ihren aktuellen Klon von 🤗 Transformers auf eine bestimmte Version um, z.B. v3.5.1:
```bash
git checkout tags/v3.5.1
```
Nachdem Sie die richtige Bibliotheksversion eingerichtet haben, navigieren Sie zu dem Beispielordner Ihrer Wahl und installieren die beispielspezifischen Anforderungen:
```bash
pip install -r requirements.txt
```
## Ein Skript ausführen
Das Beispielskript lädt einen Datensatz aus der 🤗 [Datasets](https://huggingface.co/docs/datasets/) Bibliothek herunter und verarbeitet ihn vor. Dann nimmt das Skript eine Feinabstimmung eines Datensatzes mit dem [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) auf einer Architektur vor, die eine Zusammenfassung unterstützt. Das folgende Beispiel zeigt, wie die Feinabstimmung von [T5-small](https://huggingface.co/google-t5/t5-small) auf dem Datensatz [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail) durchgeführt wird. Das T5-Modell benötigt aufgrund der Art und Weise, wie es trainiert wurde, ein zusätzliches Argument `source_prefix`. Mit dieser Eingabeaufforderung weiß T5, dass es sich um eine Zusammenfassungsaufgabe handelt.
```bash
python examples/pytorch/summarization/run_summarization.py \
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--predict_with_generate
```
## Verteiltes Training und gemischte Präzision
Der [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) unterstützt verteiltes Training und gemischte Präzision, d.h. Sie können ihn auch in einem Skript verwenden. So aktivieren Sie diese beiden Funktionen:
- Fügen Sie das Argument `fp16` hinzu, um gemischte Genauigkeit zu aktivieren.
- Legen Sie die Anzahl der zu verwendenden GPUs mit dem Argument `nproc_per_node` fest.
```bash
torchrun \
--nproc_per_node 8 pytorch/summarization/run_summarization.py \
--fp16 \
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--predict_with_generate
```
TensorFlow-Skripte verwenden eine [`MirroredStrategy`](https://www.tensorflow.org/guide/distributed_training#mirroredstrategy) für verteiltes Training, und Sie müssen dem Trainingsskript keine zusätzlichen Argumente hinzufügen. Das TensorFlow-Skript verwendet standardmäßig mehrere GPUs, wenn diese verfügbar sind.
## Ein Skript auf einer TPU ausführen
Tensor Processing Units (TPUs) sind speziell für die Beschleunigung der Leistung konzipiert. PyTorch unterstützt TPUs mit dem [XLA](https://www.tensorflow.org/xla) Deep Learning Compiler (siehe [hier](https://github.com/pytorch/xla/blob/master/README.md) für weitere Details). Um eine TPU zu verwenden, starten Sie das Skript `xla_spawn.py` und verwenden das Argument `num_cores`, um die Anzahl der TPU-Kerne festzulegen, die Sie verwenden möchten.
```bash
python xla_spawn.py --num_cores 8 \
summarization/run_summarization.py \
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--predict_with_generate
```
## Führen Sie ein Skript mit 🤗 Accelerate aus.
🤗 [Accelerate](https://huggingface.co/docs/accelerate) ist eine reine PyTorch-Bibliothek, die eine einheitliche Methode für das Training eines Modells auf verschiedenen Arten von Setups (nur CPU, mehrere GPUs, TPUs) bietet und dabei die vollständige Transparenz der PyTorch-Trainingsschleife beibehält. Stellen Sie sicher, dass Sie 🤗 Accelerate installiert haben, wenn Sie es nicht bereits haben:
> Hinweis: Da Accelerate schnell weiterentwickelt wird, muss die Git-Version von Accelerate installiert sein, um die Skripte auszuführen.
```bash
pip install git+https://github.com/huggingface/accelerate
```
Anstelle des Skripts `run_summarization.py` müssen Sie das Skript `run_summarization_no_trainer.py` verwenden. Die von Accelerate unterstützten Skripte haben eine Datei `task_no_trainer.py` im Ordner. Beginnen Sie mit dem folgenden Befehl, um eine Konfigurationsdatei zu erstellen und zu speichern:
```bash
accelerate config
```
Testen Sie Ihre Einrichtung, um sicherzustellen, dass sie korrekt konfiguriert ist:
```bash
accelerate test
```
Jetzt sind Sie bereit, das Training zu starten:
```bash
accelerate launch run_summarization_no_trainer.py \
--model_name_or_path google-t5/t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir ~/tmp/tst-summarization
```
## Verwenden Sie einen benutzerdefinierten Datensatz
Das Verdichtungsskript unterstützt benutzerdefinierte Datensätze, solange es sich um eine CSV- oder JSON-Line-Datei handelt. Wenn Sie Ihren eigenen Datensatz verwenden, müssen Sie mehrere zusätzliche Argumente angeben:
- `train_file` und `validation_file` geben den Pfad zu Ihren Trainings- und Validierungsdateien an.
- `text_column` ist der Eingabetext, der zusammengefasst werden soll.
- Summary_column" ist der auszugebende Zieltext.
Ein Zusammenfassungsskript, das einen benutzerdefinierten Datensatz verwendet, würde wie folgt aussehen:
```bash
python examples/pytorch/summarization/run_summarization.py \
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--train_file path_to_csv_or_jsonlines_file \
--validation_file path_to_csv_or_jsonlines_file \
--text_column text_column_name \
--summary_column summary_column_name \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--predict_with_generate
```
## Testen Sie ein Skript
Es ist oft eine gute Idee, Ihr Skript an einer kleineren Anzahl von Beispielen für Datensätze auszuführen, um sicherzustellen, dass alles wie erwartet funktioniert, bevor Sie sich auf einen ganzen Datensatz festlegen, dessen Fertigstellung Stunden dauern kann. Verwenden Sie die folgenden Argumente, um den Datensatz auf eine maximale Anzahl von Stichproben zu beschränken:
- `max_train_samples`
- `max_eval_samples`
- `max_predict_samples`
```bash
python examples/pytorch/summarization/run_summarization.py \
--model_name_or_path google-t5/t5-small \
--max_train_samples 50 \
--max_eval_samples 50 \
--max_predict_samples 50 \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--predict_with_generate
```
Nicht alle Beispielskripte unterstützen das Argument `max_predict_samples`. Wenn Sie sich nicht sicher sind, ob Ihr Skript dieses Argument unterstützt, fügen Sie das Argument `-h` hinzu, um dies zu überprüfen:
```bash
examples/pytorch/summarization/run_summarization.py -h
```
## Training vom Kontrollpunkt fortsetzen
Eine weitere hilfreiche Option, die Sie aktivieren können, ist die Wiederaufnahme des Trainings von einem früheren Kontrollpunkt aus. Auf diese Weise können Sie im Falle einer Unterbrechung Ihres Trainings dort weitermachen, wo Sie aufgehört haben, ohne von vorne beginnen zu müssen. Es gibt zwei Methoden, um das Training von einem Kontrollpunkt aus wieder aufzunehmen.
```bash
python examples/pytorch/summarization/run_summarization.py
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--resume_from_checkpoint path_to_specific_checkpoint \
--predict_with_generate
```
## Teilen Sie Ihr Modell
Alle Skripte können Ihr endgültiges Modell in den [Model Hub](https://huggingface.co/models) hochladen. Stellen Sie sicher, dass Sie bei Hugging Face angemeldet sind, bevor Sie beginnen:
```bash
hf auth login
```
Dann fügen Sie dem Skript das Argument `push_to_hub` hinzu. Mit diesem Argument wird ein Repository mit Ihrem Hugging Face-Benutzernamen und dem in `output_dir` angegebenen Ordnernamen erstellt.
Wenn Sie Ihrem Repository einen bestimmten Namen geben möchten, fügen Sie ihn mit dem Argument `push_to_hub_model_id` hinzu. Das Repository wird automatisch unter Ihrem Namensraum aufgeführt.
Das folgende Beispiel zeigt, wie Sie ein Modell mit einem bestimmten Repository-Namen hochladen können:
```bash
python examples/pytorch/summarization/run_summarization.py
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--push_to_hub \
--push_to_hub_model_id finetuned-t5-cnn_dailymail \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--predict_with_generate
```
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Testen
Werfen wir einen Blick darauf, wie 🤗 Transformers-Modelle getestet werden und wie Sie neue Tests schreiben und die vorhandenen verbessern können.
Es gibt 2 Testsuiten im Repository:
1. `tests` -- Tests für die allgemeine API
2. `examples` -- Tests hauptsächlich für verschiedene Anwendungen, die nicht Teil der API sind
## Wie Transformatoren getestet werden
1. Sobald ein PR eingereicht wurde, wird er mit 9 CircleCi Jobs getestet. Jeder neue Commit zu diesem PR wird erneut getestet. Diese Aufträge
sind in dieser [Konfigurationsdatei](https://github.com/huggingface/transformers/tree/main/.circleci/config.yml) definiert, so dass Sie bei Bedarf die gleiche Umgebung auf Ihrem Rechner reproduzieren können.
Umgebung auf Ihrem Rechner reproduzieren können.
Diese CI-Jobs führen keine `@slow`-Tests durch.
2. Es gibt 3 Jobs, die von [github actions](https://github.com/huggingface/transformers/actions) ausgeführt werden:
- [torch hub integration](https://github.com/huggingface/transformers/tree/main/.github/workflows/github-torch-hub.yml): prüft, ob die torch hub
Integration funktioniert.
- [self-hosted (push)](https://github.com/huggingface/transformers/tree/main/.github/workflows/self-push.yml): führt schnelle Tests auf der GPU nur bei Commits auf
`main`. Es wird nur ausgeführt, wenn ein Commit auf `main` den Code in einem der folgenden Ordner aktualisiert hat: `src`,
`tests`, `.github` (um zu verhindern, dass er auf hinzugefügten Modellkarten, Notebooks usw. läuft)
- [self-hosted runner](https://github.com/huggingface/transformers/tree/main/.github/workflows/self-scheduled.yml): führt normale und langsame Tests auf GPU in
`tests` und `examples`:
```bash
RUN_SLOW=1 pytest tests/
RUN_SLOW=1 pytest examples/
```
Die Ergebnisse können Sie [hier](https://github.com/huggingface/transformers/actions) sehen.
## Tests ausführen
### Auswahl der auszuführenden Tests
In diesem Dokument wird ausführlich erläutert, wie Tests ausgeführt werden können. Wenn Sie nach der Lektüre noch mehr Details benötigen
finden Sie diese [hier](https://docs.pytest.org/en/latest/usage.html).
Hier sind einige der nützlichsten Möglichkeiten, Tests auszuführen.
Alle ausführen:
```console
pytest
```
oder:
```bash
make test
```
Beachten Sie, dass Letzteres wie folgt definiert ist:
```bash
python -m pytest -n auto --dist=loadfile -s -v ./tests/
```
was pytest anweist:
- so viele Testprozesse laufen zu lassen, wie es CPU-Kerne gibt (was zu viele sein könnten, wenn Sie nicht über eine Menge RAM verfügen!)
- sicherzustellen, dass alle Tests aus derselben Datei von demselben Testprozess ausgeführt werden
- Erfassen Sie keine Ausgaben
- im ausführlichen Modus laufen lassen
### Abrufen der Liste aller Tests
Alle Tests der Testsuite:
```bash
pytest --collect-only -q
```
Alle Tests einer bestimmten Testdatei:
```bash
pytest tests/test_optimization.py --collect-only -q
```
### Führen Sie ein bestimmtes Testmodul aus
Um ein einzelnes Testmodul auszuführen:
```bash
pytest tests/utils/test_logging.py
```
### Spezifische Tests ausführen
Da unittest in den meisten Tests verwendet wird, müssen Sie, um bestimmte Untertests auszuführen, den Namen der unittest
Klasse, die diese Tests enthält. Er könnte zum Beispiel lauten:
```bash
pytest tests/test_optimization.py::OptimizationTest::test_adam_w
```
Hier:
- `tests/test_optimization.py` - die Datei mit den Tests
- `OptimizationTest` - der Name der Klasse
- `test_adam_w` - der Name der spezifischen Testfunktion
Wenn die Datei mehrere Klassen enthält, können Sie auswählen, dass nur die Tests einer bestimmten Klasse ausgeführt werden sollen. Zum Beispiel:
```bash
pytest tests/test_optimization.py::OptimizationTest
```
führt alle Tests innerhalb dieser Klasse aus.
Wie bereits erwähnt, können Sie sehen, welche Tests in der Klasse `OptimizationTest` enthalten sind, indem Sie sie ausführen:
```bash
pytest tests/test_optimization.py::OptimizationTest --collect-only -q
```
Sie können Tests mit Hilfe von Schlüsselwortausdrücken ausführen.
Um nur Tests auszuführen, deren Name `adam` enthält:
```bash
pytest -k adam tests/test_optimization.py
```
Die logischen `und` und `oder` können verwendet werden, um anzugeben, ob alle Schlüsselwörter übereinstimmen sollen oder nur eines. `nicht` kann verwendet werden, um
negieren.
Um alle Tests auszuführen, außer denen, deren Name `adam` enthält:
```bash
pytest -k "not adam" tests/test_optimization.py
```
Und Sie können die beiden Muster in einem kombinieren:
```bash
pytest -k "ada and not adam" tests/test_optimization.py
```
Um zum Beispiel sowohl `test_adafactor` als auch `test_adam_w` auszuführen, können Sie verwenden:
```bash
pytest -k "test_adam_w or test_adam_w" tests/test_optimization.py
```
Beachten Sie, dass wir hier `oder` verwenden, da wir wollen, dass eines der Schlüsselwörter übereinstimmt, um beide einzuschließen.
Wenn Sie nur Tests einschließen möchten, die beide Muster enthalten, müssen Sie `und` verwenden:
```bash
pytest -k "test and ada" tests/test_optimization.py
```
### Führen Sie `accelerate` Tests durch
Manchmal müssen Sie `accelerate` Tests für Ihre Modelle ausführen. Dazu fügen Sie einfach `-m accelerate_tests` zu Ihrem Befehl hinzu, wenn Sie diese Tests bei einem `OPT`-Lauf ausführen möchten:
```bash
RUN_SLOW=1 pytest -m accelerate_tests tests/models/opt/test_modeling_opt.py
```
### Dokumentationstests ausführen
Um zu testen, ob die Dokumentationsbeispiele korrekt sind, sollten Sie überprüfen, ob die `doctests` erfolgreich sind.
Lassen Sie uns als Beispiel den docstring von [WhisperModel.forward](https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py#L1017-L1035) verwenden:
```python
r"""
Returns:
Example:
```python
>>> import torch
>>> from transformers import WhisperModel, WhisperFeatureExtractor
>>> from datasets import load_dataset
>>> model = WhisperModel.from_pretrained("openai/whisper-base")
>>> feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-base")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_features = inputs.input_features
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 2, 512]
```"""
```
Führen Sie einfach die folgende Zeile aus, um automatisch jedes docstring-Beispiel in der gewünschten Datei zu testen:
```bash
pytest --doctest-modules <path_to_file_or_dir>
```
Wenn die Datei eine Markdown-Erweiterung hat, sollten Sie das Argument `--doctest-glob="*.md"` hinzufügen.
### Nur geänderte Tests ausführen
Mit [pytest-picked](https://github.com/anapaulagomes/pytest-picked) können Sie die Tests ausführen, die sich auf die unstaged Dateien oder den aktuellen Zweig (gemäß Git) beziehen. Auf diese Weise können Sie schnell testen, ob Ihre Änderungen nichts kaputt gemacht haben.
nichts kaputt gemacht haben, da die Tests für Dateien, die Sie nicht verändert haben, nicht ausgeführt werden.
```bash
pip install pytest-picked
```
```bash
pytest --picked
```
Alle Tests werden von Dateien und Ordnern ausgeführt, die geändert, aber noch nicht übergeben wurden.
### Fehlgeschlagene Tests bei Änderung der Quelle automatisch wiederholen
[pytest-xdist](https://github.com/pytest-dev/pytest-xdist) bietet eine sehr nützliche Funktion zur Erkennung aller fehlgeschlagenen
Tests zu erkennen und dann darauf zu warten, dass Sie Dateien ändern, um die fehlgeschlagenen Tests so lange zu wiederholen, bis sie erfolgreich sind, während Sie die
sie reparieren. So müssen Sie pytest nicht erneut starten, nachdem Sie die Korrektur vorgenommen haben. Dies wird so lange wiederholt, bis alle Tests bestanden sind.
Danach wird erneut ein vollständiger Durchlauf durchgeführt.
```bash
pip install pytest-xdist
```
So rufen Sie den Modus auf: `pytest -f` oder `pytest --looponfail`
Datei-Änderungen werden erkannt, indem die Wurzelverzeichnisse von `looponfailroots` und alle ihre Inhalte (rekursiv) untersucht werden.
Wenn die Vorgabe für diesen Wert für Sie nicht funktioniert, können Sie ihn in Ihrem Projekt ändern, indem Sie eine Konfigurations
Option in der Datei `setup.cfg` ändern:
```ini
[tool:pytest]
looponfailroots = transformers tests
```
oder die Dateien `pytest.ini`/`tox.ini``:
```ini
[pytest]
looponfailroots = transformers tests
```
Dies würde dazu führen, dass nur nach Dateiänderungen in den jeweiligen Verzeichnissen gesucht wird, die relativ zum Verzeichnis der ini-Datei angegeben sind.
Verzeichnis.
[pytest-watch](https://github.com/joeyespo/pytest-watch) ist eine alternative Implementierung dieser Funktionalität.
### Überspringen eines Testmoduls
Wenn Sie alle Testmodule ausführen möchten, mit Ausnahme einiger weniger, können Sie diese ausschließen, indem Sie eine explizite Liste der auszuführenden Tests angeben. Für
Beispiel: Um alle Tests außer `test_modeling_*.py` auszuführen:
```bash
pytest *ls -1 tests/*py | grep -v test_modeling*
```
### Status leeren
CI-Builds und wenn Isolation wichtig ist (gegen Geschwindigkeit), sollte der Cache geleert werden:
```bash
pytest --cache-clear tests
```
### Tests parallel ausführen
Wie bereits erwähnt, führt `make test` über das Plugin `pytest-xdist` Tests parallel aus (Argument `-n X`, z.B. `-n 2`
um 2 Jobs parallel laufen zu lassen).
Mit der Option `--dist=` von `pytest-xdist` können Sie steuern, wie die Tests gruppiert werden. Mit `--dist=loadfile` werden die
Tests, die sich in einer Datei befinden, in denselben Prozess.
Da die Reihenfolge der ausgeführten Tests unterschiedlich und nicht vorhersehbar ist, kann die Ausführung der Testsuite mit `pytest-xdist`
zu Fehlern führt (was bedeutet, dass wir einige unentdeckte gekoppelte Tests haben), verwenden Sie [pytest-replay](https://github.com/ESSS/pytest-replay), um die Tests in der gleichen Reihenfolge abzuspielen, was dabei helfen sollte
diese fehlgeschlagene Sequenz auf ein Minimum zu reduzieren.
### Testreihenfolge und Wiederholung
Es ist gut, die Tests mehrmals zu wiederholen, nacheinander, zufällig oder in Gruppen, um mögliche
Abhängigkeiten und zustandsbezogene Fehler zu erkennen (Abriss). Und die einfache, mehrfache Wiederholung ist einfach gut, um
einige Probleme zu erkennen, die durch die Zufälligkeit von DL aufgedeckt werden.
#### Wiederholungstests
- [pytest-flakefinder](https://github.com/dropbox/pytest-flakefinder):
```bash
pip install pytest-flakefinder
```
Und führen Sie dann jeden Test mehrmals durch (standardmäßig 50):
```bash
pytest --flake-finder --flake-runs=5 tests/test_failing_test.py
```
<Tip>
Dieses Plugin funktioniert nicht mit dem `-n` Flag von `pytest-xdist`.
</Tip>
<Tip>
Es gibt noch ein anderes Plugin `pytest-repeat`, aber es funktioniert nicht mit `unittest`.
</Tip>
#### Run tests in a random order
```bash
pip install pytest-random-order
```
Wichtig: Das Vorhandensein von `pytest-random-order` sorgt für eine automatische Zufallsanordnung der Tests, es sind keine Konfigurationsänderungen oder
Befehlszeilenoptionen sind nicht erforderlich.
Wie bereits erläutert, ermöglicht dies die Erkennung von gekoppelten Tests - bei denen der Zustand eines Tests den Zustand eines anderen beeinflusst. Wenn
`pytest-random-order` installiert ist, gibt es den Zufallswert aus, der für diese Sitzung verwendet wurde, z.B:
```bash
pytest tests
[...]
Using --random-order-bucket=module
Using --random-order-seed=573663
```
Wenn eine bestimmte Sequenz fehlschlägt, können Sie sie reproduzieren, indem Sie genau diesen Seed hinzufügen, z.B:
```bash
pytest --random-order-seed=573663
[...]
Using --random-order-bucket=module
Using --random-order-seed=573663
```
Es wird nur dann die exakte Reihenfolge reproduzieren, wenn Sie genau dieselbe Liste von Tests (oder gar keine Liste) verwenden. Sobald Sie beginnen, die Liste
die Liste manuell einzugrenzen, können Sie sich nicht mehr auf den Seed verlassen, sondern müssen die Tests manuell in der genauen Reihenfolge auflisten
auflisten und pytest anweisen, sie nicht zu randomisieren, indem Sie `--random-order-bucket=none` verwenden, z.B.:
```bash
pytest --random-order-bucket=none tests/test_a.py tests/test_c.py tests/test_b.py
```
So deaktivieren Sie das Shuffling für alle Tests:
```bash
pytest --random-order-bucket=none
```
Standardmäßig ist `--random-order-bucket=module` impliziert, wodurch die Dateien auf den Modulebenen gemischt werden. Es kann auch
auf den Ebenen `class`, `package`, `global` und `none` mischen. Die vollständigen Details entnehmen Sie bitte der
[Dokumentation](https://github.com/jbasko/pytest-random-order).
Eine weitere Alternative zur Randomisierung ist: [`pytest-random`](https://github.com/pytest-dev/pytest-randomly). Dieses
Modul hat eine sehr ähnliche Funktionalität/Schnittstelle, aber es hat nicht die Eimermodi, die in
`pytest-random-order` zur Verfügung. Es hat das gleiche Problem, dass es sich nach der Installation aufdrängt.
### Variationen von Aussehen und Bedienung
#### pytest-zucker
[pytest-sugar](https://github.com/Frozenball/pytest-sugar) ist ein Plugin, das das Erscheinungsbild verbessert, eine
Fortschrittsbalken hinzufügt und Tests, die fehlschlagen, sowie die Bestätigung sofort anzeigt. Es wird bei der Installation automatisch aktiviert.
```bash
pip install pytest-sugar
```
Um Tests ohne sie durchzuführen, führen Sie aus:
```bash
pytest -p no:sugar
```
oder deinstallieren Sie es.
#### Melden Sie den Namen jedes Subtests und seinen Fortschritt
Für einen einzelnen oder eine Gruppe von Tests über `pytest` (nach `pip install pytest-pspec`):
```bash
pytest --pspec tests/test_optimization.py
```
#### Zeigt fehlgeschlagene Tests sofort an
[pytest-instafail](https://github.com/pytest-dev/pytest-instafail) zeigt Fehlschläge und Fehler sofort an, anstatt
bis zum Ende der Testsitzung zu warten.
```bash
pip install pytest-instafail
```
```bash
pytest --instafail
```
### Zu GPU oder nicht zu GPU
Bei einem GPU-aktivierten Setup fügen Sie zum Testen im reinen CPU-Modus `CUDA_VISIBLE_DEVICES=""` hinzu:
```bash
CUDA_VISIBLE_DEVICES="" pytest tests/utils/test_logging.py
```
oder wenn Sie mehrere Grafikprozessoren haben, können Sie angeben, welcher von `pytest` verwendet werden soll. Wenn Sie zum Beispiel nur den
zweiten Grafikkarte zu verwenden, wenn Sie die Grafikkarten `0` und `1` haben, können Sie folgendes ausführen:
```bash
CUDA_VISIBLE_DEVICES="1" pytest tests/utils/test_logging.py
```
Dies ist praktisch, wenn Sie verschiedene Aufgaben auf verschiedenen GPUs ausführen möchten.
Einige Tests müssen nur auf der CPU ausgeführt werden, andere entweder auf der CPU, der GPU oder der TPU und wieder andere auf mehreren GPUs. Die folgenden skip
Dekorateure werden verwendet, um die Anforderungen von Tests in Bezug auf CPU/GPU/TPU festzulegen:
- `require_torch` - dieser Test wird nur unter Torch ausgeführt
- `require_torch_gpu` - wie `require_torch` plus erfordert mindestens 1 GPU
- `require_torch_multi_gpu` - wie `require_torch` und zusätzlich mindestens 2 GPUs erforderlich
- `require_torch_non_multi_gpu` - wie `require_torch` plus benötigt 0 oder 1 GPUs
- `require_torch_up_to_2_gpus` - wie `require_torch` plus erfordert 0 oder 1 oder 2 GPUs
- `require_torch_xla` - wie `require_torch` plus erfordert mindestens 1 TPU
Lassen Sie uns die GPU-Anforderungen in der folgenden Tabelle darstellen:
| n gpus | decorator |
|--------|--------------------------------|
| `>= 0` | `@require_torch` |
| `>= 1` | `@require_torch_gpu` |
| `>= 2` | `@require_torch_multi_gpu` |
| `< 2` | `@require_torch_non_multi_gpu` |
| `< 3` | `@require_torch_up_to_2_gpus` |
Hier ist zum Beispiel ein Test, der nur ausgeführt werden muss, wenn 2 oder mehr GPUs verfügbar sind und pytorch installiert ist:
```python no-style
@require_torch_multi_gpu
def test_example_with_multi_gpu():
```
Diese Dekors können gestapelt werden. Wenn zum Beispiel ein Test langsam ist und mindestens eine GPU unter pytorch benötigt, können Sie
wie Sie ihn einrichten können:
```python no-style
@require_torch_gpu
@slow
def test_example_slow_on_gpu():
```
Einige Dekoratoren wie `@parametrized` schreiben Testnamen um, daher müssen `@require_*`-Sprungdekoratoren als letztes aufgeführt werden.
zuletzt aufgeführt werden, damit sie korrekt funktionieren. Hier ist ein Beispiel für die korrekte Verwendung:
```python no-style
@parameterized.expand(...)
@require_torch_multi_gpu
def test_integration_foo():
```
Dieses Problem mit der Reihenfolge gibt es bei `@pytest.mark.parametrize` nicht, Sie können es an den Anfang oder an den Schluss setzen und es wird trotzdem funktionieren.
funktionieren. Aber es funktioniert nur bei Nicht-Unittests.
Innerhalb von Tests:
- Wie viele GPUs sind verfügbar:
```python
from transformers.testing_utils import get_gpu_count
n_gpu = get_gpu_count() # works with torch and tf
```
### Testen mit einem bestimmten PyTorch-Backend oder Gerät
Um die Testsuite auf einem bestimmten Torch-Gerät auszuführen, fügen Sie `TRANSFORMERS_TEST_DEVICE="$Gerät"` hinzu, wobei `$Gerät` das Ziel-Backend ist. Zum Beispiel, um nur auf der CPU zu testen:
```bash
TRANSFORMERS_TEST_DEVICE="cpu" pytest tests/utils/test_logging.py
```
Diese Variable ist nützlich, um benutzerdefinierte oder weniger verbreitete PyTorch-Backends wie `mps` zu testen. Sie kann auch verwendet werden, um den gleichen Effekt wie `CUDA_VISIBLE_DEVICES` zu erzielen, indem Sie bestimmte GPUs anvisieren oder im reinen CPU-Modus testen.
Bestimmte Geräte erfordern einen zusätzlichen Import, nachdem Sie `torch` zum ersten Mal importiert haben. Dies kann über die Umgebungsvariable `TRANSFORMERS_TEST_BACKEND` festgelegt werden:
```bash
TRANSFORMERS_TEST_BACKEND="torch_npu" pytest tests/utils/test_logging.py
```
### Verteiltes Training
`pytest` kann nicht direkt mit verteiltem Training umgehen. Wenn dies versucht wird, tun die Unterprozesse nicht das Richtige
und denken am Ende, sie seien `pytest` und beginnen, die Testsuite in Schleifen auszuführen. Es funktioniert jedoch, wenn man
einen normalen Prozess erzeugt, der dann mehrere Worker erzeugt und die IO-Pipes verwaltet.
Hier sind einige Tests, die dies verwenden:
- [test_trainer_distributed.py](https://github.com/huggingface/transformers/tree/main/tests/trainer/test_trainer_distributed.py)
- [test_deepspeed.py](https://github.com/huggingface/transformers/tree/main/tests/deepspeed/test_deepspeed.py)
Um direkt mit der Ausführung zu beginnen, suchen Sie in diesen Tests nach dem Aufruf `execute_subprocess_async`.
Sie benötigen mindestens 2 GPUs, um diese Tests in Aktion zu sehen:
```bash
CUDA_VISIBLE_DEVICES=0,1 RUN_SLOW=1 pytest -sv tests/test_trainer_distributed.py
```
### Erfassung von Ausgaben
Während der Testausführung werden alle Ausgaben, die an `stdout` und `stderr` gesendet werden, aufgezeichnet. Wenn ein Test oder eine Setup-Methode fehlschlägt, wird die
wird die entsprechende aufgezeichnete Ausgabe in der Regel zusammen mit dem Fehler-Traceback angezeigt.
Um die Aufzeichnung von Ausgaben zu deaktivieren und `stdout` und `stderr` normal zu erhalten, verwenden Sie `-s` oder `--capture=no`:
```bash
pytest -s tests/utils/test_logging.py
```
So senden Sie Testergebnisse an die JUnit-Formatausgabe:
```bash
py.test tests --junitxml=result.xml
```
### Farbsteuerung
Keine Farbe zu haben (z.B. gelb auf weißem Hintergrund ist nicht lesbar):
```bash
pytest --color=no tests/utils/test_logging.py
```
### Testbericht an den Online-Dienst pastebin senden
Erstellen Sie eine URL für jeden Testfehler:
```bash
pytest --pastebin=failed tests/utils/test_logging.py
```
Dadurch werden Informationen über den Testlauf an einen entfernten Paste-Dienst übermittelt und eine URL für jeden Fehlschlag bereitgestellt. Sie können die
Tests wie gewohnt auswählen oder z.B. -x hinzufügen, wenn Sie nur einen bestimmten Fehler senden möchten.
Erstellen einer URL für ein ganzes Testsitzungsprotokoll:
```bash
pytest --pastebin=all tests/utils/test_logging.py
```
## Tests schreiben
🤗 Die Tests von Transformers basieren auf `unittest`, werden aber von `pytest` ausgeführt, so dass die meiste Zeit Funktionen aus beiden Systemen
verwendet werden können.
Sie können [hier](https://docs.pytest.org/en/stable/unittest.html) nachlesen, welche Funktionen unterstützt werden, aber das Wichtigste ist
Wichtig ist, dass die meisten `pytest`-Fixtures nicht funktionieren. Auch die Parametrisierung nicht, aber wir verwenden das Modul
`parametrisiert`, das auf ähnliche Weise funktioniert.
### Parametrisierung
Oft besteht die Notwendigkeit, denselben Test mehrmals auszuführen, aber mit unterschiedlichen Argumenten. Das könnte innerhalb des Tests geschehen
des Tests gemacht werden, aber dann gibt es keine Möglichkeit, den Test mit nur einem Satz von Argumenten auszuführen.
```python
# test_this1.py
import unittest
from parameterized import parameterized
class TestMathUnitTest(unittest.TestCase):
@parameterized.expand(
[
("negative", -1.5, -2.0),
("integer", 1, 1.0),
("large fraction", 1.6, 1),
]
)
def test_floor(self, name, input, expected):
assert_equal(math.floor(input), expected)
```
Nun wird dieser Test standardmäßig 3 Mal ausgeführt, wobei jedes Mal die letzten 3 Argumente von `test_floor` den entsprechenden Argumenten in der Parameterliste zugeordnet werden.
die entsprechenden Argumente in der Parameterliste.
Sie können auch nur die Parameter `negativ` und `ganzzahlig` mit ausführen:
```bash
pytest -k "negative and integer" tests/test_mytest.py
```
oder alle Untertests außer `negativ`, mit:
```bash
pytest -k "not negative" tests/test_mytest.py
```
Neben der Verwendung des gerade erwähnten Filters `-k` können Sie auch den genauen Namen jedes Untertests herausfinden und jeden
oder alle unter Verwendung ihrer genauen Namen ausführen.
```bash
pytest test_this1.py --collect-only -q
```
und es wird aufgelistet:
```bash
test_this1.py::TestMathUnitTest::test_floor_0_negative
test_this1.py::TestMathUnitTest::test_floor_1_integer
test_this1.py::TestMathUnitTest::test_floor_2_large_fraction
```
Jetzt können Sie also nur 2 spezifische Untertests durchführen:
```bash
pytest test_this1.py::TestMathUnitTest::test_floor_0_negative test_this1.py::TestMathUnitTest::test_floor_1_integer
```
Das Modul [parametrisiert](https://pypi.org/project/parameterized/), das sich bereits in den Entwickler-Abhängigkeiten befindet
von `transformers` befindet, funktioniert sowohl für `unittests` als auch für `pytest` Tests.
Wenn es sich bei dem Test jedoch nicht um einen `Unittest` handelt, können Sie `pytest.mark.parametrize` verwenden (oder Sie können sehen, dass es in
einigen bestehenden Tests verwendet wird, meist unter `Beispiele`).
Hier ist das gleiche Beispiel, diesmal unter Verwendung der `parametrize`-Markierung von `pytest`:
```python
# test_this2.py
import pytest
@pytest.mark.parametrize(
"name, input, expected",
[
("negative", -1.5, -2.0),
("integer", 1, 1.0),
("large fraction", 1.6, 1),
],
)
def test_floor(name, input, expected):
assert_equal(math.floor(input), expected)
```
Genau wie bei `parametrisiert` können Sie mit `pytest.mark.parametrize` genau steuern, welche Subtests ausgeführt werden
ausgeführt werden, wenn der Filter `-k` nicht ausreicht. Allerdings erzeugt diese Parametrisierungsfunktion einen etwas anderen Satz von
Namen für die Untertests. Sie sehen folgendermaßen aus:
```bash
pytest test_this2.py --collect-only -q
```
und es wird aufgelistet:
```bash
test_this2.py::test_floor[integer-1-1.0]
test_this2.py::test_floor[negative--1.5--2.0]
test_this2.py::test_floor[large fraction-1.6-1]
```
Jetzt können Sie also nur den spezifischen Test durchführen:
```bash
pytest test_this2.py::test_floor[negative--1.5--2.0] test_this2.py::test_floor[integer-1-1.0]
```
wie im vorherigen Beispiel.
### Dateien und Verzeichnisse
In Tests müssen wir oft wissen, wo sich Dinge relativ zur aktuellen Testdatei befinden, und das ist nicht trivial, da der Test
von mehreren Verzeichnissen aus aufgerufen werden kann oder sich in Unterverzeichnissen mit unterschiedlicher Tiefe befinden kann. Eine Hilfsklasse
`transformers.test_utils.TestCasePlus` löst dieses Problem, indem sie alle grundlegenden Pfade sortiert und einfache
Zugriffsmöglichkeiten auf sie bietet:
- `pathlib`-Objekte (alle vollständig aufgelöst):
- `test_file_path` - der aktuelle Testdateipfad, d.h. `__file__`
- `test_file_dir` - das Verzeichnis, das die aktuelle Testdatei enthält
- `tests_dir` - das Verzeichnis der `tests` Testreihe
- `examples_dir` - das Verzeichnis der `examples` Test-Suite
- `repo_root_dir` - das Verzeichnis des Repositorys
- `src_dir` - das Verzeichnis von `src` (d.h. wo sich das Unterverzeichnis `transformers` befindet)
- stringifizierte Pfade - wie oben, aber diese geben Pfade als Strings zurück, anstatt als `pathlib`-Objekte:
- `test_file_path_str`
- `test_file_dir_str`
- `tests_dir_str`
- `examples_dir_str`
- `repo_root_dir_str`
- `src_dir_str`
Um diese zu verwenden, müssen Sie lediglich sicherstellen, dass der Test in einer Unterklasse von
`transformers.test_utils.TestCasePlus` befindet. Zum Beispiel:
```python
from transformers.testing_utils import TestCasePlus
class PathExampleTest(TestCasePlus):
def test_something_involving_local_locations(self):
data_dir = self.tests_dir / "fixtures/tests_samples/wmt_en_ro"
```
Wenn Sie Pfade nicht über `pathlib` manipulieren müssen oder nur einen Pfad als String benötigen, können Sie jederzeit
`str()` auf das `pathlib`-Objekt anwenden oder die Accessoren mit der Endung `_str` verwenden. Zum Beispiel:
```python
from transformers.testing_utils import TestCasePlus
class PathExampleTest(TestCasePlus):
def test_something_involving_stringified_locations(self):
examples_dir = self.examples_dir_str
```
### Temporäre Dateien und Verzeichnisse
Die Verwendung eindeutiger temporärer Dateien und Verzeichnisse ist für die parallele Durchführung von Tests unerlässlich, damit sich die Tests nicht gegenseitig überschreiben.
Daten gegenseitig überschreiben. Außerdem möchten wir, dass die temporären Dateien und Verzeichnisse am Ende jedes Tests, der sie erstellt hat, gelöscht werden.
erstellt hat. Daher ist die Verwendung von Paketen wie `tempfile`, die diese Anforderungen erfüllen, unerlässlich.
Beim Debuggen von Tests müssen Sie jedoch sehen können, was in der temporären Datei oder dem temporären Verzeichnis gespeichert wird und Sie möchten
Sie müssen den genauen Pfad kennen und dürfen ihn nicht bei jedem neuen Testdurchlauf zufällig ändern.
Für solche Zwecke ist die Hilfsklasse `transformers.test_utils.TestCasePlus` am besten geeignet. Sie ist eine Unterklasse von
Unittest.TestCase`, so dass wir in den Testmodulen einfach von ihr erben können.
Hier ist ein Beispiel für die Verwendung dieser Klasse:
```python
from transformers.testing_utils import TestCasePlus
class ExamplesTests(TestCasePlus):
def test_whatever(self):
tmp_dir = self.get_auto_remove_tmp_dir()
```
Dieser Code erstellt ein eindeutiges temporäres Verzeichnis und setzt `tmp_dir` auf dessen Speicherort.
- Erstellen Sie ein eindeutiges temporäres Verzeichnis:
```python
def test_whatever(self):
tmp_dir = self.get_auto_remove_tmp_dir()
```
tmp_dir" enthält den Pfad zu dem erstellten temporären Verzeichnis. Es wird am Ende des Tests automatisch entfernt.
Tests entfernt.
- Erstellen Sie ein temporäres Verzeichnis meiner Wahl, stellen Sie sicher, dass es leer ist, bevor der Test beginnt, und leeren Sie es nach dem Test nicht.
```python
def test_whatever(self):
tmp_dir = self.get_auto_remove_tmp_dir("./xxx")
```
Dies ist nützlich für die Fehlersuche, wenn Sie ein bestimmtes Verzeichnis überwachen und sicherstellen möchten, dass die vorherigen Tests keine Daten darin hinterlassen haben.
keine Daten dort hinterlassen haben.
- Sie können das Standardverhalten außer Kraft setzen, indem Sie die Argumente `before` und `after` direkt überschreiben, was zu einem der folgenden Verhaltensweisen führt
folgenden Verhaltensweisen:
- `before=True`: das temporäre Verzeichnis wird immer zu Beginn des Tests gelöscht.
- `before=False`: wenn das temporäre Verzeichnis bereits existiert, bleiben alle vorhandenen Dateien dort erhalten.
- `after=True`: das temporäre Verzeichnis wird immer am Ende des Tests gelöscht.
- `after=False`: das temporäre Verzeichnis wird am Ende des Tests immer beibehalten.
<Tip>
Um das Äquivalent von `rm -r` sicher ausführen zu können, sind nur Unterverzeichnisse des Projektarchivs checkout erlaubt, wenn
ein explizites `tmp_dir` verwendet wird, so dass nicht versehentlich ein `/tmp` oder ein ähnlich wichtiger Teil des Dateisystems vernichtet wird.
d.h. geben Sie bitte immer Pfade an, die mit `./` beginnen.
</Tip>
<Tip>
Jeder Test kann mehrere temporäre Verzeichnisse registrieren, die alle automatisch entfernt werden, sofern nicht anders gewünscht.
anders.
</Tip>
### Temporäre Überschreibung von sys.path
Wenn Sie `sys.path` vorübergehend überschreiben müssen, um z.B. von einem anderen Test zu importieren, können Sie den
Kontextmanager `ExtendSysPath` verwenden. Beispiel:
```python
import os
from transformers.testing_utils import ExtendSysPath
bindir = os.path.abspath(os.path.dirname(__file__))
with ExtendSysPath(f"{bindir}/.."):
from test_trainer import TrainerIntegrationCommon # noqa
```
### Überspringen von Tests
Dies ist nützlich, wenn ein Fehler gefunden und ein neuer Test geschrieben wird, der Fehler aber noch nicht behoben ist. Damit wir ihn
in das Haupt-Repository zu übertragen, müssen wir sicherstellen, dass er bei `make test` übersprungen wird.
Methoden:
- Ein **Skip** bedeutet, dass Sie erwarten, dass Ihr Test nur dann erfolgreich ist, wenn einige Bedingungen erfüllt sind, andernfalls sollte pytest den Test überspringen.
die Ausführung des Tests ganz überspringen. Übliche Beispiele sind das Überspringen von Tests, die nur unter Windows laufen, auf Nicht-Windows-Plattformen oder das Überspringen von
Tests, die von einer externen Ressource abhängen, die im Moment nicht verfügbar ist (z.B. eine Datenbank).
- Ein **xfail** bedeutet, dass Sie erwarten, dass ein Test aus irgendeinem Grund fehlschlägt. Ein gängiges Beispiel ist ein Test für eine Funktion, die noch nicht
noch nicht implementiert oder ein noch nicht behobener Fehler. Wenn ein Test trotz eines erwarteten Fehlschlags bestanden wird (markiert mit
pytest.mark.xfail), ist dies ein xpass und wird in der Testzusammenfassung gemeldet.
Einer der wichtigsten Unterschiede zwischen den beiden ist, dass `skip` den Test nicht ausführt, während `xfail` dies tut. Wenn also der
Code, der fehlerhaft ist, einen schlechten Zustand verursacht, der sich auf andere Tests auswirkt, sollten Sie also nicht `xfail` verwenden.
#### Implementierung
- Hier sehen Sie, wie Sie einen ganzen Test bedingungslos überspringen können:
```python no-style
@unittest.skip(reason="this bug needs to be fixed")
def test_feature_x():
```
oder mit pytest:
```python no-style
@pytest.mark.skip(reason="this bug needs to be fixed")
```
oder mit dem `xfail` Weg:
```python no-style
@pytest.mark.xfail
def test_feature_x():
```
- Hier erfahren Sie, wie Sie einen Test aufgrund einer internen Prüfung innerhalb des Tests auslassen können:
```python
def test_feature_x():
if not has_something():
pytest.skip("unsupported configuration")
```
oder das ganze Modul:
```python
import pytest
if not pytest.config.getoption("--custom-flag"):
pytest.skip("--custom-flag is missing, skipping tests", allow_module_level=True)
```
oder mit dem `xfail` Weg:
```python
def test_feature_x():
pytest.xfail("expected to fail until bug XYZ is fixed")
```
- Hier erfahren Sie, wie Sie alle Tests in einem Modul überspringen können, wenn ein Import fehlt:
```python
docutils = pytest.importorskip("docutils", minversion="0.3")
```
- Einen Test aufgrund einer Bedingung überspringen:
```python no-style
@pytest.mark.skipif(sys.version_info < (3,6), reason="requires python3.6 or higher")
def test_feature_x():
```
oder:
```python no-style
@unittest.skipIf(torch_device == "cpu", "Can't do half precision")
def test_feature_x():
```
oder überspringen Sie das ganze Modul:
```python no-style
@pytest.mark.skipif(sys.platform == 'win32', reason="does not run on windows")
class TestClass():
def test_feature_x(self):
```
Weitere Details, Beispiele und Möglichkeiten finden Sie [hier](https://docs.pytest.org/en/latest/skipping.html).
### Langsame Tests
Die Bibliothek der Tests wächst ständig, und einige der Tests brauchen Minuten, um ausgeführt zu werden, daher können wir es uns nicht leisten, eine Stunde zu warten, bis die
eine Stunde auf die Fertigstellung der Testsuite auf CI zu warten. Daher sollten langsame Tests, mit einigen Ausnahmen für wichtige Tests, wie im folgenden Beispiel
wie im folgenden Beispiel markiert werden:
```python no-style
from transformers.testing_utils import slow
@slow
def test_integration_foo():
```
Sobald ein Test als `@slow` markiert ist, setzen Sie die Umgebungsvariable `RUN_SLOW=1`, um solche Tests auszuführen, z.B:
```bash
RUN_SLOW=1 pytest tests
```
Einige Dekoratoren wie `@parameterized` schreiben Testnamen um, daher müssen `@slow` und die übrigen Skip-Dekoratoren
`@require_*` müssen als letztes aufgeführt werden, damit sie korrekt funktionieren. Hier ist ein Beispiel für die korrekte Verwendung:
```python no-style
@parameterized.expand(...)
@slow
def test_integration_foo():
```
Wie zu Beginn dieses Dokuments erläutert, werden langsame Tests nach einem Zeitplan ausgeführt und nicht in PRs CI
Prüfungen. Es ist also möglich, dass einige Probleme bei der Einreichung eines PRs übersehen werden und zusammengeführt werden. Solche Probleme werden
werden beim nächsten geplanten CI-Job abgefangen. Das bedeutet aber auch, dass es wichtig ist, die langsamen Tests auf Ihrem
Rechner auszuführen, bevor Sie den PR einreichen.
Hier ist ein grober Entscheidungsmechanismus für die Auswahl der Tests, die als langsam markiert werden sollen:
Wenn der Test auf eine der internen Komponenten der Bibliothek ausgerichtet ist (z.B. Modellierungsdateien, Tokenisierungsdateien,
Pipelines), dann sollten wir diesen Test in der nicht langsamen Testsuite ausführen. Wenn er sich auf einen anderen Aspekt der Bibliothek bezieht,
wie z.B. die Dokumentation oder die Beispiele, dann sollten wir diese Tests in der langsamen Testsuite durchführen. Und dann, zur Verfeinerung
Ansatz zu verfeinern, sollten wir Ausnahmen einführen:
- Alle Tests, die einen umfangreichen Satz von Gewichten oder einen Datensatz mit einer Größe von mehr als ~50MB herunterladen müssen (z.B. Modell- oder
Tokenizer-Integrationstests, Pipeline-Integrationstests) sollten auf langsam gesetzt werden. Wenn Sie ein neues Modell hinzufügen, sollten Sie
sollten Sie eine kleine Version des Modells (mit zufälligen Gewichtungen) für Integrationstests erstellen und in den Hub hochladen. Dies wird
wird in den folgenden Abschnitten erläutert.
- Alle Tests, die ein Training durchführen müssen, das nicht speziell auf Schnelligkeit optimiert ist, sollten auf langsam gesetzt werden.
- Wir können Ausnahmen einführen, wenn einige dieser Tests, die nicht langsam sein sollten, unerträglich langsam sind, und sie auf
`@slow`. Auto-Modellierungstests, die große Dateien auf der Festplatte speichern und laden, sind ein gutes Beispiel für Tests, die als
als `@slow` markiert sind.
- Wenn ein Test in weniger als 1 Sekunde auf CI abgeschlossen wird (einschließlich eventueller Downloads), sollte es sich trotzdem um einen normalen Test handeln.
Insgesamt müssen alle nicht langsamen Tests die verschiedenen Interna abdecken und dabei schnell bleiben. Zum Beispiel,
kann eine signifikante Abdeckung erreicht werden, indem Sie mit speziell erstellten kleinen Modellen mit zufälligen Gewichten testen. Solche Modelle
haben eine sehr geringe Anzahl von Schichten (z.B. 2), Vokabeln (z.B. 1000), usw. Dann können die `@slow`-Tests große
langsame Modelle verwenden, um qualitative Tests durchzuführen. Um die Verwendung dieser Modelle zu sehen, suchen Sie einfach nach *winzigen* Modellen mit:
```bash
grep tiny tests examples
```
Hier ist ein Beispiel für ein [Skript](https://github.com/huggingface/transformers/tree/main/scripts/fsmt/fsmt-make-tiny-model.py), das das winzige Modell erstellt hat
[stas/tiny-wmt19-en-de](https://huggingface.co/stas/tiny-wmt19-en-de). Sie können es ganz einfach an Ihre eigene
Architektur Ihres Modells anpassen.
Es ist leicht, die Laufzeit falsch zu messen, wenn zum Beispiel ein großes Modell heruntergeladen wird, aber wenn
Sie es lokal testen, würden die heruntergeladenen Dateien zwischengespeichert und somit die Download-Zeit nicht gemessen werden. Prüfen Sie daher den
Ausführungsgeschwindigkeitsbericht in den CI-Protokollen (die Ausgabe von `pytest --durations=0 tests`).
Dieser Bericht ist auch nützlich, um langsame Ausreißer zu finden, die nicht als solche gekennzeichnet sind oder die neu geschrieben werden müssen, um schnell zu sein.
Wenn Sie bemerken, dass die Testsuite beim CI langsam wird, zeigt die oberste Liste dieses Berichts die langsamsten
Tests.
### Testen der stdout/stderr-Ausgabe
Um Funktionen zu testen, die in `stdout` und/oder `stderr` schreiben, kann der Test auf diese Ströme zugreifen, indem er die
[capsys system](https://docs.pytest.org/en/latest/capture.html) von `pytest` zugreifen. So wird dies bewerkstelligt:
```python
import sys
def print_to_stdout(s):
print(s)
def print_to_stderr(s):
sys.stderr.write(s)
def test_result_and_stdout(capsys):
msg = "Hello"
print_to_stdout(msg)
print_to_stderr(msg)
out, err = capsys.readouterr() # consume the captured output streams
# optional: if you want to replay the consumed streams:
sys.stdout.write(out)
sys.stderr.write(err)
# test:
assert msg in out
assert msg in err
```
Und natürlich wird `stderr` in den meisten Fällen als Teil einer Ausnahme auftreten, so dass try/except in einem solchen Fall verwendet werden muss
Fall verwendet werden:
```python
def raise_exception(msg):
raise ValueError(msg)
def test_something_exception():
msg = "Not a good value"
error = ""
try:
raise_exception(msg)
except Exception as e:
error = str(e)
assert msg in error, f"{msg} is in the exception:\n{error}"
```
Ein anderer Ansatz zur Erfassung von stdout ist `contextlib.redirect_stdout`:
```python
from io import StringIO
from contextlib import redirect_stdout
def print_to_stdout(s):
print(s)
def test_result_and_stdout():
msg = "Hello"
buffer = StringIO()
with redirect_stdout(buffer):
print_to_stdout(msg)
out = buffer.getvalue()
# optional: if you want to replay the consumed streams:
sys.stdout.write(out)
# test:
assert msg in out
```
Ein wichtiges potenzielles Problem beim Erfassen von stdout ist, dass es `r` Zeichen enthalten kann, die bei normalem `print`
alles zurücksetzen, was bisher gedruckt wurde. Mit `pytest` gibt es kein Problem, aber mit `pytest -s` werden diese
werden diese Zeichen in den Puffer aufgenommen. Um den Test mit und ohne `-s` laufen zu lassen, müssen Sie also eine zusätzliche Bereinigung
zusätzliche Bereinigung der erfassten Ausgabe vornehmen, indem Sie `re.sub(r'~.*\r', '', buf, 0, re.M)` verwenden.
Aber dann haben wir einen Hilfskontextmanager-Wrapper, der sich automatisch um alles kümmert, unabhängig davon, ob er
einige "*.*.*.*" enthält oder nicht:
```python
from transformers.testing_utils import CaptureStdout
with CaptureStdout() as cs:
function_that_writes_to_stdout()
print(cs.out)
```
Hier ist ein vollständiges Testbeispiel:
```python
from transformers.testing_utils import CaptureStdout
msg = "Secret message\r"
final = "Hello World"
with CaptureStdout() as cs:
print(msg + final)
assert cs.out == final + "\n", f"captured: {cs.out}, expecting {final}"
```
Wenn Sie `stderr` aufzeichnen möchten, verwenden Sie stattdessen die Klasse `CaptureStderr`:
```python
from transformers.testing_utils import CaptureStderr
with CaptureStderr() as cs:
function_that_writes_to_stderr()
print(cs.err)
```
Wenn Sie beide Streams auf einmal erfassen müssen, verwenden Sie die übergeordnete Klasse `CaptureStd`:
```python
from transformers.testing_utils import CaptureStd
with CaptureStd() as cs:
function_that_writes_to_stdout_and_stderr()
print(cs.err, cs.out)
```
Um das Debuggen von Testproblemen zu erleichtern, geben diese Kontextmanager standardmäßig die aufgezeichneten Streams beim Verlassen
aus dem Kontext wieder.
### Erfassen von Logger-Streams
Wenn Sie die Ausgabe eines Loggers validieren müssen, können Sie `CaptureLogger` verwenden:
```python
from transformers import logging
from transformers.testing_utils import CaptureLogger
msg = "Testing 1, 2, 3"
logging.set_verbosity_info()
logger = logging.get_logger("transformers.models.bart.tokenization_bart")
with CaptureLogger(logger) as cl:
logger.info(msg)
assert cl.out, msg + "\n"
```
### Testen mit Umgebungsvariablen
Wenn Sie die Auswirkungen von Umgebungsvariablen für einen bestimmten Test testen möchten, können Sie einen Hilfsdekorator verwenden
`transformers.testing_utils.mockenv`
```python
from transformers.testing_utils import mockenv
class HfArgumentParserTest(unittest.TestCase):
@mockenv(TRANSFORMERS_VERBOSITY="error")
def test_env_override(self):
env_level_str = os.getenv("TRANSFORMERS_VERBOSITY", None)
```
Manchmal muss ein externes Programm aufgerufen werden, was die Einstellung von `PYTHONPATH` in `os.environ` erfordert, um mehrere lokale Pfade einzuschließen.
mehrere lokale Pfade. Eine Hilfsklasse `transformers.test_utils.TestCasePlus` hilft Ihnen dabei:
```python
from transformers.testing_utils import TestCasePlus
class EnvExampleTest(TestCasePlus):
def test_external_prog(self):
env = self.get_env()
# now call the external program, passing `env` to it
```
Je nachdem, ob die Testdatei in der Testsuite `tests` oder in `examples` war, wird sie korrekt eingerichtet
`env[PYTHONPATH]` eines dieser beiden Verzeichnisse und auch das `src` Verzeichnis, um sicherzustellen, dass der Test gegen das aktuelle
um sicherzustellen, dass der Test mit dem aktuellen Projektarchiv durchgeführt wird, und schließlich mit dem, was in `env[PYTHONPATH]` bereits eingestellt war, bevor der Test aufgerufen wurde.
wenn überhaupt.
Diese Hilfsmethode erstellt eine Kopie des Objekts `os.environ`, so dass das Original intakt bleibt.
### Reproduzierbare Ergebnisse erhalten
In manchen Situationen möchten Sie vielleicht die Zufälligkeit Ihrer Tests beseitigen. Um identische, reproduzierbare Ergebnisse zu erhalten, müssen Sie
müssen Sie den Seed festlegen:
```python
seed = 42
# python RNG
import random
random.seed(seed)
# pytorch RNGs
import torch
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
# numpy RNG
import numpy as np
np.random.seed(seed)
```
### Tests debuggen
Um einen Debugger an der Stelle zu starten, an der die Warnung auftritt, gehen Sie wie folgt vor:
```bash
pytest tests/utils/test_logging.py -W error::UserWarning --pdb
```
## Arbeiten mit Github-Aktionen-Workflows
Um einen CI-Job für einen Self-Push-Workflow auszulösen, müssen Sie:
1. Erstellen Sie einen neuen Zweig auf `transformers` Ursprung (keine Gabelung!).
2. Der Name der Verzweigung muss entweder mit `ci_` oder `ci-` beginnen (`main` löst ihn auch aus, aber wir können keine PRs auf
`main`). Es wird auch nur für bestimmte Pfade ausgelöst - Sie können die aktuelle Definition finden, falls sie
falls sie sich seit der Erstellung dieses Dokuments geändert hat [hier](https://github.com/huggingface/transformers/blob/main/.github/workflows/self-push.yml) unter *push:*
3. Erstellen Sie einen PR von diesem Zweig.
4. Dann können Sie sehen, wie der Job erscheint [hier](https://github.com/huggingface/transformers/actions/workflows/self-push.yml). Er wird möglicherweise nicht sofort ausgeführt, wenn es
ein Backlog vorhanden ist.
## Testen experimenteller CI-Funktionen
Das Testen von CI-Funktionen kann potenziell problematisch sein, da es die normale CI-Funktion beeinträchtigen kann. Wenn also eine
neue CI-Funktion hinzugefügt werden soll, sollte dies wie folgt geschehen.
1. Erstellen Sie einen neuen Auftrag, der die zu testende Funktion testet.
2. Der neue Job muss immer erfolgreich sein, so dass er uns ein grünes ✓ gibt (Details unten).
3. Lassen Sie ihn einige Tage lang laufen, um zu sehen, dass eine Vielzahl verschiedener PR-Typen darauf laufen (Benutzer-Gabelzweige,
nicht geforkte Zweige, Zweige, die von github.com UI direct file edit stammen, verschiedene erzwungene Pushes, etc. - es gibt
es gibt so viele), während Sie die Protokolle des experimentellen Jobs überwachen (nicht den gesamten Job grün, da er absichtlich immer
grün)
4. Wenn klar ist, dass alles in Ordnung ist, fügen Sie die neuen Änderungen in die bestehenden Jobs ein.
Auf diese Weise wird der normale Arbeitsablauf nicht durch Experimente mit der CI-Funktionalität selbst beeinträchtigt.
Wie können wir nun dafür sorgen, dass der Auftrag immer erfolgreich ist, während die neue CI-Funktion entwickelt wird?
Einige CIs, wie TravisCI, unterstützen ignore-step-failure und melden den gesamten Job als erfolgreich, aber CircleCI und
Github Actions unterstützen dies zum jetzigen Zeitpunkt nicht.
Sie können also die folgende Abhilfe verwenden:
1. Setzen Sie `set +euo pipefail` am Anfang des Ausführungsbefehls, um die meisten potenziellen Fehler im Bash-Skript zu unterdrücken.
2. Der letzte Befehl muss ein Erfolg sein: `echo "done"` oder einfach `true` reicht aus.
Hier ist ein Beispiel:
```yaml
- run:
name: run CI experiment
command: |
set +euo pipefail
echo "setting run-all-despite-any-errors-mode"
this_command_will_fail
echo "but bash continues to run"
# emulate another failure
false
# but the last command must be a success
echo "during experiment do not remove: reporting success to CI, even if there were failures"
```
Für einfache Befehle können Sie auch Folgendes tun:
```bash
cmd_that_may_fail || true
```
Wenn Sie mit den Ergebnissen zufrieden sind, integrieren Sie den experimentellen Schritt oder Job natürlich in den Rest der normalen Jobs,
Entfernen Sie dabei `set +euo pipefail` oder andere Dinge, die Sie eventuell hinzugefügt haben, um sicherzustellen, dass der experimentelle Auftrag nicht
den normalen CI-Betrieb nicht beeinträchtigt.
Dieser ganze Prozess wäre viel einfacher gewesen, wenn wir nur etwas wie `allow-failure` für den
experimentellen Schritt festlegen könnten und ihn scheitern lassen würden, ohne den Gesamtstatus der PRs zu beeinträchtigen. Aber wie bereits erwähnt, haben CircleCI und
Github Actions dies im Moment nicht unterstützen.
Sie können in diesen CI-spezifischen Threads für diese Funktion stimmen und sehen, wo sie steht:
- [Github Actions:](https://github.com/actions/toolkit/issues/399)
- [CircleCI:](https://ideas.circleci.com/ideas/CCI-I-344)
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Optimierung eines vortrainierten Modells
[[open-in-colab]]
Die Verwendung eines vorab trainierten Modells hat erhebliche Vorteile. Es reduziert die Rechenkosten und den CO2-Fußabdruck und ermöglicht Ihnen die Verwendung von Modellen, die dem neuesten Stand der Technik entsprechen, ohne dass Sie ein Modell von Grund auf neu trainieren müssen. Transformers bietet Zugang zu Tausenden von vortrainierten Modellen für eine Vielzahl von Aufgaben. Wenn Sie ein vorab trainiertes Modell verwenden, trainieren Sie es auf einem für Ihre Aufgabe spezifischen Datensatz. Dies wird als Feinabstimmung bezeichnet und ist eine unglaublich leistungsfähige Trainingstechnik. In diesem Tutorial werden Sie ein vortrainiertes Modell mit einem Deep-Learning-Framework Ihrer Wahl feinabstimmen:
* Feinabstimmung eines vorab trainierten Modells mit 🤗 Transformers [`Trainer`].
* Feinabstimmung eines vorab trainierten Modells in TensorFlow mit Keras.
* Feinabstimmung eines vorab trainierten Modells in nativem PyTorch.
<a id='data-processing'></a>
## Vorbereitung eines Datensatzes
<Youtube id="_BZearw7f0w"/>
Bevor Sie die Feinabstimmung eines vortrainierten Modells vornehmen können, müssen Sie einen Datensatz herunterladen und für das Training vorbereiten. Im vorangegangenen Leitfaden haben Sie gelernt, wie man Daten für das Training aufbereitet, und jetzt haben Sie die Gelegenheit, diese Fähigkeiten zu testen!
Laden Sie zunächst den Datensatz [Yelp Reviews](https://huggingface.co/datasets/yelp_review_full):
```py
>>> from datasets import load_dataset
>>> dataset = load_dataset("yelp_review_full")
>>> dataset["train"][100]
{'label': 0,
'text': 'My expectations for McDonalds are t rarely high. But for one to still fail so spectacularly...that takes something special!\\nThe cashier took my friends\'s order, then promptly ignored me. I had to force myself in front of a cashier who opened his register to wait on the person BEHIND me. I waited over five minutes for a gigantic order that included precisely one kid\'s meal. After watching two people who ordered after me be handed their food, I asked where mine was. The manager started yelling at the cashiers for \\"serving off their orders\\" when they didn\'t have their food. But neither cashier was anywhere near those controls, and the manager was the one serving food to customers and clearing the boards.\\nThe manager was rude when giving me my order. She didn\'t make sure that I had everything ON MY RECEIPT, and never even had the decency to apologize that I felt I was getting poor service.\\nI\'ve eaten at various McDonalds restaurants for over 30 years. I\'ve worked at more than one location. I expect bad days, bad moods, and the occasional mistake. But I have yet to have a decent experience at this store. It will remain a place I avoid unless someone in my party needs to avoid illness from low blood sugar. Perhaps I should go back to the racially biased service of Steak n Shake instead!'}
```
Wie Sie nun wissen, benötigen Sie einen Tokenizer, um den Text zu verarbeiten und eine Auffüll- und Abschneidungsstrategie einzubauen, um mit variablen Sequenzlängen umzugehen. Um Ihren Datensatz in einem Schritt zu verarbeiten, verwenden Sie die 🤗 Methode Datasets [`map`](https://huggingface.co/docs/datasets/process#map), um eine Vorverarbeitungsfunktion auf den gesamten Datensatz anzuwenden:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
>>> def tokenize_function(examples):
... return tokenizer(examples["text"], padding="max_length", truncation=True)
>>> tokenized_datasets = dataset.map(tokenize_function, batched=True)
```
Wenn Sie möchten, können Sie eine kleinere Teilmenge des gesamten Datensatzes für die Feinabstimmung erstellen, um den Zeitaufwand zu verringern:
```py
>>> small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
>>> small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
```
<a id='trainer'></a>
## Training
An dieser Stelle sollten Sie dem Abschnitt folgen, der dem Rahmen entspricht, den Sie verwenden möchten. Sie können über die Links
in der rechten Seitenleiste können Sie zu dem gewünschten Abschnitt springen - und wenn Sie den gesamten Inhalt eines bestimmten Frameworks ausblenden möchten,
klicken Sie einfach auf die Schaltfläche oben rechts im Block des jeweiligen Frameworks!
<Youtube id="nvBXf7s7vTI"/>
## Trainieren mit PyTorch Trainer
🤗 Transformers bietet eine [`Trainer`]-Klasse, die für das Training von 🤗 Transformers-Modellen optimiert ist und es einfacher macht, mit dem Training zu beginnen, ohne manuell eine eigene Trainingsschleife zu schreiben. Die [`Trainer`]-API unterstützt eine breite Palette von Trainingsoptionen und Funktionen wie Logging, Gradientenakkumulation und gemischte Präzision.
Beginnen Sie mit dem Laden Ihres Modells und geben Sie die Anzahl der erwarteten Labels an. Aus dem Yelp Review [dataset card](https://huggingface.co/datasets/yelp_review_full#data-fields) wissen Sie, dass es fünf Labels gibt:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-cased", num_labels=5)
```
<Tip>
Es wird eine Warnung angezeigt, dass einige der trainierten Parameter nicht verwendet werden und einige Parameter zufällig
initialisiert werden. Machen Sie sich keine Sorgen, das ist völlig normal! Der vorher trainierte Kopf des BERT-Modells wird verworfen und durch einen zufällig initialisierten Klassifikationskopf ersetzt. Sie werden diesen neuen Modellkopf in Ihrer Sequenzklassifizierungsaufgabe feinabstimmen, indem Sie das Wissen des vortrainierten Modells auf ihn übertragen.
</Tip>
### Hyperparameter für das Training
Als Nächstes erstellen Sie eine Klasse [`TrainingArguments`], die alle Hyperparameter enthält, die Sie einstellen können, sowie Flags zur Aktivierung verschiedener Trainingsoptionen. Für dieses Lernprogramm können Sie mit den Standard- [Hyperparametern](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments) beginnen, aber Sie können mit diesen experimentieren, um Ihre optimalen Einstellungen zu finden.
Geben Sie an, wo die Kontrollpunkte Ihres Trainings gespeichert werden sollen:
```py
>>> from transformers import TrainingArguments
>>> training_args = TrainingArguments(output_dir="test_trainer")
```
### Auswerten
Der [`Trainer`] wertet die Leistung des Modells während des Trainings nicht automatisch aus. Sie müssen [`Trainer`] eine Funktion übergeben, um Metriken zu berechnen und zu berichten. Die [🤗 Evaluate](https://huggingface.co/docs/evaluate/index) Bibliothek bietet eine einfache [`accuracy`](https://huggingface.co/spaces/evaluate-metric/accuracy) Funktion, die Sie mit der [`evaluate.load`] Funktion laden können (siehe diese [quicktour](https://huggingface.co/docs/evaluate/a_quick_tour) für weitere Informationen):
```py
>>> import numpy as np
>>> import evaluate
>>> metric = evaluate.load("accuracy")
```
Rufen Sie [`~evaluate.compute`] auf `metric` auf, um die Genauigkeit Ihrer Vorhersagen zu berechnen. Bevor Sie Ihre Vorhersagen an `compute` übergeben, müssen Sie die Vorhersagen in Logits umwandeln (denken Sie daran, dass alle 🤗 Transformers-Modelle Logits zurückgeben):
```py
>>> def compute_metrics(eval_pred):
... logits, labels = eval_pred
... predictions = np.argmax(logits, axis=-1)
... return metric.compute(predictions=predictions, references=labels)
```
Wenn Sie Ihre Bewertungsmetriken während der Feinabstimmung überwachen möchten, geben Sie den Parameter `eval_strategy` in Ihren Trainingsargumenten an, um die Bewertungsmetrik am Ende jeder Epoche zu ermitteln:
```py
>>> from transformers import TrainingArguments, Trainer
>>> training_args = TrainingArguments(output_dir="test_trainer", eval_strategy="epoch")
```
### Trainer
Erstellen Sie ein [`Trainer`]-Objekt mit Ihrem Modell, Trainingsargumenten, Trainings- und Testdatensätzen und einer Evaluierungsfunktion:
```py
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=small_train_dataset,
... eval_dataset=small_eval_dataset,
... compute_metrics=compute_metrics,
... )
```
Anschließend können Sie Ihr Modell durch den Aufruf von [`~transformers.Trainer.train`] optimieren:
```py
>>> trainer.train()
```
<a id='pytorch_native'></a>
## Trainieren in nativem PyTorch
<Youtube id="Dh9CL8fyG80"/>
[`Trainer`] kümmert sich um die Trainingsschleife und ermöglicht die Feinabstimmung eines Modells in einer einzigen Codezeile. Für Benutzer, die es vorziehen, ihre eigene Trainingsschleife zu schreiben, können Sie auch eine Feinabstimmung eines 🤗 Transformers-Modells in nativem PyTorch vornehmen.
An diesem Punkt müssen Sie möglicherweise Ihr Notebook neu starten oder den folgenden Code ausführen, um etwas Speicher freizugeben:
```py
del model
del pytorch_model
del trainer
torch.cuda.empty_cache()
```
Als Nächstes müssen Sie den Datensatz `tokenized_dataset` manuell nachbearbeiten, um ihn für das Training vorzubereiten.
1. Entfernen Sie die Spalte "Text", da das Modell keinen Rohtext als Eingabe akzeptiert:
```py
>>> tokenized_datasets = tokenized_datasets.remove_columns(["text"])
```
2. Benennen Sie die Spalte "Label" in "Labels" um, da das Modell erwartet, dass das Argument "Labels" genannt wird:
```py
>>> tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
```
3. Stellen Sie das Format des Datensatzes so ein, dass PyTorch-Tensoren anstelle von Listen zurückgegeben werden:
```py
>>> tokenized_datasets.set_format("torch")
```
Erstellen Sie dann eine kleinere Teilmenge des Datensatzes, wie zuvor gezeigt, um die Feinabstimmung zu beschleunigen:
```py
>>> small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
>>> small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
```
### DataLoader
Erstellen Sie einen `DataLoader` für Ihre Trainings- und Testdatensätze, damit Sie über die Datenstapel iterieren können:
```py
>>> from torch.utils.data import DataLoader
>>> train_dataloader = DataLoader(small_train_dataset, shuffle=True, batch_size=8)
>>> eval_dataloader = DataLoader(small_eval_dataset, batch_size=8)
```
Laden Sie Ihr Modell mit der Anzahl der erwarteten Kennzeichnungen:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-cased", num_labels=5)
```
### Optimierer und Lernratensteuerung
Erstellen Sie einen Optimierer und einen Scheduler für die Lernrate, um das Modell fein abzustimmen. Wir verwenden den Optimierer [`AdamW`](https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html) aus PyTorch:
```py
>>> from torch.optim import AdamW
>>> optimizer = AdamW(model.parameters(), lr=5e-5)
```
Erstellen Sie den Standard-Lernratenplaner aus [`Trainer`]:
```py
>>> from transformers import get_scheduler
>>> num_epochs = 3
>>> num_training_steps = num_epochs * len(train_dataloader)
>>> lr_scheduler = get_scheduler(
... name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps
... )
```
Geben Sie schließlich `device` an, um einen Grafikprozessor zu verwenden, wenn Sie Zugang zu einem solchen haben. Andernfalls kann das Training auf einer CPU mehrere Stunden statt ein paar Minuten dauern.
```py
>>> import torch
>>> device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
>>> model.to(device)
```
<Tip>
Holen Sie sich mit einem gehosteten Notebook wie [Colaboratory](https://colab.research.google.com/) oder [SageMaker StudioLab](https://studiolab.sagemaker.aws/) kostenlosen Zugang zu einem Cloud-GPU, wenn Sie noch keinen haben.
</Tip>
Großartig, Sie sind bereit für das Training! 🥳
### Trainingsschleife
Um Ihren Trainingsfortschritt zu verfolgen, verwenden Sie die [tqdm](https://tqdm.github.io/) Bibliothek, um einen Fortschrittsbalken über die Anzahl der Trainingsschritte hinzuzufügen:
```py
>>> from tqdm.auto import tqdm
>>> progress_bar = tqdm(range(num_training_steps))
>>> model.train()
>>> for epoch in range(num_epochs):
... for batch in train_dataloader:
... batch = {k: v.to(device) for k, v in batch.items()}
... outputs = model(**batch)
... loss = outputs.loss
... loss.backward()
... optimizer.step()
... lr_scheduler.step()
... optimizer.zero_grad()
... progress_bar.update(1)
```
### Auswertung
Genauso wie Sie eine Bewertungsfunktion zu [`Trainer`] hinzugefügt haben, müssen Sie dasselbe tun, wenn Sie Ihre eigene Trainingsschleife schreiben. Aber anstatt die Metrik am Ende jeder Epoche zu berechnen und zu melden, werden Sie dieses Mal alle Stapel mit [`~evaluate.add_batch`] akkumulieren und die Metrik ganz am Ende berechnen.
```py
>>> import evaluate
>>> metric = evaluate.load("accuracy")
>>> model.eval()
>>> for batch in eval_dataloader:
... batch = {k: v.to(device) for k, v in batch.items()}
... with torch.no_grad():
... outputs = model(**batch)
... logits = outputs.logits
... predictions = torch.argmax(logits, dim=-1)
... metric.add_batch(predictions=predictions, references=batch["labels"])
>>> metric.compute()
```
<a id='additional-resources'></a>
## Zusätzliche Ressourcen
Weitere Beispiele für die Feinabstimmung finden Sie unter:
- [🤗 Transformers Examples](https://github.com/huggingface/transformers/tree/main/examples) enthält Skripte
um gängige NLP-Aufgaben in PyTorch und TensorFlow zu trainieren.
- [🤗 Transformers Notebooks](notebooks) enthält verschiedene Notebooks zur Feinabstimmung eines Modells für bestimmte Aufgaben in PyTorch und TensorFlow.
# docstyle-ignore
INSTALL_CONTENT = """
# Transformers installation
! pip install transformers datasets evaluate accelerate
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}]
black_avoid_patterns = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
# Optimizing inference
perf_infer_gpu_many: perf_infer_gpu_one
transformers_agents: agents
quantization: quantization/overview
- sections:
- local: index
title: Transformers
- local: installation
title: Installation
- local: quicktour
title: Quickstart
title: Get started
- isExpanded: false
sections:
- sections:
- local: models
title: Loading models
- local: custom_models
title: Customizing models
- local: how_to_hack_models
title: Customizing model components
- local: model_sharing
title: Sharing
- local: modular_transformers
title: Contributing a new model to Transformers
- local: add_new_model
title: Legacy model contribution
- local: auto_docstring
title: Documenting a model
- local: attention_interface
title: Customizing attention function
title: Models
- sections:
- local: fast_tokenizers
title: Tokenizers
- local: image_processors
title: Image processors
- local: video_processors
title: Video processors
- local: backbones
title: Backbones
- local: feature_extractors
title: Feature extractors
- local: processors
title: Processors
- local: tokenizer_summary
title: Summary of the tokenizers
- local: pad_truncation
title: Padding and truncation
title: Preprocessors
title: Base classes
- isExpanded: false
sections:
- sections:
- local: pipeline_tutorial
title: Pipeline
- local: pipeline_gradio
title: Machine learning apps
- local: pipeline_webserver
title: Web server inference
- local: add_new_pipeline
title: Adding a new pipeline
title: Pipeline API
- sections:
- local: llm_tutorial
title: Text generation
- local: generation_strategies
title: Generation strategies
- local: generation_features
title: Generation features
- local: tasks/prompting
title: Prompt engineering
- local: llm_optims
title: Optimizing inference
- local: cache_explanation
title: Caching
- local: kv_cache
title: KV cache strategies
- local: llm_tutorial_optimization
title: Getting the most out of LLMs
- local: perplexity
title: Perplexity of fixed-length models
title: LLMs
- sections:
- local: conversations
title: Chat basics
- local: chat_templating
title: Chat templates
- local: chat_templating_multimodal
title: Multimodal chat templates
- local: chat_extras
title: Tool use
- local: chat_templating_writing
title: Writing a chat template
- local: chat_response_parsing
title: Response parsing
title: Chat with models
- sections:
- local: serving
title: Serving LLMs, VLMs, and other chat-based models
- local: jan
title: Jan
- local: cursor
title: Cursor
- local: tiny_agents
title: Tiny-Agents CLI and MCP tools
- local: open_webui
title: Open WebUI
title: Serving
- sections:
- local: perf_torch_compile
title: torch.compile
- local: perf_infer_gpu_one
title: GPU
- local: perf_infer_gpu_multi
title: Distributed inference
- local: perf_infer_cpu
title: CPU
title: Optimization
- local: agents
title: Agents
- local: tools
title: Tools
- local: transformers_as_backend
title: Inference server backends
title: Inference
- isExpanded: false
sections:
- sections:
- local: trainer
title: Trainer
- local: training
title: Fine-tuning
- local: optimizers
title: Optimizers
- local: hpo_train
title: Hyperparameter search
title: Trainer API
- sections:
- local: accelerator_selection
title: Accelerator selection
- local: accelerate
title: Accelerate
- local: fsdp
title: FullyShardedDataParallel
- local: deepspeed
title: DeepSpeed
- local: debugging
title: Multi-GPU debugging
- local: perf_train_cpu_many
title: Distributed CPUs
- local: perf_train_gpu_many
title: Parallelism methods
title: Distributed training
- sections:
- local: perf_train_gpu_one
title: GPU
- local: perf_train_cpu
title: CPU
- local: perf_train_special
title: Apple Silicon
- local: perf_train_gaudi
title: Intel Gaudi
- local: perf_hardware
title: Build your own machine
title: Hardware
- local: peft
title: PEFT
- local: model_memory_anatomy
title: Model training anatomy
title: Training
- isExpanded: false
sections:
- local: quantization/overview
title: Overview
- local: quantization/selecting
title: Selecting a quantization method
- local: quantization/concept_guide
title: Quantization concepts
- local: quantization/aqlm
title: AQLM
- local: quantization/auto_round
title: AutoRound
- local: quantization/awq
title: AWQ
- local: quantization/bitnet
title: BitNet
- local: quantization/bitsandbytes
title: bitsandbytes
- local: quantization/compressed_tensors
title: compressed-tensors
- local: quantization/eetq
title: EETQ
- local: quantization/fbgemm_fp8
title: FBGEMM
- local: quantization/finegrained_fp8
title: Fine-grained FP8
- local: quantization/fp_quant
title: FP-Quant
- local: gguf
title: GGUF
- local: quantization/gptq
title: GPTQ
- local: quantization/higgs
title: HIGGS
- local: quantization/hqq
title: HQQ
- local: quantization/mxfp4
title: MXFP4
- local: quantization/optimum
title: Optimum
- local: quantization/quanto
title: Quanto
- local: quantization/quark
title: Quark
- local: quantization/torchao
title: torchao
- local: quantization/spqr
title: SpQR
- local: quantization/vptq
title: VPTQ
- local: quantization/contribute
title: Contribute
title: Quantization
- isExpanded: false
sections:
- local: kernel_doc/overview
title: Kernels in transformers
title: Kernels
- isExpanded: false
sections:
- local: serialization
title: ONNX
- local: executorch
title: ExecuTorch
title: Export to production
- isExpanded: false
sections:
- sections:
- sections:
- local: tasks/sequence_classification
title: Text classification
- local: tasks/token_classification
title: Token classification
- local: tasks/question_answering
title: Question answering
- local: tasks/language_modeling
title: Causal language modeling
- local: tasks/masked_language_modeling
title: Masked language modeling
- local: tasks/translation
title: Translation
- local: tasks/summarization
title: Summarization
- local: tasks/multiple_choice
title: Multiple choice
title: Natural language processing
- sections:
- local: tasks/audio_classification
title: Audio classification
- local: tasks/asr
title: Automatic speech recognition
title: Audio
- sections:
- local: tasks/image_classification
title: Image classification
- local: tasks/semantic_segmentation
title: Image segmentation
- local: tasks/video_classification
title: Video classification
- local: tasks/object_detection
title: Object detection
- local: tasks/zero_shot_object_detection
title: Zero-shot object detection
- local: tasks/zero_shot_image_classification
title: Zero-shot image classification
- local: tasks/monocular_depth_estimation
title: Depth estimation
- local: tasks/image_to_image
title: Image-to-Image
- local: tasks/image_feature_extraction
title: Image Feature Extraction
- local: tasks/mask_generation
title: Mask Generation
- local: tasks/keypoint_detection
title: Keypoint detection
- local: tasks/knowledge_distillation_for_image_classification
title: Knowledge Distillation for Computer Vision
- local: tasks/keypoint_matching
title: Keypoint matching
- local: tasks/training_vision_backbone
title: Training vision models using Backbone API
title: Computer vision
- sections:
- local: tasks/image_captioning
title: Image captioning
- local: tasks/document_question_answering
title: Document Question Answering
- local: tasks/visual_question_answering
title: Visual Question Answering
- local: tasks/text-to-speech
title: Text to speech
- local: tasks/idefics
title: Image tasks with IDEFICS
- local: tasks/image_text_to_text
title: Image-text-to-text
- local: tasks/video_text_to_text
title: Video-text-to-text
- local: tasks/visual_document_retrieval
title: Visual Document Retrieval
title: Multimodal
title: Task recipes
- local: run_scripts
title: Training scripts
- local: glossary
title: Glossary
- local: philosophy
title: Philosophy
- local: models_timeline
title: Models Timeline
- local: notebooks
title: Notebooks with examples
- local: community
title: Community resources
- local: troubleshooting
title: Troubleshoot
title: Resources
- isExpanded: false
sections:
- local: contributing
title: Contribute to Transformers
- local: testing
title: Transformers model tests
- local: pr_checks
title: Pull request checks
title: Contribute
- isExpanded: false
sections:
- sections:
- local: model_doc/auto
title: Auto Classes
- local: main_classes/backbones
title: Backbones
- local: main_classes/callback
title: Callbacks
- local: main_classes/configuration
title: Configuration
- local: main_classes/data_collator
title: Data Collator
- local: main_classes/logging
title: Logging
- local: main_classes/model
title: Models
- local: main_classes/text_generation
title: Text Generation
- local: main_classes/optimizer_schedules
title: Optimization
- local: main_classes/output
title: Model outputs
- local: main_classes/peft
title: PEFT
- local: main_classes/pipelines
title: Pipelines
- local: main_classes/processors
title: Processors
- local: main_classes/quantization
title: Quantization
- local: main_classes/tokenizer
title: Tokenizer
- local: main_classes/trainer
title: Trainer
- local: main_classes/deepspeed
title: DeepSpeed
- local: main_classes/executorch
title: ExecuTorch
- local: main_classes/feature_extractor
title: Feature Extractor
- local: main_classes/image_processor
title: Image Processor
- local: main_classes/video_processor
title: Video Processor
- local: main_classes/kernels
title: Kernels
title: Main Classes
- sections:
- sections:
- local: model_doc/albert
title: ALBERT
- local: model_doc/apertus
title: Apertus
- local: model_doc/arcee
title: Arcee
- local: model_doc/bamba
title: Bamba
- local: model_doc/bart
title: BART
- local: model_doc/barthez
title: BARThez
- local: model_doc/bartpho
title: BARTpho
- local: model_doc/bert
title: BERT
- local: model_doc/bert-generation
title: BertGeneration
- local: model_doc/bert-japanese
title: BertJapanese
- local: model_doc/bertweet
title: BERTweet
- local: model_doc/big_bird
title: BigBird
- local: model_doc/bigbird_pegasus
title: BigBirdPegasus
- local: model_doc/biogpt
title: BioGpt
- local: model_doc/bitnet
title: BitNet
- local: model_doc/blenderbot
title: Blenderbot
- local: model_doc/blenderbot-small
title: Blenderbot Small
- local: model_doc/bloom
title: BLOOM
- local: model_doc/blt
title: BLT
- local: model_doc/bort
title: BORT
- local: model_doc/byt5
title: ByT5
- local: model_doc/camembert
title: CamemBERT
- local: model_doc/canine
title: CANINE
- local: model_doc/codegen
title: CodeGen
- local: model_doc/code_llama
title: CodeLlama
- local: model_doc/cohere
title: Cohere
- local: model_doc/cohere2
title: Cohere2
- local: model_doc/convbert
title: ConvBERT
- local: model_doc/cpm
title: CPM
- local: model_doc/cpmant
title: CPMANT
- local: model_doc/ctrl
title: CTRL
- local: model_doc/dbrx
title: DBRX
- local: model_doc/deberta
title: DeBERTa
- local: model_doc/deberta-v2
title: DeBERTa-v2
- local: model_doc/deepseek_v2
title: DeepSeek-V2
- local: model_doc/deepseek_v3
title: DeepSeek-V3
- local: model_doc/dialogpt
title: DialoGPT
- local: model_doc/diffllama
title: DiffLlama
- local: model_doc/distilbert
title: DistilBERT
- local: model_doc/doge
title: Doge
- local: model_doc/dots1
title: dots1
- local: model_doc/dpr
title: DPR
- local: model_doc/electra
title: ELECTRA
- local: model_doc/encoder-decoder
title: Encoder Decoder Models
- local: model_doc/ernie
title: ERNIE
- local: model_doc/ernie4_5
title: Ernie4_5
- local: model_doc/ernie4_5_moe
title: Ernie4_5_MoE
- local: model_doc/ernie_m
title: ErnieM
- local: model_doc/esm
title: ESM
- local: model_doc/exaone4
title: EXAONE-4.0
- local: model_doc/falcon
title: Falcon
- local: model_doc/falcon3
title: Falcon3
- local: model_doc/falcon_h1
title: FalconH1
- local: model_doc/falcon_mamba
title: FalconMamba
- local: model_doc/flan-t5
title: FLAN-T5
- local: model_doc/flan-ul2
title: FLAN-UL2
- local: model_doc/flaubert
title: FlauBERT
- local: model_doc/flex_olmo
title: FlexOlmo
- local: model_doc/fnet
title: FNet
- local: model_doc/fsmt
title: FSMT
- local: model_doc/funnel
title: Funnel Transformer
- local: model_doc/fuyu
title: Fuyu
- local: model_doc/gemma
title: Gemma
- local: model_doc/gemma2
title: Gemma2
- local: model_doc/glm
title: GLM
- local: model_doc/glm4
title: glm4
- local: model_doc/glm4_moe
title: glm4_moe
- local: model_doc/openai-gpt
title: GPT
- local: model_doc/gpt_neo
title: GPT Neo
- local: model_doc/gpt_neox
title: GPT NeoX
- local: model_doc/gpt_neox_japanese
title: GPT NeoX Japanese
- local: model_doc/gptj
title: GPT-J
- local: model_doc/gpt2
title: GPT2
- local: model_doc/gpt_bigcode
title: GPTBigCode
- local: model_doc/gpt_oss
title: GptOss
- local: model_doc/gptsan-japanese
title: GPTSAN Japanese
- local: model_doc/gpt-sw3
title: GPTSw3
- local: model_doc/granite
title: Granite
- local: model_doc/granitemoe
title: GraniteMoe
- local: model_doc/granitemoehybrid
title: GraniteMoeHybrid
- local: model_doc/granitemoeshared
title: GraniteMoeShared
- local: model_doc/helium
title: Helium
- local: model_doc/herbert
title: HerBERT
- local: model_doc/hunyuan_v1_dense
title: HunYuanDenseV1
- local: model_doc/hunyuan_v1_moe
title: HunYuanMoEV1
- local: model_doc/ibert
title: I-BERT
- local: model_doc/jamba
title: Jamba
- local: model_doc/jetmoe
title: JetMoe
- local: model_doc/jukebox
title: Jukebox
- local: model_doc/led
title: LED
- local: model_doc/lfm2
title: LFM2
- local: model_doc/lfm2_moe
title: LFM2Moe
- local: model_doc/llama
title: LLaMA
- local: model_doc/llama2
title: Llama2
- local: model_doc/llama3
title: Llama3
- local: model_doc/longcat_flash
title: LongCatFlash
- local: model_doc/longformer
title: Longformer
- local: model_doc/longt5
title: LongT5
- local: model_doc/luke
title: LUKE
- local: model_doc/m2m_100
title: M2M100
- local: model_doc/madlad-400
title: MADLAD-400
- local: model_doc/mamba
title: Mamba
- local: model_doc/mamba2
title: Mamba2
- local: model_doc/marian
title: MarianMT
- local: model_doc/markuplm
title: MarkupLM
- local: model_doc/mbart
title: MBart and MBart-50
- local: model_doc/mega
title: MEGA
- local: model_doc/megatron-bert
title: MegatronBERT
- local: model_doc/megatron_gpt2
title: MegatronGPT2
- local: model_doc/minimax
title: MiniMax
- local: model_doc/ministral
title: Ministral
- local: model_doc/mistral
title: Mistral
- local: model_doc/mixtral
title: Mixtral
- local: model_doc/mluke
title: mLUKE
- local: model_doc/mobilebert
title: MobileBERT
- local: model_doc/modernbert
title: ModernBert
- local: model_doc/modernbert-decoder
title: ModernBERTDecoder
- local: model_doc/mpnet
title: MPNet
- local: model_doc/mpt
title: MPT
- local: model_doc/mra
title: MRA
- local: model_doc/mt5
title: MT5
- local: model_doc/mvp
title: MVP
- local: model_doc/myt5
title: myt5
- local: model_doc/nemotron
title: Nemotron
- local: model_doc/nezha
title: NEZHA
- local: model_doc/nllb
title: NLLB
- local: model_doc/nllb-moe
title: NLLB-MoE
- local: model_doc/nystromformer
title: Nyströmformer
- local: model_doc/olmo
title: OLMo
- local: model_doc/olmo2
title: OLMo2
- local: model_doc/olmo3
title: Olmo3
- local: model_doc/olmoe
title: OLMoE
- local: model_doc/open-llama
title: Open-Llama
- local: model_doc/opt
title: OPT
- local: model_doc/pegasus
title: Pegasus
- local: model_doc/pegasus_x
title: PEGASUS-X
- local: model_doc/persimmon
title: Persimmon
- local: model_doc/phi
title: Phi
- local: model_doc/phi3
title: Phi-3
- local: model_doc/phimoe
title: PhiMoE
- local: model_doc/phobert
title: PhoBERT
- local: model_doc/plbart
title: PLBart
- local: model_doc/prophetnet
title: ProphetNet
- local: model_doc/qdqbert
title: QDQBert
- local: model_doc/qwen2
title: Qwen2
- local: model_doc/qwen2_moe
title: Qwen2MoE
- local: model_doc/qwen3
title: Qwen3
- local: model_doc/qwen3_moe
title: Qwen3MoE
- local: model_doc/qwen3_next
title: Qwen3Next
- local: model_doc/rag
title: RAG
- local: model_doc/realm
title: REALM
- local: model_doc/recurrent_gemma
title: RecurrentGemma
- local: model_doc/reformer
title: Reformer
- local: model_doc/rembert
title: RemBERT
- local: model_doc/retribert
title: RetriBERT
- local: model_doc/roberta
title: RoBERTa
- local: model_doc/roberta-prelayernorm
title: RoBERTa-PreLayerNorm
- local: model_doc/roc_bert
title: RoCBert
- local: model_doc/roformer
title: RoFormer
- local: model_doc/rwkv
title: RWKV
- local: model_doc/seed_oss
title: Seed-Oss
- local: model_doc/splinter
title: Splinter
- local: model_doc/squeezebert
title: SqueezeBERT
- local: model_doc/stablelm
title: StableLm
- local: model_doc/starcoder2
title: Starcoder2
- local: model_doc/switch_transformers
title: SwitchTransformers
- local: model_doc/t5
title: T5
- local: model_doc/t5gemma
title: T5Gemma
- local: model_doc/t5v1.1
title: T5v1.1
- local: model_doc/tapex
title: TAPEX
- local: model_doc/transfo-xl
title: Transformer XL
- local: model_doc/ul2
title: UL2
- local: model_doc/umt5
title: UMT5
- local: model_doc/vaultgemma
title: VaultGemma
- local: model_doc/xmod
title: X-MOD
- local: model_doc/xglm
title: XGLM
- local: model_doc/xlm
title: XLM
- local: model_doc/xlm-prophetnet
title: XLM-ProphetNet
- local: model_doc/xlm-roberta
title: XLM-RoBERTa
- local: model_doc/xlm-roberta-xl
title: XLM-RoBERTa-XL
- local: model_doc/xlm-v
title: XLM-V
- local: model_doc/xlnet
title: XLNet
- local: model_doc/xlstm
title: xLSTM
- local: model_doc/yoso
title: YOSO
- local: model_doc/zamba
title: Zamba
- local: model_doc/zamba2
title: Zamba2
title: Text models
- sections:
- local: model_doc/aimv2
title: Aimv2
- local: model_doc/beit
title: BEiT
- local: model_doc/bit
title: BiT
- local: model_doc/conditional_detr
title: Conditional DETR
- local: model_doc/convnext
title: ConvNeXT
- local: model_doc/convnextv2
title: ConvNeXTV2
- local: model_doc/cvt
title: CvT
- local: model_doc/d_fine
title: D-FINE
- local: model_doc/dab-detr
title: DAB-DETR
- local: model_doc/deformable_detr
title: Deformable DETR
- local: model_doc/deit
title: DeiT
- local: model_doc/depth_anything
title: Depth Anything
- local: model_doc/depth_anything_v2
title: Depth Anything V2
- local: model_doc/depth_pro
title: DepthPro
- local: model_doc/deta
title: DETA
- local: model_doc/detr
title: DETR
- local: model_doc/dinat
title: DiNAT
- local: model_doc/dinov2
title: DINOV2
- local: model_doc/dinov2_with_registers
title: DINOv2 with Registers
- local: model_doc/dinov3
title: DINOv3
- local: model_doc/dit
title: DiT
- local: model_doc/dpt
title: DPT
- local: model_doc/efficientformer
title: EfficientFormer
- local: model_doc/efficientloftr
title: EfficientLoFTR
- local: model_doc/efficientnet
title: EfficientNet
- local: model_doc/eomt
title: EoMT
- local: model_doc/focalnet
title: FocalNet
- local: model_doc/glpn
title: GLPN
- local: model_doc/hgnet_v2
title: HGNet-V2
- local: model_doc/hiera
title: Hiera
- local: model_doc/ijepa
title: I-JEPA
- local: model_doc/imagegpt
title: ImageGPT
- local: model_doc/levit
title: LeViT
- local: model_doc/lightglue
title: LightGlue
- local: model_doc/mask2former
title: Mask2Former
- local: model_doc/maskformer
title: MaskFormer
- local: model_doc/mlcd
title: MLCD
- local: model_doc/mobilenet_v1
title: MobileNetV1
- local: model_doc/mobilenet_v2
title: MobileNetV2
- local: model_doc/mobilevit
title: MobileViT
- local: model_doc/mobilevitv2
title: MobileViTV2
- local: model_doc/nat
title: NAT
- local: model_doc/poolformer
title: PoolFormer
- local: model_doc/prompt_depth_anything
title: Prompt Depth Anything
- local: model_doc/pvt
title: Pyramid Vision Transformer (PVT)
- local: model_doc/pvt_v2
title: Pyramid Vision Transformer v2 (PVTv2)
- local: model_doc/regnet
title: RegNet
- local: model_doc/resnet
title: ResNet
- local: model_doc/rt_detr
title: RT-DETR
- local: model_doc/rt_detr_v2
title: RT-DETRv2
- local: model_doc/sam2
title: SAM2
- local: model_doc/segformer
title: SegFormer
- local: model_doc/seggpt
title: SegGpt
- local: model_doc/sam
title: Segment Anything
- local: model_doc/sam_hq
title: Segment Anything High Quality
- local: model_doc/superglue
title: SuperGlue
- local: model_doc/superpoint
title: SuperPoint
- local: model_doc/swiftformer
title: SwiftFormer
- local: model_doc/swin
title: Swin Transformer
- local: model_doc/swinv2
title: Swin Transformer V2
- local: model_doc/swin2sr
title: Swin2SR
- local: model_doc/table-transformer
title: Table Transformer
- local: model_doc/textnet
title: TextNet
- local: model_doc/timm_wrapper
title: Timm Wrapper
- local: model_doc/upernet
title: UperNet
- local: model_doc/van
title: VAN
- local: model_doc/vit
title: Vision Transformer (ViT)
- local: model_doc/vit_hybrid
title: ViT Hybrid
- local: model_doc/vitdet
title: ViTDet
- local: model_doc/vit_mae
title: ViTMAE
- local: model_doc/vitmatte
title: ViTMatte
- local: model_doc/vit_msn
title: ViTMSN
- local: model_doc/vitpose
title: ViTPose
- local: model_doc/yolos
title: YOLOS
- local: model_doc/zoedepth
title: ZoeDepth
title: Vision models
- sections:
- local: model_doc/audio-spectrogram-transformer
title: Audio Spectrogram Transformer
- local: model_doc/bark
title: Bark
- local: model_doc/clap
title: CLAP
- local: model_doc/csm
title: CSM
- local: model_doc/dac
title: dac
- local: model_doc/dia
title: Dia
- local: model_doc/encodec
title: EnCodec
- local: model_doc/fastspeech2_conformer
title: FastSpeech2Conformer
- local: model_doc/granite_speech
title: GraniteSpeech
- local: model_doc/hubert
title: Hubert
- local: model_doc/kyutai_speech_to_text
title: Kyutai Speech-To-Text
- local: model_doc/mctct
title: MCTCT
- local: model_doc/mimi
title: Mimi
- local: model_doc/mms
title: MMS
- local: model_doc/moonshine
title: Moonshine
- local: model_doc/moshi
title: Moshi
- local: model_doc/musicgen
title: MusicGen
- local: model_doc/musicgen_melody
title: MusicGen Melody
- local: model_doc/parakeet
title: Parakeet
- local: model_doc/pop2piano
title: Pop2Piano
- local: model_doc/seamless_m4t
title: Seamless-M4T
- local: model_doc/seamless_m4t_v2
title: SeamlessM4T-v2
- local: model_doc/sew
title: SEW
- local: model_doc/sew-d
title: SEW-D
- local: model_doc/speech_to_text
title: Speech2Text
- local: model_doc/speech_to_text_2
title: Speech2Text2
- local: model_doc/speecht5
title: SpeechT5
- local: model_doc/unispeech
title: UniSpeech
- local: model_doc/unispeech-sat
title: UniSpeech-SAT
- local: model_doc/univnet
title: UnivNet
- local: model_doc/vits
title: VITS
- local: model_doc/wav2vec2
title: Wav2Vec2
- local: model_doc/wav2vec2-bert
title: Wav2Vec2-BERT
- local: model_doc/wav2vec2-conformer
title: Wav2Vec2-Conformer
- local: model_doc/wav2vec2_phoneme
title: Wav2Vec2Phoneme
- local: model_doc/wavlm
title: WavLM
- local: model_doc/whisper
title: Whisper
- local: model_doc/xcodec
title: X-Codec
- local: model_doc/xls_r
title: XLS-R
- local: model_doc/xlsr_wav2vec2
title: XLSR-Wav2Vec2
title: Audio models
- sections:
- local: model_doc/sam2_video
title: SAM2 Video
- local: model_doc/timesformer
title: TimeSformer
- local: model_doc/vjepa2
title: V-JEPA 2
- local: model_doc/videomae
title: VideoMAE
- local: model_doc/vivit
title: ViViT
title: Video models
- sections:
- local: model_doc/align
title: ALIGN
- local: model_doc/altclip
title: AltCLIP
- local: model_doc/aria
title: Aria
- local: model_doc/aya_vision
title: AyaVision
- local: model_doc/blip
title: BLIP
- local: model_doc/blip-2
title: BLIP-2
- local: model_doc/bridgetower
title: BridgeTower
- local: model_doc/bros
title: BROS
- local: model_doc/chameleon
title: Chameleon
- local: model_doc/chinese_clip
title: Chinese-CLIP
- local: model_doc/clip
title: CLIP
- local: model_doc/clipseg
title: CLIPSeg
- local: model_doc/clvp
title: CLVP
- local: model_doc/cwm
title: Code World Model (CWM)
- local: model_doc/cohere2_vision
title: Cohere2Vision
- local: model_doc/colpali
title: ColPali
- local: model_doc/colqwen2
title: ColQwen2
- local: model_doc/data2vec
title: Data2Vec
- local: model_doc/deepseek_vl
title: DeepseekVL
- local: model_doc/deepseek_vl_hybrid
title: DeepseekVLHybrid
- local: model_doc/deplot
title: DePlot
- local: model_doc/donut
title: Donut
- local: model_doc/edgetam
title: EdgeTAM
- local: model_doc/edgetam_video
title: EdgeTamVideo
- local: model_doc/emu3
title: Emu3
- local: model_doc/evolla
title: Evolla
- local: model_doc/flava
title: FLAVA
- local: model_doc/florence2
title: Florence2
- local: model_doc/gemma3
title: Gemma3
- local: model_doc/gemma3n
title: Gemma3n
- local: model_doc/git
title: GIT
- local: model_doc/glm4v
title: glm4v
- local: model_doc/glm4v_moe
title: glm4v_moe
- local: model_doc/got_ocr2
title: GOT-OCR2
- local: model_doc/granitevision
title: GraniteVision
- local: model_doc/grounding-dino
title: Grounding DINO
- local: model_doc/groupvit
title: GroupViT
- local: model_doc/idefics
title: IDEFICS
- local: model_doc/idefics2
title: Idefics2
- local: model_doc/idefics3
title: Idefics3
- local: model_doc/instructblip
title: InstructBLIP
- local: model_doc/instructblipvideo
title: InstructBlipVideo
- local: model_doc/internvl
title: InternVL
- local: model_doc/janus
title: Janus
- local: model_doc/kosmos-2
title: KOSMOS-2
- local: model_doc/kosmos2_5
title: KOSMOS-2.5
- local: model_doc/layoutlm
title: LayoutLM
- local: model_doc/layoutlmv2
title: LayoutLMV2
- local: model_doc/layoutlmv3
title: LayoutLMV3
- local: model_doc/layoutxlm
title: LayoutXLM
- local: model_doc/lfm2_vl
title: LFM2-VL
- local: model_doc/lilt
title: LiLT
- local: model_doc/llama4
title: Llama4
- local: model_doc/llava
title: LLaVA
- local: model_doc/llava_next
title: LLaVA-NeXT
- local: model_doc/llava_next_video
title: LLaVa-NeXT-Video
- local: model_doc/llava_onevision
title: LLaVA-Onevision
- local: model_doc/lxmert
title: LXMERT
- local: model_doc/matcha
title: MatCha
- local: model_doc/metaclip_2
title: MetaCLIP 2
- local: model_doc/mgp-str
title: MGP-STR
- local: model_doc/mistral3
title: Mistral3
- local: model_doc/mllama
title: mllama
- local: model_doc/mm-grounding-dino
title: MM Grounding DINO
- local: model_doc/nougat
title: Nougat
- local: model_doc/omdet-turbo
title: OmDet-Turbo
- local: model_doc/oneformer
title: OneFormer
- local: model_doc/ovis2
title: Ovis2
- local: model_doc/owlvit
title: OWL-ViT
- local: model_doc/owlv2
title: OWLv2
- local: model_doc/paligemma
title: PaliGemma
- local: model_doc/perceiver
title: Perceiver
- local: model_doc/perception_lm
title: PerceptionLM
- local: model_doc/phi4_multimodal
title: Phi4 Multimodal
- local: model_doc/pix2struct
title: Pix2Struct
- local: model_doc/pixtral
title: Pixtral
- local: model_doc/qwen2_5_omni
title: Qwen2.5-Omni
- local: model_doc/qwen2_5_vl
title: Qwen2.5-VL
- local: model_doc/qwen2_audio
title: Qwen2Audio
- local: model_doc/qwen2_vl
title: Qwen2VL
- local: model_doc/qwen3_omni_moe
title: Qwen3-Omni-MoE
- local: model_doc/qwen3_vl
title: Qwen3VL
- local: model_doc/qwen3_vl_moe
title: Qwen3VLMoe
- local: model_doc/shieldgemma2
title: ShieldGemma2
- local: model_doc/siglip
title: SigLIP
- local: model_doc/siglip2
title: SigLIP2
- local: model_doc/smollm3
title: SmolLM3
- local: model_doc/smolvlm
title: SmolVLM
- local: model_doc/speech-encoder-decoder
title: Speech Encoder Decoder Models
- local: model_doc/tapas
title: TAPAS
- local: model_doc/trocr
title: TrOCR
- local: model_doc/tvlt
title: TVLT
- local: model_doc/tvp
title: TVP
- local: model_doc/udop
title: UDOP
- local: model_doc/video_llama_3
title: VideoLlama3
- local: model_doc/video_llava
title: VideoLlava
- local: model_doc/vilt
title: ViLT
- local: model_doc/vipllava
title: VipLlava
- local: model_doc/vision-encoder-decoder
title: Vision Encoder Decoder Models
- local: model_doc/vision-text-dual-encoder
title: Vision Text Dual Encoder
- local: model_doc/visual_bert
title: VisualBERT
- local: model_doc/voxtral
title: Voxtral
- local: model_doc/xclip
title: X-CLIP
title: Multimodal models
- sections:
- local: model_doc/decision_transformer
title: Decision Transformer
- local: model_doc/trajectory_transformer
title: Trajectory Transformer
title: Reinforcement learning models
- sections:
- local: model_doc/autoformer
title: Autoformer
- local: model_doc/informer
title: Informer
- local: model_doc/patchtsmixer
title: PatchTSMixer
- local: model_doc/patchtst
title: PatchTST
- local: model_doc/time_series_transformer
title: Time Series Transformer
- local: model_doc/timesfm
title: TimesFM
title: Time series models
- sections:
- local: model_doc/graphormer
title: Graphormer
title: Graph models
title: Models
- sections:
- local: internal/modeling_utils
title: Custom Layers and Utilities
- local: internal/model_debugging_utils
title: Utilities for Model Debugging
- local: internal/pipelines_utils
title: Utilities for pipelines
- local: internal/tokenization_utils
title: Utilities for Tokenizers
- local: internal/trainer_utils
title: Utilities for Trainer
- local: internal/generation_utils
title: Utilities for Generation
- local: internal/image_processing_utils
title: Utilities for Image Processors
- local: internal/audio_utils
title: Utilities for Audio processing
- local: internal/file_utils
title: General Utilities
- local: internal/import_utils
title: Importing Utilities
- local: internal/time_series_utils
title: Utilities for Time Series
- local: internal/rope_utils
title: Rotary Embeddings Utilities
title: Internal helpers
- sections:
- local: reference/environment_variables
title: Environment Variables
title: Reference
title: API
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Accelerate
[Accelerate](https://hf.co/docs/accelerate/index) is a library designed to simplify distributed training on any type of setup with PyTorch by uniting the most common frameworks ([Fully Sharded Data Parallel (FSDP)](https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/) and [DeepSpeed](https://www.deepspeed.ai/)) for it into a single interface. [`Trainer`] is powered by Accelerate under the hood, enabling loading big models and distributed training.
This guide will show you two ways to use Accelerate with Transformers, using FSDP as the backend. The first method demonstrates distributed training with [`Trainer`], and the second method demonstrates adapting a PyTorch training loop. For more detailed information about Accelerate, please refer to the [documentation](https://hf.co/docs/accelerate/index).
```bash
pip install accelerate
```
Start by running [accelerate config](https://hf.co/docs/accelerate/main/en/package_reference/cli#accelerate-config) in the command line to answer a series of prompts about your training system. This creates and saves a configuration file to help Accelerate correctly set up training based on your setup.
```bash
accelerate config
```
Depending on your setup and the answers you provide, an example configuration file for distributing training with FSDP on one machine with two GPUs may look like the following.
```yaml
compute_environment: LOCAL_MACHINE
debug: false
distributed_type: FSDP
downcast_bf16: 'no'
fsdp_config:
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_backward_prefetch_policy: BACKWARD_PRE
fsdp_forward_prefetch: false
fsdp_cpu_ram_efficient_loading: true
fsdp_offload_params: false
fsdp_sharding_strategy: FULL_SHARD
fsdp_state_dict_type: SHARDED_STATE_DICT
fsdp_sync_module_states: true
fsdp_transformer_layer_cls_to_wrap: BertLayer
fsdp_use_orig_params: true
machine_rank: 0
main_training_function: main
mixed_precision: bf16
num_machines: 1
num_processes: 2
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
```
## Trainer
Pass the path to the saved configuration file to [`TrainingArguments`], and from there, pass your [`TrainingArguments`] to [`Trainer`].
```py
from transformers import TrainingArguments, Trainer
training_args = TrainingArguments(
output_dir="your-model",
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=2,
fsdp_config="path/to/fsdp_config",
fsdp="full_shard",
weight_decay=0.01,
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
push_to_hub=True,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
processing_class=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
trainer.train()
```
## Native PyTorch
Accelerate can also be added to any PyTorch training loop to enable distributed training. The [`~accelerate.Accelerator`] is the main entry point for adapting your PyTorch code to work with Accelerate. It automatically detects your distributed training setup and initializes all the necessary components for training. You don't need to explicitly place your model on a device because [`~accelerate.Accelerator`] knows which device to move your model to.
```py
from accelerate import Accelerator
accelerator = Accelerator()
device = accelerator.device
```
All PyTorch objects (model, optimizer, scheduler, dataloaders) should be passed to the [`~accelerate.Accelerator.prepare`] method now. This method moves your model to the appropriate device or devices, adapts the optimizer and scheduler to use [`~accelerate.optimizer.AcceleratedOptimizer`] and [`~accelerate.scheduler.AcceleratedScheduler`], and creates a new shardable dataloader.
```py
train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
train_dataloader, eval_dataloader, model, optimizer
)
```
Replace `loss.backward` in your training loop with Accelerates [`~accelerate.Accelerator.backward`] method to scale the gradients and determine the appropriate `backward` method to use depending on your framework (for example, DeepSpeed or Megatron).
```py
for epoch in range(num_epochs):
for batch in train_dataloader:
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
```
Combine everything into a function and make it callable as a script.
```py
from accelerate import Accelerator
def main():
accelerator = Accelerator()
model, optimizer, training_dataloader, scheduler = accelerator.prepare(
model, optimizer, training_dataloader, scheduler
)
for batch in training_dataloader:
optimizer.zero_grad()
inputs, targets = batch
outputs = model(inputs)
loss = loss_function(outputs, targets)
accelerator.backward(loss)
optimizer.step()
scheduler.step()
if __name__ == "__main__":
main()
```
From the command line, call [accelerate launch](https://hf.co/docs/accelerate/main/en/package_reference/cli#accelerate-launch) to run your training script. Any additional arguments or parameters can be passed here as well.
To launch your training script on two GPUs, add the `--num_processes` argument.
```bash
accelerate launch --num_processes=2 your_script.py
```
Refer to the [Launching Accelerate scripts](https://hf.co/docs/accelerate/main/en/basic_tutorials/launch) for more details.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Accelerator selection
During distributed training, you can specify the number and order of accelerators (CUDA, XPU, MPS, HPU, etc.) to use. This can be useful when you have accelerators with different computing power and you want to use the faster accelerator first. Or you could only use a subset of the available accelerators. The selection process works for both [DistributedDataParallel](https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html) and [DataParallel](https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html). You don't need Accelerate or [DeepSpeed integration](./main_classes/deepspeed).
This guide will show you how to select the number of accelerators to use and the order to use them in.
## Number of accelerators
For example, if there are 4 accelerators and you only want to use the first 2, run the command below.
<hfoptions id="select-accelerator">
<hfoption id="torchrun">
Use the `--nproc_per_node` to select how many accelerators to use.
```bash
torchrun --nproc_per_node=2 trainer-program.py ...
```
</hfoption>
<hfoption id="Accelerate">
Use `--num_processes` to select how many accelerators to use.
```bash
accelerate launch --num_processes 2 trainer-program.py ...
```
</hfoption>
<hfoption id="DeepSpeed">
Use `--num_gpus` to select how many GPUs to use.
```bash
deepspeed --num_gpus 2 trainer-program.py ...
```
</hfoption>
</hfoptions>
## Order of accelerators
To select specific accelerators to use and their order, use the environment variable appropriate for your hardware. This is often set on the command line for each run, but can also be added to your `~/.bashrc` or other startup config file.
For example, if there are 4 accelerators (0, 1, 2, 3) and you only want to run accelerators 0 and 2:
<hfoptions id="accelerator-type">
<hfoption id="CUDA">
```bash
CUDA_VISIBLE_DEVICES=0,2 torchrun trainer-program.py ...
```
Only GPUs 0 and 2 are "visible" to PyTorch and are mapped to `cuda:0` and `cuda:1` respectively.
To reverse the order (use GPU 2 as `cuda:0` and GPU 0 as `cuda:1`):
```bash
CUDA_VISIBLE_DEVICES=2,0 torchrun trainer-program.py ...
```
To run without any GPUs:
```bash
CUDA_VISIBLE_DEVICES= python trainer-program.py ...
```
You can also control the order of CUDA devices using `CUDA_DEVICE_ORDER`:
- Order by PCIe bus ID (matches `nvidia-smi`):
```bash
export CUDA_DEVICE_ORDER=PCI_BUS_ID
```
- Order by compute capability (fastest first):
```bash
export CUDA_DEVICE_ORDER=FASTEST_FIRST
```
</hfoption>
<hfoption id="Intel XPU">
```bash
ZE_AFFINITY_MASK=0,2 torchrun trainer-program.py ...
```
Only XPUs 0 and 2 are "visible" to PyTorch and are mapped to `xpu:0` and `xpu:1` respectively.
To reverse the order (use XPU 2 as `xpu:0` and XPU 0 as `xpu:1`):
```bash
ZE_AFFINITY_MASK=2,0 torchrun trainer-program.py ...
```
You can also control the order of Intel XPUs with:
```bash
export ZE_ENABLE_PCI_ID_DEVICE_ORDER=1
```
For more information about device enumeration and sorting on Intel XPU, please refer to the [Level Zero](https://github.com/oneapi-src/level-zero/blob/master/README.md?plain=1#L87) documentation.
</hfoption>
</hfoptions>
> [!WARNING]
> Environment variables can be exported instead of being added to the command line. This is not recommended because it can be confusing if you forget how the environment variable was set up and you end up using the wrong accelerators. Instead, it is common practice to set the environment variable for a specific training run on the same command line.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Legacy model contribution
> [!TIP]
> Try adding new models with a more [modular](./modular_transformers) approach first. This makes it significantly easier to contribute a model to Transformers!
Many of the models in Transformers are contributed by developers and researchers. As an open-source first project, we're invested in empowering the community to actively and independently add more models.
When you add a model to Transformers, you'll learn:
- more about open-source best practices
- about a models architecture
- about Transformers' design principles
- how to efficiently test large models
- how to use Python utilities like [Black](https://black.readthedocs.io/en/stable/) and [Ruff](https://docs.astral.sh/ruff/) to create clean and readable code
It is a challenging but rewarding process.
This guide will walk you through adding an example BrandNewLlama PyTorch model to Transformers. Before you begin, it is a good idea to familiarize yourself with the library.
## Transformers overview
Transformers is an opinionated library with its own unique philosophy and design choices. These choices help us sustainably scale and maintain Transformers.
> [!TIP]
> Learn more about our design principles on the [Philosophy](./philosophy) doc.
Some of these design choices are:
- composition > over-abstraction
- duplicate code isn't always bad if it greatly improves readability and accessibility
- model files are self-contained and all the necessary model code is found in the `modeling_mymodel.py` file
These design choices are important *for everyone* interacting with the model. It is easier to read, understand, and modify.
This section describes how the model and configuration classes interact and the Transformers code style.
### Model and configuration
All Transformers' models inherit from a base [`PreTrainedModel`] and [`PreTrainedConfig`] class. The configuration is the models blueprint.
There is never more than two levels of abstraction for any model to keep the code readable. The example model here, BrandNewLlama, inherits from `BrandNewLlamaPreTrainedModel` and [`PreTrainedModel`]. It is important that a new model only depends on [`PreTrainedModel`] so that it can use the [`~PreTrainedModel.from_pretrained`] and [`~PreTrainedModel.save_pretrained`] methods.
Other important functions like the forward method are defined in the `modeling.py` file.
Specific model heads (for example, sequence classification or language modeling) should call the base model in the forward pass rather than inheriting from it to keep abstraction low.
New models require a configuration, for example `BrandNewLlamaConfig`, that is stored as an attribute of [`PreTrainedModel`].
```py
model = BrandNewLlamaModel.from_pretrained("username/brand_new_llama")
model.config
```
[`PreTrainedConfig`] provides the [`~PreTrainedConfig.from_pretrained`] and [`~PreTrainedConfig.save_pretrained`] methods.
When you use [`PreTrainedModel.save_pretrained`], it automatically calls [`PreTrainedConfig.save_pretrained`] so that both the model and configuration are saved together.
A model is saved to a `model.safetensors` file and a configuration is saved to a `config.json` file.
### Code style
Transformers prefers a clean and readable code over a more abstracted code style. Some of the code style choices include:
- The code should be accessible to non-English users. Pick descriptive variable names and avoid abbreviations. For example, "activation" is preferred over "act". One letter variables names are highly discouraged unless it's an index in a for loop.
- Explicit code is preferred - even if it's longer - over shorter code.
- Avoid subclassing [nn.Sequential](https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html). Subclass [nn.Module](https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module) instead so the code can be quickly debugged with print statements or breakpoints.
- Function signatures should be type-annotated. Otherwise, use good variable names so they're more understandable.
## New model addition issue
Open a [New model addition](https://github.com/huggingface/transformers/issues/new?assignees=&labels=New+model&template=new-model-addition.yml) issue to add a specific model.
> [!TIP]
> Filter by the [New model](https://github.com/huggingface/transformers/labels/New%20model) label on GitHub to view and add any existing model requests.
Now is a good time to get familiar with BrandNewLlama. It is helpful to read a models research paper to understand its technical design and implementation. You don't necessarily have to worry too much about the theoretical details. Instead, focus on the practical ones. Use the questions below to guide your reading.
- What type of model is BrandNewLlama? Is it a encoder, decoder, or encoder-decoder model?
- What tasks can BrandNewLlama be used for?
- What makes BrandNewLlama different from other models?
- What models in Transformers are most similar to BrandNewLlama?
- What tokenizer does BrandNewLlama use?
In addition to learning more about your model, use the tips below to help you add a model faster.
> [!TIP]
> Each contributor has a unique style and workflow for adding models to Transformers. For an example, take a look at how [Gemma](https://github.com/huggingface/transformers/pull/29167) was added.
- Don't reinvent the wheel! Take your time to explore existing models and tokenizers to see what you can copy and reuse. [Grep](https://www.gnu.org/software/grep/) and [ripgrep](https://github.com/BurntSushi/ripgrep) are great tools for this.
- This is more of an engineering than a science challenge. Focus on the more practical (setting up an efficient debugging environment for example) instead of the theorertical aspects of the model.
- Don't be shy to ask for help! We are here to support you. 🤗
## Dev environment
Click on the **Fork** button on the [Transformers](https://github.com/huggingface/transformers) repository to create your own copy to work on. Clone the repository to your local disk and add the base repository as the remote.
```bash
git clone https://github.com/[your Github handle]/transformers.git
cd transformers
git remote add upstream https://github.com/huggingface/transformers.git
```
Create a virtual environment and perform an [editable install](./installation#editable-install) of the library with the "dev" or development dependencies.
```bash
python -m venv .env
source .env/bin/activate
pip install -e ".[dev]"
```
Due to the number of optional dependencies as Transformers grows, this command may fail. In this case, install the "quality" dependencies. Also make sure you have a deep learning framework installed.
```bash
pip install -e ".[quality]"
```
Return to the parent directory and clone and install the original BrandNewLlama repository.
```bash
git clone https://github.com/org_that_created_brand_new_llama_org/brand_new_llama.git
cd brand_new_bert
pip install -e .
```
Return to your clone of Transformers to begin porting BrandNewLlama.
```bash
cd transformers
```
There are two possible debugging environments for running the original model, a notebook ([Google Colab](https://colab.research.google.com/notebooks/intro.ipynb) or [Jupyter](https://jupyter.org/)) or a local Python script.
> [!WARNING]
> We don't recommend setting up a GPU environment to run the original model because it can be expensive. Instead, work in a CPU environment first to verify the model works in Transformers. Once it does, then you can verify it on a GPU.
Notebooks are great for executing code cell-by-cell which can help split logical components from one another. It can also accelerate debugging cycles because intermediate results can be stored. You can also share notebooks when working with other contributors.
The downside is that if you aren't used to them, it may take some time to get used to.
> [!TIP]
> If the model architecture is identical to an existing model, skip ahead to add a [conversion script](#conversion-script), because you can reuse the architecture of the existing model.
Run the command below to start and complete the questionnaire with some basic information about the new model. This command jumpstarts the process by automatically generating some model code that you'll need to adapt.
```bash
transformers add-new-model-like
```
## Create a pull request
Before you start adapting the code, create a pull request to track your progress and get feedback from the Transformers team. Title your pull request **[WIP] Add BrandNewLlama** so it's clear that this is a work in progress.
Create a branch with a descriptive name from your main branch.
```bash
git checkout -b add_brand_new_bert
```
Commit the code, and then fetch and rebase on the main branch.
```bash
git add .
git commit
git fetch upstream
git rebase upstream/main
```
Push any changes to your branch and click on **Compare & pull request** to open a pull request on GitHub. Open the pull request as a *draft* to indicate it's a work in progress.
```bash
git push -u origin a-descriptive-name-for-my-changes
```
Include relevant Hugging Face team members by adding their GitHub handles in the pull request for questions, feedback, comments, and reviews. Direct team members to specific parts of the code you want by clicking on the **Files changed** tab, and then clicking on **+** to the left of the line number to add a comment. When a question or problem is solved, click on **Resolve** to indicate the issue is resolved. This keeps the conversation organized and clean.
Remember to periodically commit and push your work, and update your work with the current main branch.
```bash
git fetch upstream
git merge upstream/main
```
## Original checkpoint
Take some time to work on the original model implementation first to understand how it works.
This can be difficult if the original model repository is lacking documentation or if the codebase is complex. But you should use this as your motivation to implement the model in Transformers. Your contribution makes it more accessible and user-friendly to everyone!
Orient yourself with the original repository by doing the following.
- Locate the pretrained weights.
- Figure out how to the load pretrained weights into the model.
- Figure out how to run the tokenizer independently of the model.
- Trace one forward pass to understand which classes and functions are required. These are probably the only classes and functions you'll have to implement.
- Locate all the important components (model class, model subclasses, self-attention layer, etc.) of the model.
- Figure out how to debug the model in the original repository. Add print statements, use interactive debuggers like [ipdb](https://github.com/gotcha/ipdb), or a efficient integrated development environment (IDE) like [PyCharm](https://www.jetbrains.com/pycharm/).
The last point is especially important because you'll need a thorough understanding of what's happening inside the original model before you can reimplement it in Transformers. Feel free to open issues and pull requests in the original repository if you encounter any issues.
A good first step is to load a *small* pretrained checkpoint and try to reproduce a single forward pass with an example integer vector of inputs. For example, in pseudocode, this could look like the following.
```py
model = BrandNewLlamaModel.load_pretrained_checkpoint("/path/to/checkpoint/")
input_ids = [0, 4, 5, 2, 3, 7, 9] # vector of input ids
original_output = model.generate(input_ids)
```
### Debugging
If you run into issues, you'll need to choose one of the following debugging strategies depending on the original models codebase.
<hfoptions id="debug-strategy">
<hfoption id="sub-components">
This strategy relies on breaking the original model into smaller sub-components, such as when the code can be easily run in eager mode. While more difficult, there are some advantages to this approach.
1. It is easier later to compare the original model to your implementation. You can automatically verify that each individual component matches its corresponding component in the Transformers' implementation. This is better than relying on a visual comparison based on print statements.
2. It is easier to port individual components instead of the entire model.
3. It is easier for understanding how a model works by breaking it up into smaller parts.
4. It is easier to prevent regressions at a later stage when you change your code thanks to component-by-component tests.
> [!TIP]
> Refer to the ELECTRA [integration checks](https://gist.github.com/LysandreJik/db4c948f6b4483960de5cbac598ad4ed) for a good example of how to decompose a model into smaller components.
</hfoption>
<hfoption id="model and tokenizer">
This strategy is viable when the original codebase is too complex, only allows intermediate components to be run in compiled mode, or if it's too time-consuming (maybe even impossible) to separate the model into smaller sub-components.
For example, the MeshTensorFlow implementation of [T5](https://github.com/tensorflow/mesh/tree/master/mesh_tensorflow) is too complex and doesn't offer a simple way to decompose the model into its sub-components. In this situation, you'll have to rely on verifying print statements.
</hfoption>
</hfoptions>
Whichever strategy you choose, it is recommended to debug the initial layers first and the final layers last. Retrieve the output, either with print statements or sub-component functions, of the following layers in this order.
1. input ids passed to the model
2. word embeddings
3. input of the first Transformer layer
4. output of the first Transformer layer
5. output of the following n-1 Transformer layers
6. output of the whole model
The input ids should just be an array of integers like `input_ids = [0, 4, 4, 3, 2, 4, 1, 7, 19]`.
Layer outputs often consist of multi-dimensional float arrays.
```py
[[
[-0.1465, -0.6501, 0.1993, ..., 0.1451, 0.3430, 0.6024],
[-0.4417, -0.5920, 0.3450, ..., -0.3062, 0.6182, 0.7132],
[-0.5009, -0.7122, 0.4548, ..., -0.3662, 0.6091, 0.7648],
...,
[-0.5613, -0.6332, 0.4324, ..., -0.3792, 0.7372, 0.9288],
[-0.5416, -0.6345, 0.4180, ..., -0.3564, 0.6992, 0.9191],
[-0.5334, -0.6403, 0.4271, ..., -0.3339, 0.6533, 0.8694]]],
```
Every Transformers model output should have a precision or error tolerance of *1e-3*. This accounts for any output differences that arise from using a different library framework. Compare the intermediate outputs of the original model with the Transformers implementation to ensure they're nearly identical. Having an *efficient* debugging environment is crucial for this step.
Here are some tips for an efficient debugging environment.
- To debug intermediate results, it depends on the machine learning framework the original model repository is using. For PyTorch, you should write a script to decompose the original model into smaller sub-components to retrieve the intermediate values.
- It is faster to debug with a smaller pretrained checkpoint versus a larger checkpoint where the forward pass takes more than 10 seconds. If only large checkpoints are available, create a dummy model with randomly initialized weights and save those weights to compare against the Transformers implementation.
- Find the easiest way to call the model's forward pass. Ideally, this function (may be called `predict`, `evaluate`, `forward`, or `__call__`) should only call the forward pass *once*. It is more difficult to debug a function that calls the forward pass multiple times.
- Separate tokenization from the forward pass. Locate where a string input is changed to input ids in the forward pass and start here. You may need to create a small script or modify the original code to directly input the input ids instead of an input string.
- Ensure the model is *not* in training mode. This can produce random outputs due to multiple dropout layers in a model. The forward pass in your debugging environment should be *deterministic* so that the dropout layers aren't used.
Once you're able to run the original checkpoint, you're ready to start adapting the model code for Transformers.
## Adapt the model code
The `transformers add-new-model-like` command should have generated a model and configuration file.
- `src/transformers/models/brand_new_llama/modeling_brand_new_llama.py`
- `src/transformers/models/brand_new_llama/configuration_brand_new_llama.py`
The automatically generated code in the `modeling.py` file has the same architecture as Llama if you answered it's a decoder-only model or it will have the same architecture as BART if you answered it's an encoder-decoder model. The generated code is just a starting point. Based on your research on the new model, you'll need to implement those specific changes by adapting the generated code. This may involve changes to the self-attention layer, the order of the normalization layer, and so on.
### Model initialization
At this point, your code doesn't have to be clean or even fully correct, It is more efficient to quickly create a first draft and then iteratively improve on it. The most important thing is that your model can be instantiated from Transformers. The command below creates a model from the configuration with random weights, verifying that the `__init__` method works.
```py
from transformers import BrandNewLlama, BrandNewLlamaConfig
model = BrandNewLlama(BrandNewLlamaConfig())
```
Random initialization occurs in the `_init_weights` method of `BrandNewLlamaPreTrainedModel`. All leaf modules are initialized depending on the configuration's variables.
```py
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
```
The initialization scheme can look different if you need to adapt it to your model. For example, [`Wav2Vec2ForPreTraining`] initializes [nn.Linear](https://pytorch.org/docs/stable/generated/torch.nn.Linear.html) in its last two linear layers.
The `_is_hf_initialized` flag makes sure the submodule is only initialized once. Setting `module.project_q` and `module.project_hid` to `True` ensures the custom initialization is not overridden later. The `_init_weights` function won't be applied to these modules.
```py
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, Wav2Vec2ForPreTraining):
module.project_hid.reset_parameters()
module.project_q.reset_parameters()
module.project_hid._is_hf_initialized = True
module.project_q._is_hf_initialized = True
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
```
### Convert checkpoints to Transformers
The original checkpoint must be converted to a Transformers compatible checkpoint.
> [!TIP]
> Try looking for an existing conversion script to copy, adapt, and reuse for your model!
>
> - If you're porting a model from TensorFlow to PyTorch, a good starting point may be the BERT [conversion script](https://github.com/huggingface/transformers/blob/7acfa95afb8194f8f9c1f4d2c6028224dbed35a2/src/transformers/models/bert/modeling_bert.py#L91).
> - If you're porting a model from PyTorch to PyTorch, a good starting point may be the BART [conversion script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py).
Make sure **all** required weights are initialized and print out all the checkpoint weights that weren't used for initialization to make sure the model has been converted correctly.
You may encounter wrong shape statements or name assignments during the conversion. This is most likely because of incorrect parameters in `BrandNewLlamaConfig`, the wrong architecture, a bug in the `init` method of your implementation, or you need to transpose one of the checkpoint weights.
Keep iterating on the [Adapt the model code](#adapt-the-model-code) section until all the checkpoint weights are correctly loaded. Once you can load a checkpoint in your model, save it to a folder. This should contain a `model.safetensors` file and a `config.json` file.
```py
model.save_pretrained("/path/to/converted/checkpoint/folder")
```
To help with conversion, the next section briefly describes how PyTorch models stores and defines layer weights and names.
#### PyTorch layer weights and names
It is helpful to create a basic PyTorch model to understand how layer names are defined and weights are initialized.
```py
from torch import nn
class SimpleModel(nn.Module):
def __init__(self):
super().__init__()
self.dense = nn.Linear(10, 10)
self.intermediate = nn.Linear(10, 10)
self.layer_norm = nn.LayerNorm(10)
```
PyTorch layer names are defined by the class attribute name of the layer (`dense`, `intermediate`, `layer_norm`). Create a instance of `SimpleModel` to fill all the layers with random weights.
```py
model = SimpleModel()
print(model)
SimpleModel(
(dense): Linear(in_features=10, out_features=10, bias=True)
(intermediate): Linear(in_features=10, out_features=10, bias=True)
(layer_norm): LayerNorm((10,), eps=1e-05, elementwise_affine=True)
)
```
The weight values of a specific layer are randomly initialized.
```py
print(model.dense.weight.data)
tensor([[-0.0818, 0.2207, -0.0749, -0.0030, 0.0045, -0.1569, -0.1598, 0.0212,
-0.2077, 0.2157],
[ 0.1044, 0.0201, 0.0990, 0.2482, 0.3116, 0.2509, 0.2866, -0.2190,
0.2166, -0.0212],
[-0.2000, 0.1107, -0.1999, -0.3119, 0.1559, 0.0993, 0.1776, -0.1950,
-0.1023, -0.0447],
[-0.0888, -0.1092, 0.2281, 0.0336, 0.1817, -0.0115, 0.2096, 0.1415,
-0.1876, -0.2467],
[ 0.2208, -0.2352, -0.1426, -0.2636, -0.2889, -0.2061, -0.2849, -0.0465,
0.2577, 0.0402],
[ 0.1502, 0.2465, 0.2566, 0.0693, 0.2352, -0.0530, 0.1859, -0.0604,
0.2132, 0.1680],
[ 0.1733, -0.2407, -0.1721, 0.1484, 0.0358, -0.0633, -0.0721, -0.0090,
0.2707, -0.2509],
[-0.1173, 0.1561, 0.2945, 0.0595, -0.1996, 0.2988, -0.0802, 0.0407,
0.1829, -0.1568],
[-0.1164, -0.2228, -0.0403, 0.0428, 0.1339, 0.0047, 0.1967, 0.2923,
0.0333, -0.0536],
[-0.1492, -0.1616, 0.1057, 0.1950, -0.2807, -0.2710, -0.1586, 0.0739,
0.2220, 0.2358]]).
```
In the conversion script, the random weights should be replaced with the exact weights from the corresponding layer in the original checkpoint.
```py
# retrieve matching layer weights with recursive algorithm
layer_name = "dense"
pretrained_weight = array_of_dense_layer
model_pointer = getattr(model, "dense")
model_pointer.weight.data = torch.from_numpy(pretrained_weight)
```
Verify the randomly initialized weights and their corresponding pretrained checkpoint weights have the identical **shape** and **name**. Add assert statements for the shape and print out the checkpoint weight names.
```py
assert (
model_pointer.weight.shape == pretrained_weight.shape
), f"Pointer shape of random weight {model_pointer.shape} and array shape of checkpoint weight {pretrained_weight.shape} mismatched"
logger.info(f"Initialize PyTorch weight {layer_name} from {pretrained_weight.name}")
```
When the shape or name don't match, you may have assigned the incorrect checkpoint weight to a randomly initialized layer. An incorrect shape may be because the `BrandNewLlama` parameters don't exactly match the original models parameters. But it could also be that the PyTorch layer implementation requires the weights to be transposed first.
### Implement the forward pass
The forward pass should be implemented next if the model loads correctly. It takes some inputs and returns the model output.
```py
model = BrandNewLlamaModel.from_pretrained("/path/to/converted/checkpoint/folder")
input_ids = [0, 4, 4, 3, 2, 4, 1, 7, 19]
output = model.generate(input_ids).last_hidden_states
```
Don't be discouraged if your forward pass isn't identical with the output from the original model or if it returns an error. Check that the forward pass doesn't throw any errors. This is often because the dimensions are wrong or because the wrong data type is used ([torch.long](https://pytorch.org/docs/stable/generated/torch.Tensor.long.html) instead of [torch.float32](https://pytorch.org/docs/stable/tensors.html)).
Your output should have a precision of *1e-3*. Ensure the output shapes and output values are identical. Common reasons for why the outputs aren't identical include:
- Some layers were not added (activation layer or a residual connection).
- The word embedding matrix is not tied.
- The wrong positional embeddings are used because the original implementation includes an offset.
- Dropout is applied during the forward pass. Fix this error by making sure `model.training` is `False` and passing `self.training` to [torch.nn.functional.dropout](https://pytorch.org/docs/stable/nn.functional.html?highlight=dropout#torch.nn.functional.dropout).
Compare the forward pass of the original model and your implementation to check if there are any differences. Ideally, debug and print out the intermediate outputs of both implementations of the forward pass to pinpoint where the original implementation differs from yours.
1. Make sure the hardcoded `input_ids` in both implementations are identical.
2. Verify the outputs of the first transformation of `input_ids` (usually the word embeddings) are identical, and work your way through to the last layer.
Any difference between the two implementations should point to the bug in your implementation.
One of the best strategies is to add many print statements to the same positions in both implementations, and then successively remove them when they output identical values for the intermediate outputs.
When both implementations produce the same output, verify the outputs are within a precision of *1e-3*.
```py
torch.allclose(original_output, output, atol=1e-3)
```
This is typically the most difficult part of the process. Congratulations if you've made it this far!
And if you're stuck or struggling with this step, don't hesitate to ask for help on your pull request.
### Add model tests
While the model works, you still need to add tests to ensure it is compatible with Transformers. Tests are important because they help users understand your work by looking at specific tests, and because they prevent your model from breaking in the future if any changes are made.
[Cookiecutter](https://cookiecutter.readthedocs.io/en/stable/) should have added a test file for your model. Run the test file below to make sure all common tests pass.
```bash
pytest tests/models/brand_new_llama/test_modeling_brand_new_llama.py
```
The integration tests should be added first because they serve the same purpose as the debugging scripts you used earlier to implement the new model in Transformers. A template of those model tests, `BrandNewLlamaModelIntegrationTests`, was added by Cookiecutter and should be filled out. To ensure it passes, run the following command.
<hfoptions id="integration-test">
<hfoption id="macOS">
```bash
RUN_SLOW=1 pytest -sv tests/models/brand_new_llama/test_modeling_brand_new_llama.py::BrandNewLlamaModelIntegrationTests
```
</hfoption>
<hfoption id="Windows">
```bash
SET RUN_SLOW=1 pytest -sv tests/models/brand_new_llama/test_modeling_brand_new_llama.py::BrandNewLlamaModelIntegrationTests
```
</hfoption>
</hfoptions>
All features unique to BrandNewLlama should be tested in a separate test under `BrandNewLlamaModelTester/BrandNewLlamaModelTest`. This test is often overlooked, but it is extremely important because:
- it helps transfer knowledge you acquired during the process to the community by showing how the models novel features work
- future contributors can quickly test changes to the model by running these special tests
## Implement tokenizer
> [!TIP]
> We recommend adding a fast tokenizer ([`PreTrainedTokenizerFast`]) to give users the best performance. Feel free to tag [@ArthurZucker](https://github.com/ArthurZucker) or [@itazap](https://github.com/itazap) in your PR for help on how to add [`PreTrainedTokenizerFast`].
With the model out of the way, time to focus on the tokenizer. The tokenizer should be identical or very similar to an existing tokenizer in Transformers.
Find and load the original tokenizer file into your implementation. Create a script in the original repository that inputs a string and returns the `input_ids`. The pseudocode should look similar to the code below.
```py
input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words."
model = BrandNewLlamaModel.load_pretrained_checkpoint("/path/to/checkpoint/")
input_ids = model.tokenize(input_str)
```
You may need to search the original repository to find the correct tokenizer function or modify the existing tokenizer in your clone of the original repository to only return the `input_ids`. The script for your tokenizer should look similar to the following.
```py
from transformers import BrandNewLlamaTokenizer
input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words."
tokenizer = BrandNewLlamaTokenizer.from_pretrained("/path/to/tokenizer/folder/")
input_ids = tokenizer(input_str).input_ids
```
When both implementations have the same `input_ids`, add a tokenizer test file. This file is analogous to the modeling test files. The tokenizer test files should contain a couple of hardcoded integration tests.
## Implement image processor
> [!TIP]
> Fast image processors use the [torchvision](https://pytorch.org/vision/stable/index.html) library and can perform image processing on the GPU, significantly improving processing speed.
> We recommend adding a fast image processor ([`BaseImageProcessorFast`]) in addition to the "slow" image processor ([`BaseImageProcessor`]) to provide users with the best performance. Feel free to tag [@yonigozlan](https://github.com/yonigozlan) for help adding a [`BaseImageProcessorFast`].
While this example doesn't include an image processor, you may need to implement one if your model requires image inputs. The image processor is responsible for converting images into a format suitable for your model. Before implementing a new one, check whether an existing image processor in the Transformers library can be reused, as many models share similar image processing techniques. Note that you can also use [modular](./modular_transformers) for image processors to reuse existing components.
If you do need to implement a new image processor, refer to an existing image processor to understand the expected structure. Slow image processors ([`BaseImageProcessor`]) and fast image processors ([`BaseImageProcessorFast`]) are designed differently, so make sure you follow the correct structure based on the processor type you're implementing.
Run the following command (only if you haven't already created the fast image processor with the `transformers add-new-model-like` command) to generate the necessary imports and to create a prefilled template for the fast image processor. Modify the template to fit your model.
```bash
transformers add-fast-image-processor --model-name your_model_name
```
This command will generate the necessary imports and provide a pre-filled template for the fast image processor. You can then modify it to fit your model's needs.
Add tests for the image processor in `tests/models/your_model_name/test_image_processing_your_model_name.py`. These tests should be similar to those for other image processors and should verify that the image processor correctly handles image inputs. If your image processor includes unique features or processing methods, ensure you add specific tests for those as well.
## Implement processor
If your model accepts multiple modalities, like text and images, you need to add a processor. The processor centralizes the preprocessing of different modalities before passing them to the model.
The processor should call the appropriate modality-specific processors within its `__call__` function to handle each type of input correctly. Be sure to check existing processors in the library to understand their expected structure. Transformers uses the following convention in the `__call__` function signature.
```python
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[YourModelProcessorKwargs],
) -> BatchFeature:
...
```
`YourModelProcessorKwargs` is a `TypedDict` that includes all the typical processing arguments and any extra arguments a specific processor may require.
Add tests for the processor in `tests/models/your_model_name/test_processor_your_model_name.py`. These tests should be similar to those for other processors and should verify that the processor correctly handles the different modalities.
## Integration tests
Now that you have a model and tokenizer, add end-to-end integration tests for the model and tokenizer to `tests/models/brand_new_llama/test_modeling_brand_new_llama.py`.
The test should provide a meaningful text-to-text example to show the model works as expected. For example, you can include a source-to-target translation pair, an article-to-summary pair, or a question-to-answer pair.
If the checkpoint hasn't been fine-tuned on a downstream task, then the model tests are sufficient.
Finally, try to make sure your tests can run on a GPU by adding `.to(self.device)` statements to the models internal tensors. If you don't have access to a GPU, we can take care of that for you.
## Add documentation
Your model is only useful if users know how to use it. This is why it's important to add documentation and docstrings. Cookiecutter added a template file, `docs/source/model_doc/brand_new_llama.md`, that you can fill out with information about your model.
This is generally a user's first interaction with a model, so the documentation should be clear and concise. It is often very useful to add examples of how the model should be used.
Make sure docstrings are added to `src/transformers/models/brand_new_llama/modeling_brand_new_llama.py` and includes all necessary inputs and outputs. Review our [guide](https://github.com/huggingface/transformers/tree/main/docs#writing-documentation---specification) for writing documentation and docstrings.
## Refactor
Time to tidy things up and make sure the code style is consistent with the rest of the library. Run the following command to automatically fix incorrect styles.
```bash
make style
```
To verify the code style passes quality checks, run the command below.
```bash
make quality
```
There may be other failing tests or checks (missing docstring or incorrect naming) on your pull request due to Transformers strict design tests. We can help you with these issues if you're stuck.
After ensuring the code runs correctly, you may want to refactor it to make it more readable or cleaner.
## Upload to the Hub
Convert and upload all checkpoints to the [Hub](https://hf.co/models). Add a model card to provide more transparency and context about the model. The model card should highlight specific characteristics of a checkpoint, how the model was trained, and code examples of how to use it.
> [!TIP]
> In many cases, adding an interactive notebook users can run is a great way to showcase how to use the model for inference or fine-tune it on a downstream task. While not required, including a notebook can drive greater adoption of your model.
You should also consult with the Transformers team to decide on an appropriate name for the model, and getting the required access rights to upload the model.
Use the [`~PreTrainedModel.push_to_hub`] method to upload the model.
```py
brand_new_bert.push_to_hub("brand_new_llama")
```
Refer to the [Sharing](./model_sharing) guide for more information about uploading models to the Hub.
## Merge your model
You're finally ready to merge your pull request and officially add the model to Transformers! Make sure all the tests are passing and all comments and feedback have been addressed.
Congratulations on adding a new model to Transformers! 🥳
This is a very significant contribution. Your work makes Transformers more accessible to developers and researchers around the world. You should be proud of your contribution and share your accomplishment with the community!
## Model addition timeline
There are four timelines for model additions depending on the model contributor and community demand for an architecture.
- **day-0 integration**: If you plan on having a Transformers-first release, this is a great option because we can ensure the documentation is clear and optimize your model as much as possible (quantization, FlashAttention, KV-cache, etc.). We can also help you add the model, provide early reviews and make sure it works as expected.
Reach out to transformers@huggingface.co a few days (preferably weeks) in advance, especially if an architecture is particularly novel, to ensure model integration. We'll work together on a private fork of Transformers until your checkpoint and release is ready.
- **same week integration**: Models with significant requests/demand are usually added the same week if the model author doesn't reach out.
Use the [issue tracker](https://github.com/huggingface/transformers/issues/new?assignees=&labels=New+model&projects=&template=new-model-addition.yml) to request a specific model to add. The more activity on the issue, the faster and more likely we'll integrate it.
- **post-release integration**: Models without popular requests/demand or if we don't have the bandwidth to integrate it are added post-release.
This is a good opportunity if you're interested in contributing a model to Transformers. Take a look at open issues tagged with ["New model"](https://github.com/huggingface/transformers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+model%22). Feel free to give the most requested models a try first to multiply the impact of your contribution. We'll be there to help you each step of the way!
- **Hub-first release**: Transformers [remote-code](./models#custom-models) feature allows Transformers-based projects to be shared directly on the Hub. This is a good option if you don't have the bandwidth to add a model directly to Transformers.
If a model ends up being very popular, then it's very likely that we'll integrate it in Transformers ourselves to enable better support (documentation, maintenance, optimization, etc.) for it. A Hub-first release is the most frictionless way to add a model.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Adding a new pipeline
Make [`Pipeline`] your own by subclassing it and implementing a few methods. Share the code with the community on the [Hub](https://hf.co) and register the pipeline with Transformers so that everyone can quickly and easily use it.
This guide will walk you through the process of adding a new pipeline to Transformers.
## Design choices
At a minimum, you only need to provide [`Pipeline`] with an appropriate input for a task. This is also where you should begin when designing your pipeline.
Decide what input types [`Pipeline`] can accept. It can be strings, raw bytes, dictionaries, and so on. Try to keep the inputs in pure Python where possible because it's more compatible. Next, decide on the output [`Pipeline`] should return. Again, keeping the output in Python is the simplest and best option because it's easier to work with.
Keeping the inputs and outputs simple, and ideally JSON-serializable, makes it easier for users to run your [`Pipeline`] without needing to learn new object types. It's also common to support many different input types for even greater ease of use. For example, making an audio file acceptable from a filename, URL, or raw bytes gives the user more flexibility in how they provide the audio data.
## Create a pipeline
With an input and output decided, you can start implementing [`Pipeline`]. Your pipeline should inherit from the base [`Pipeline`] class and include 4 methods.
```py
from transformers import Pipeline
class MyPipeline(Pipeline):
def _sanitize_parameters(self, **kwargs):
def preprocess(self, inputs, args=2):
def _forward(self, model_inputs):
def postprocess(self, model_outputs):
```
1. `preprocess` takes the inputs and transforms them into the appropriate input format for the model.
```py
def preprocess(self, inputs, maybe_arg=2):
model_input = Tensor(inputs["input_ids"])
return {"model_input": model_input}
```
2. `_forward` shouldn't be called directly. `forward` is the preferred method because it includes safeguards to make sure everything works correctly on the expected device. Anything linked to the model belongs in `_forward` and everything else belongs in either `preprocess` or `postprocess`.
```py
def _forward(self, model_inputs):
outputs = self.model(**model_inputs)
return outputs
```
3. `postprocess` generates the final output from the models output in `_forward`.
```py
def postprocess(self, model_outputs, top_k=5):
best_class = model_outputs["logits"].softmax(-1)
return best_class
```
4. `_sanitize_parameters` lets users pass additional parameters to [`Pipeline`]. This could be during initialization or when [`Pipeline`] is called. `_sanitize_parameters` returns 3 dicts of additional keyword arguments that are passed directly to `preprocess`, `_forward`, and `postprocess`. Don't add anything if a user didn't call the pipeline with extra parameters. This keeps the default arguments in the function definition which is always more natural.
For example, add a `top_k` parameter in `postprocess` to return the top 5 most likely classes. Then in `_sanitize_parameters`, check if the user passed in `top_k` and add it to `postprocess_kwargs`.
```py
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "maybe_arg" in kwargs:
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
postprocess_kwargs = {}
if "top_k" in kwargs:
postprocess_kwargs["top_k"] = kwargs["top_k"]
return preprocess_kwargs, {}, postprocess_kwargs
```
Now the pipeline can return the top most likely labels if a user chooses to.
```py
from transformers import pipeline
pipeline = pipeline("my-task")
# returns 3 most likely labels
pipeline("This is the best meal I've ever had", top_k=3)
# returns 5 most likely labels by default
pipeline("This is the best meal I've ever had")
```
## Register a pipeline
Register the new task your pipeline supports in the `PIPELINE_REGISTRY`. The registry defines:
- The supported Pytorch model class with `pt_model`
- a default model which should come from a specific revision (branch, or commit hash) where the model works as expected with `default`
- the expected input with `type`
```py
from transformers.pipelines import PIPELINE_REGISTRY
from transformers import AutoModelForSequenceClassification
PIPELINE_REGISTRY.register_pipeline(
"new-task",
pipeline_class=MyPipeline,
pt_model=AutoModelForSequenceClassification,
default={"pt": ("user/awesome-model", "branch-name")},
type="text",
)
```
## Share your pipeline
Share your pipeline with the community on the [Hub](https://hf.co) or you can add it directly to Transformers.
It's faster to upload your pipeline code to the Hub because it doesn't require a review from the Transformers team. Adding the pipeline to Transformers may be slower because it requires a review and you need to add tests to ensure your [`Pipeline`] works.
### Upload to the Hub
Add your pipeline code to the Hub in a Python file.
For example, a custom pipeline for sentence pair classification might look like the following code below.
```py
import numpy as np
from transformers import Pipeline
def softmax(outputs):
maxes = np.max(outputs, axis=-1, keepdims=True)
shifted_exp = np.exp(outputs - maxes)
return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True)
class PairClassificationPipeline(Pipeline):
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "second_text" in kwargs:
preprocess_kwargs["second_text"] = kwargs["second_text"]
return preprocess_kwargs, {}, {}
def preprocess(self, text, second_text=None):
return self.tokenizer(text, text_pair=second_text, return_tensors=self.framework)
def _forward(self, model_inputs):
return self.model(**model_inputs)
def postprocess(self, model_outputs):
logits = model_outputs.logits[0].numpy()
probabilities = softmax(logits)
best_class = np.argmax(probabilities)
label = self.model.config.id2label[best_class]
score = probabilities[best_class].item()
logits = logits.tolist()
return {"label": label, "score": score, "logits": logits}
```
Save the code in a file named `pair_classification.py`, and import and register it as shown below.
```py
from pair_classification import PairClassificationPipeline
from transformers.pipelines import PIPELINE_REGISTRY
from transformers import AutoModelForSequenceClassification
PIPELINE_REGISTRY.register_pipeline(
"pair-classification",
pipeline_class=PairClassificationPipeline,
pt_model=AutoModelForSequenceClassification,
)
```
The [register_pipeline](https://github.com/huggingface/transformers/blob/9feae5fb0164e89d4998e5776897c16f7330d3df/src/transformers/pipelines/base.py#L1387) function registers the pipeline details (task type, pipeline class, supported backends) to a models `config.json` file.
```json
"custom_pipelines": {
"pair-classification": {
"impl": "pair_classification.PairClassificationPipeline",
"pt": [
"AutoModelForSequenceClassification"
],
}
},
```
Call [`~Pipeline.push_to_hub`] to push the pipeline to the Hub. The Python file containing the code is copied to the Hub, and the pipelines model and tokenizer are also saved and pushed to the Hub. Your pipeline should now be available on the Hub under your namespace.
```py
from transformers import pipeline
pipeline = pipeline(task="pair-classification", model="sgugger/finetuned-bert-mrpc")
pipeline.push_to_hub("pair-classification-pipeline")
```
To use the pipeline, add `trust_remote_code=True` when loading the pipeline.
```py
from transformers import pipeline
pipeline = pipeline(task="pair-classification", trust_remote_code=True)
```
### Add to Transformers
Adding a custom pipeline to Transformers requires adding tests to make sure everything works as expected, and requesting a review from the Transformers team.
Add your pipeline code as a new module to the [pipelines](https://github.com/huggingface/transformers/tree/main/src/transformers/pipelines) submodule, and add it to the list of tasks defined in [pipelines/__init__.py](https://github.com/huggingface/transformers/blob/main/src/transformers/pipelines/__init__.py).
Next, add a new test for the pipeline in [transformers/tests/pipelines](https://github.com/huggingface/transformers/tree/main/tests/pipelines). You can look at the other tests for examples of how to test your pipeline.
The [run_pipeline_test](https://github.com/huggingface/transformers/blob/db70426854fe7850f2c5834d633aff637f14772e/tests/pipelines/test_pipelines_text_classification.py#L186) function should be very generic and run on the models defined in [model_mapping](https://github.com/huggingface/transformers/blob/db70426854fe7850f2c5834d633aff637f14772e/tests/pipelines/test_pipelines_text_classification.py#L48). This is important for testing future compatibility with new models.
You'll also notice `ANY` is used throughout the [run_pipeline_test](https://github.com/huggingface/transformers/blob/db70426854fe7850f2c5834d633aff637f14772e/tests/pipelines/test_pipelines_text_classification.py#L186) function. The models are random, so you can't check the actual values. Using `ANY` allows the test to match the output of the pipeline type instead.
Finally, you should also implement the following 4 tests.
1. [test_small_model_pt](https://github.com/huggingface/transformers/blob/db70426854fe7850f2c5834d633aff637f14772e/tests/pipelines/test_pipelines_text_classification.py#L59), use a small model for these pipelines to make sure they return the correct outputs. The results don't have to make sense. Each pipeline should return the same result.
1. [test_large_model_pt](https://github.com/huggingface/transformers/blob/db70426854fe7850f2c5834d633aff637f14772e/tests/pipelines/test_pipelines_zero_shot_image_classification.py#L187), use a realistic model for these pipelines to make sure they return meaningful results. These tests are slow and should be marked as slow.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Agents
(deprecated)
> [!WARNING]
> Agents and tools were spun out into the standalone [smolagents](https://huggingface.co/docs/smolagents/index) library. They were removed from `transformers` in v4.52.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Attention Interface
This page describes how to use the `AttentionInterface` in order to register custom attention functions to use with
supported models.
## Customizing attention function
Most recent models can now switch from one attention function used in the Attention layer to the other, thanks to a simple mapping.
By default, we provide the implementation for [`sdpa`](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html),
[`flash_attention_2`](https://github.com/Dao-AILab/flash-attention) and [`flex_attention`](https://pytorch.org/docs/stable/nn.attention.flex_attention.html#module-torch.nn.attention.flex_attention)
as well as `eager`, which is a simple matrix multiplication without any optimization on top.
This is the setting you can usually choose when instantiating a model:
```python
from transformers import AutoModelForCausalLM
model_id = "meta-llama/Llama-3.2-1B"
# Here, using flash attention as an example
model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation="flash_attention_2")
```
But what if you wanted to create your own attention function? Or simply play around with existing ones, adding
a few statements here and there? You can now do so with the `AttentionInterface`! Here is an example:
```python
from transformers import AutoModelForCausalLM, AttentionInterface
from transformers.integrations.sdpa_attention import sdpa_attention_forward
import torch
model_id = "meta-llama/Llama-3.2-1B"
def my_new_sdpa(*args, **kwargs):
print("I just entered the attention computation")
return sdpa_attention_forward(*args, **kwargs)
AttentionInterface.register("my_new_sdpa", my_new_sdpa)
model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation="my_new_sdpa")
# Try running the forward with the new attention function
model(torch.ones(1, 5, dtype=int))
```
You will see it prints "I just entered the attention computation" as many times as there are layers in the model (with this example, 16 times).
## Dynamically switching attention function
You could dynamically change the model's attention function as well:
```python
# Back to use original sdpa implementation
model.set_attn_implementation("sdpa")
model(torch.ones(1, 5, dtype=int))
```
and it will stop printing the statements, as it now uses the `sdpa` attention.
This allows to quickly change an attention function, without needing to reload the model!
## Different attention per backbone in multimodal models
For multimodal models different attention functions may work better for each backbone module. For example, some vision backbones perform better in fp32, but are incompatible with FlashAttention. To continue using FlashAttention while keeping the vision encoder in fp32, create a dict and map each config to an attention implementation as shown below.
```python
from transformers import AutoModelForImageTextToText
model_id = "facebook/chameleon-7b"
attention_implementation_per_backbone = {"vision_config": "sdpa", "text_config": "flash_attention_2"}
model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation=attention_implementation_per_backbone)
# NOTE: keys in the attention implementation have to be the same as the sub-config names
for key in attention_implementation_per_backbone:
assert key in model.config.sub_configs, f"Invalid key in `attention_implementation`"
# You can omit certain backbones - the default attention function (SDPA) will be used
# This is equivalent to the previous example
model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation={"text_config": "flash_attention_2"})
# Set the same attention implementation for all backbones with single string, same as in non-multimodal models
model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation="eager")
# Alternatively use a dict with an empty key for global configuration
model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation={"": "eager"})
```
## What about new args needed in my custom attention function?
But indeed, what if the new function requires a new arg to be properly used? It's no issue! Models supporting the
`AttentionInterface` propagate kwargs all the way to the Attention layers, and to the used attention function. That way,
you can simply pass the arg (as a kwargs, i.e. you need to qualify the name of the arg) in the model's forward, and it will be correctly used in the attention. However, custom attention functions have some limitations. In particular, it must follow the signature and return format of other attention functions, i.e.
```python
from transformers import AutoModelForCausalLM, AttentionInterface
from transformers.integrations.sdpa_attention import sdpa_attention_forward
import torch
def custom_attention(
module: torch.nn.Module, # required arg
query: torch.Tensor, # required arg
key: torch.Tensor, # required arg
value: torch.Tensor, # required arg
attention_mask: Optional[torch.Tensor], # required arg
a_new_kwargs = None, # You can now add as many kwargs as you need
another_new_kwargs = None, # You can now add as many kwargs as you need
**kwargs, # You need to accept **kwargs as models will pass other args
) -> tuple[torch.Tensor, Optional[torch.Tensor]]
... # do your magic!
return attn_output, attn_weights # attn_weights are optional here
AttentionInterface.register("custom", custom_attention)
model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation="custom")
# Forward pass with the new kwargs
model(torch.ones(1, 5, dtype=int), a_new_kwargs=..., another_new_kwargs=...)
```
If in doubt about what args/kwargs a given model sends to the attention function, simply check that model's modeling code on [GitHub](https://github.com/huggingface/transformers/tree/main/src/transformers/models)!
## Accessing current available implementations
Most of the time, you will simply need to `register` a new function. If, however, you need to access an existing one,
and/or perform a few checks, the preferred way is to use the global `ALL_ATTENTION_FUNCTIONS`. It behaves the same way you
would expect from a usual Python dictionary:
```python
>>> from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
>>> list(ALL_ATTENTION_FUNCTIONS.keys())
>>> ['flash_attention_2', 'flex_attention', 'sdpa']
>>> ALL_ATTENTION_FUNCTIONS["sdpa"]
>>> <function transformers.integrations.sdpa_attention.sdpa_attention_forward>
>>> ALL_ATTENTION_FUNCTIONS.get("sdpa", None)
>>> <function transformers.integrations.sdpa_attention.sdpa_attention_forward>
# You can also globally `register` a new function directly on it
>>> ALL_ATTENTION_FUNCTIONS.register("new_func", new_func)
```
## Attention Mask Interface
Having a new attention function may mean that you need a new format of attention mask to decide what key and value tokens
the query tokens should attend to. This is now possible with the `AttentionMaskInterface`! It works in the same way as
the `AttentionInterface`:
```python
from transformers import AttentionMaskInterface
from transformers.masking_utils import sdpa_mask
import torch
def my_new_sdpa_mask(*args, **kwargs):
print("I just entered the attention mask computation")
return sdpa_mask(*args, **kwargs)
AttentionMaskInterface.register("my_new_sdpa_mask", my_new_sdpa_mask)
```
The reason you have to register it is because we need to automatically correct your mask format based on the attention implementation (for example, flex attention uses a BlockMask format, while sdpa uses a 4D tensor).
By default, if you do not register an attention mask function along with your attention function, mask creation will be skipped
and `attention_mask=None` will be passed along to the Attention layers.
The default signature of the attention mask functions is the following:
```python
def custom_attention_mask(
batch_size: int, # required arg
cache_position: torch.Tensor, # required arg
kv_length: int, # required arg
kv_offset: int = 0, # required arg
mask_function: Callable = causal_mask_function, # required arg
attention_mask: Optional[torch.Tensor] = None, # required arg
**kwargs, # a few additional args may be passed as kwargs, especially the model's config is always passed
) -> Optional[torch.Tensor]:
```
It mostly works thanks to the `mask_function`, which is a `Callable` in the form of [torch's mask_mod functions](https://pytorch.org/blog/flexattention/), taking 4 indices as input and returning a boolean to indicate if this position should take part in the attention computation.
If you cannot use the `mask_function` to create your mask for some reason, you can try to work around it by doing something similar to our [torch export workaround](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/executorch.py).
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Documenting a model
The `@auto_docstring` decorator in Transformers generates consistent docstrings for model classes and their methods. It reduces boilerplate by automatically including standard argument descriptions while also allowing overrides to add new or custom arguments. [Contributing a new model](./modular_transformers) is easier because you don't need to manually add the standard docstrings, and only focus on documenting new arguments.
This guide describes how to use the `@auto_docstring` decorator and how it works.
## @auto_docstring
Start by importing the decorator in the modeling file (`modular_model.py` or `modeling_model.py`).
```python
from ...utils import auto_docstring
```
Select whether you'd like to apply `@auto_docstring` to a class or function below to see how to use it.
<hfoptions id="type">
<hfoption id="classes">
Place `@auto_docstring` directly above the class definition. The decorator derives parameter descriptions from the `__init__` method's signature and docstring.
```python
from transformers.modeling_utils import PreTrainedModel
from ...utils import auto_docstring
@auto_docstring
class MyAwesomeModel(PreTrainedModel):
def __init__(self, config, custom_parameter: int = 10, another_custom_arg: str = "default"):
r"""
custom_parameter (`int`, *optional*, defaults to 10):
Description of the custom_parameter for MyAwesomeModel.
another_custom_arg (`str`, *optional*, defaults to "default"):
Documentation for another unique argument.
"""
super().__init__(config)
self.custom_parameter = custom_parameter
self.another_custom_arg = another_custom_arg
# ... rest of your init
# ... other methods
```
Arguments can also be passed directly to `@auto_docstring` for more control. Use the `custom_intro` parameter to describe the argument and the `custom_args` parameter to describe the arguments.
```python
@auto_docstring(
custom_intro="""This model performs specific synergistic operations.
It builds upon the standard Transformer architecture with unique modifications.""",
custom_args="""
custom_parameter (`type`, *optional*, defaults to `default_value`):
A concise description for custom_parameter if not defined or overriding the description in `auto_docstring.py`.
internal_helper_arg (`type`, *optional*, defaults to `default_value`):
A concise description for internal_helper_arg if not defined or overriding the description in `auto_docstring.py`.
"""
)
class MySpecialModel(PreTrainedModel):
def __init__(self, config: ConfigType, custom_parameter: "type" = "default_value", internal_helper_arg=None):
# ...
```
You can also choose to only use `custom_intro` and define the custom arguments directly in the class.
```python
@auto_docstring(
custom_intro="""This model performs specific synergistic operations.
It builds upon the standard Transformer architecture with unique modifications.""",
)
class MySpecialModel(PreTrainedModel):
def __init__(self, config: ConfigType, custom_parameter: "type" = "default_value", internal_helper_arg=None):
r"""
custom_parameter (`type`, *optional*, defaults to `default_value`):
A concise description for custom_parameter if not defined or overriding the description in `auto_docstring.py`.
internal_helper_arg (`type`, *optional*, defaults to `default_value`):
A concise description for internal_helper_arg if not defined or overriding the description in `auto_docstring.py`.
"""
# ...
```
You should also use the `@auto_docstring` decorator for classes that inherit from [`~utils.ModelOutput`].
```python
@dataclass
@auto_docstring(
custom_intro="""
Custom model outputs with additional fields.
"""
)
class MyModelOutput(ImageClassifierOutput):
r"""
loss (`torch.FloatTensor`, *optional*):
The loss of the model.
custom_field (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*):
A custom output field specific to this model.
"""
# Standard fields like hidden_states, logits, attentions etc. can be automatically documented if the description is the same as the standard arguments.
# However, given that the loss docstring is often different per model, you should document it in the docstring above.
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
attentions: Optional[tuple[torch.FloatTensor, ...]] = None
# Custom fields need to be documented in the docstring above
custom_field: Optional[torch.FloatTensor] = None
```
</hfoption>
<hfoption id="functions">
Place `@auto_docstring` directly above the method definition. The decorator derives parameter descriptions from the function signature.
```python
@auto_docstring
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
new_custom_argument: Optional[torch.Tensor] = None,
arg_documented_in_args_doc: Optional[torch.Tensor] = None,
# ... other arguments
) -> Union[Tuple, ModelOutput]: # The description of the return value will automatically be generated from the ModelOutput class docstring.
r"""
new_custom_argument (`torch.Tensor`, *optional*):
Description of this new custom argument and its expected shape or type.
"""
# ...
```
Arguments can also be passed directly to `@auto_docstring` for more control. Use the `custom_intro` parameter to describe the argument and the `custom_args` parameter to describe the arguments.
The `Returns` and `Examples` parts of the docstring can also be manually specified.
```python
MODEL_COMMON_CUSTOM_ARGS = r"""
common_arg_1 (`torch.Tensor`, *optional*, defaults to `default_value`):
Description of common_arg_1
common_arg_2 (`torch.Tensor`, *optional*, defaults to `default_value`):
Description of common_arg_2
...
"""
class MyModel(PreTrainedModel):
# ...
@auto_docstring(
custom_intro="""
This is a custom introduction for the function.
"""
custom_args=MODEL_COMMON_CUSTOM_ARGS
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
common_arg_1: Optional[torch.Tensor] = None,
common_arg_2: Optional[torch.Tensor] = None,
#...
function_specific_argument: Optional[torch.Tensor] = None,
# ... other arguments
) -> torch.Tensor:
r"""
function_specific_argument (`torch.Tensor`, *optional*):
Description of an argument specific to this function
Returns:
`torch.Tensor`: For a function returning a generic type, a custom "Returns" section can be specified.
Example:
(To override the default example with a custom one or to add an example for a model class that does not have a pipeline)
```python
...
```
"""
# ...
```
</hfoption>
</hfoptions>
## Documenting arguments
There are some rules for documenting different types of arguments and they're listed below.
- Standard arguments (`input_ids`, `attention_mask`, `pixel_values`, etc.) are defined and retrieved from `auto_docstring.py`. It is the single source of truth for standard arguments and should not be redefined locally if an argument's description and shape is the same as an argument in `auto_docstring.py`.
If a standard argument behaves differently in your model, then you can override it locally in a `r""" """` block. This local definition has a higher priority. For example, the `labels` argument is often customized per model and typically requires overriding.
- New or custom arguments should be documented within an `r""" """` block after the signature if it is a function or in the `__init__` method's docstring if it is a class.
```py
argument_name (`type`, *optional*, defaults to `X`):
Description of the argument.
Explain its purpose, expected shape/type if complex, and default behavior.
This can span multiple lines.
```
* Include `type` in backticks.
* Add *optional* if the argument is not required or has a default value.
* Add "defaults to X" if it has a default value. You don't need to add "defaults to `None`" if the default value is `None`.
These arguments can also be passed to `@auto_docstring` as a `custom_args` argument. It is used to define the docstring block for new arguments once if they are repeated in multiple places in the modeling file.
```py
class MyModel(PreTrainedModel):
# ...
@auto_docstring(
custom_intro="""
This is a custom introduction for the function.
"""
custom_args=r"""
common_arg_1 (`torch.Tensor`, *optional*, defaults to `default_value`):
Description of common_arg_1
"""
)
```
## Checking the docstrings
Transformers includes a utility script to validate the docstrings when you open a Pull Request which triggers CI (continuous integration) checks. The script checks for the following criteria.
* Ensures `@auto_docstring` is applied to relevant mode classes and public methods.
* Ensures arguments are complete and consistent. It checks that documented arguments exist in the signature and verifies whether the types and default values in the docstring match the signature. Arguments that aren't known standard arguments or if they lack a local description are flagged.
* Reminds you to complete placeholders like `<fill_type>` and `<fill_docstring>`.
* Ensures docstrings are formatted according to the expected docstring style.
You can run this check locally - before committing - by running the following command.
```bash
make fix-copies
```
`make fix-copies` runs several other checks as well. If you don't need those checks, run the command below to only perform docstring and auto-docstring checks.
```bash
python utils/check_docstrings.py # to only check files included in the diff without fixing them
# python utils/check_docstrings.py --fix_and_overwrite # to fix and overwrite the files in the diff
# python utils/check_docstrings.py --fix_and_overwrite --check_all # to fix and overwrite all files
```
## modular_model.py files
When working with modular files (`modular_model.py`), follow the guidelines below for applying `@auto_docstring`.
- For standalone models in modular files, apply `@auto_docstring` like you would in a `modeling_model.py` file.
- For models that inherit from other library models, `@auto_docstring` is automatically carried over to the generated modeling file. You don't need to add `@auto_docstring` in your modular file.
If you need to modify the `@auto_docstring` behavior, apply the customized decorator in your modular file. Make sure to **include all other decorators** that are present in the original function or class.
> [!WARNING]
> When overriding any decorator in a modular file, you must include **all** decorators that were applied to that function or class in the parent model. If you only override some decorators, the others won't be included in the generated modeling file.
## How it works
The `@auto_docstring` decorator automatically generates docstrings by:
1. Inspecting the signature (arguments, types, defaults) of the decorated class' `__init__` method or the decorated function.
2. Retrieving the predefined docstrings for common arguments (`input_ids`, `attention_mask`, etc.) from internal library sources like [`ModelArgs`], [`ImageProcessorArgs`], and the `auto_docstring.py` file.
3. Adding argument descriptions in one of two ways as shown below.
| method | description | usage |
|---|---|---|
| `r""" """` | add custom docstring content directly to a method signature or within the `__init__` docstring | document new arguments or override standard descriptions |
| `custom_args` | add custom docstrings for specific arguments directly in `@auto_docstring` | define docstring for new arguments once if they're repeated in multiple places in the modeling file |
4. Adding class and function descriptions. For model classes with standard naming patterns, like `ModelForCausalLM`, or if it belongs to a pipeline, `@auto_docstring` automatically generates the appropriate descriptions with `ClassDocstring` from `auto_docstring.py`.
`@auto_docstring` also accepts the `custom_intro` argument to describe a class or function.
5. Using a templating system to allow predefined docstrings to include dynamic information from Transformers' [auto_modules](https://github.com/huggingface/transformers/tree/main/src/transformers/models/auto) such as `{{processor_class}}` and `{{config_class}}`.
6. Finding appropriate usage examples based on the model's task or pipeline compatibility. It extracts checkpoint information form the model's configuration class to provide concrete examples with real model identifiers.
7. Adding return values to the docstring. For methods like `forward`, the decorator automatically generates the `Returns` field in the docstring based on the method's return type annotation.
For example, if a method returns a [`~transformers.utils.ModelOutput`] subclass, `@auto_docstring` extracts the field descriptions from the class' docstring to create a comprehensive return value description. You can also manually specify a custom `Returns` field in a functions docstring.
8. Unrolling kwargs typed with the unpack operator. For specific methods (defined in `UNROLL_KWARGS_METHODS`) or classes (defined in `UNROLL_KWARGS_CLASSES`), the decorator processes `**kwargs` parameters that are typed with `Unpack[KwargsTypedDict]`. It extracts the documentations from the `TypedDict` and adds each parameter to the function's docstring.
Currently only supported for [`ImagesKwargs`].
## Best practices
Follow the best practices below to help maintain consistent and informative documentation for Transformers!
* Use `@auto_docstring` for new PyTorch model classes ([`PreTrainedModel`] subclasses) and their primary methods like `forward` or `get_text_features`.
* For classes, `@auto_docstring` retrieves parameter descriptions from the `__init__` method's docstring.
* Rely on standard docstrings and do not redefine common arguments unless their behavior is different in your model.
* Document new or custom arguments clearly.
* Run `check_docstrings` locally and iteratively.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Backbones
Higher-level computer visions tasks, such as object detection or image segmentation, use several models together to generate a prediction. A separate model is used for the *backbone*, neck, and head. The backbone extracts useful features from an input image into a feature map, the neck combines and processes the feature maps, and the head uses them to make a prediction.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Backbone.png"/>
</div>
Load a backbone with [`~PreTrainedConfig.from_pretrained`] and use the `out_indices` parameter to determine which layer, given by the index, to extract a feature map from.
```py
from transformers import AutoBackbone
model = AutoBackbone.from_pretrained("microsoft/swin-tiny-patch4-window7-224", out_indices=(1,))
```
This guide describes the backbone class, backbones from the [timm](https://hf.co/docs/timm/index) library, and how to extract features with them.
## Backbone classes
There are two backbone classes.
- [`~transformers.utils.BackboneMixin`] allows you to load a backbone and includes functions for extracting the feature maps and indices.
- [`~transformers.utils.BackboneConfigMixin`] allows you to set the feature map and indices of a backbone configuration.
Refer to the [Backbone](./main_classes/backbones) API documentation to check which models support a backbone.
There are two ways to load a Transformers backbone, [`AutoBackbone`] and a model-specific backbone class.
<hfoptions id="backbone-classes">
<hfoption id="AutoBackbone">
The [AutoClass](./model_doc/auto) API automatically loads a pretrained vision model with [`~PreTrainedConfig.from_pretrained`] as a backbone if it's supported.
Set the `out_indices` parameter to the layer you'd like to get the feature map from. If you know the name of the layer, you could also use `out_features`. These parameters can be used interchangeably, but if you use both, make sure they refer to the same layer.
When `out_indices` or `out_features` isn't used, the backbone returns the feature map from the last layer. The example code below uses `out_indices=(1,)` to get the feature map from the first layer.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Swin%20Stage%201.png"/>
</div>
```py
from transformers import AutoImageProcessor, AutoBackbone
model = AutoBackbone.from_pretrained("microsoft/swin-tiny-patch4-window7-224", out_indices=(1,))
```
</hfoption>
<hfoption id="model-specific backbone">
When you know a model supports a backbone, you can load the backbone and neck directly into the models configuration. Pass the configuration to the model to initialize it for a task.
The example below loads a [ResNet](./model_doc/resnet) backbone and neck for use in a [MaskFormer](./model_doc/maskformer) instance segmentation head.
Set `backbone` to a pretrained model and `use_pretrained_backbone=True` to use pretrained weights instead of randomly initialized weights.
```py
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation
config = MaskFormerConfig(backbone="microsoft/resnet-50", use_pretrained_backbone=True)
model = MaskFormerForInstanceSegmentation(config)
```
Another option is to separately load the backbone configuration and then pass it to `backbone_config` in the model configuration.
```py
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, ResNetConfig
# instantiate backbone configuration
backbone_config = ResNetConfig()
# load backbone in model
config = MaskFormerConfig(backbone_config=backbone_config)
# attach backbone to model head
model = MaskFormerForInstanceSegmentation(config)
```
</hfoption>
</hfoptions>
## timm backbones
[timm](https://hf.co/docs/timm/index) is a collection of vision models for training and inference. Transformers supports timm models as backbones with the [`TimmBackbone`] and [`TimmBackboneConfig`] classes.
Set `use_timm_backbone=True` to load pretrained timm weights, and `use_pretrained_backbone` to use pretrained or randomly initialized weights.
```py
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation
config = MaskFormerConfig(backbone="resnet50", use_timm_backbone=True, use_pretrained_backbone=True)
model = MaskFormerForInstanceSegmentation(config)
```
You could also explicitly call the [`TimmBackboneConfig`] class to load and create a pretrained timm backbone.
```py
from transformers import TimmBackboneConfig
backbone_config = TimmBackboneConfig("resnet50", use_pretrained_backbone=True)
```
Pass the backbone configuration to the model configuration and instantiate the model head, [`MaskFormerForInstanceSegmentation`], with the backbone.
```py
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation
config = MaskFormerConfig(backbone_config=backbone_config)
model = MaskFormerForInstanceSegmentation(config)
```
## Feature extraction
The backbone is used to extract image features. Pass an image through the backbone to get the feature maps.
Load and preprocess an image and pass it to the backbone. The example below extracts the feature maps from the first layer.
```py
from transformers import AutoImageProcessor, AutoBackbone
import torch
from PIL import Image
import requests
model = AutoBackbone.from_pretrained("microsoft/swin-tiny-patch4-window7-224", out_indices=(1,))
processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(image, return_tensors="pt")
outputs = model(**inputs)
```
The features are stored and accessed from the outputs `feature_maps` attribute.
```py
feature_maps = outputs.feature_maps
list(feature_maps[0].shape)
[1, 96, 56, 56]
```
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment