The CPM model was proposed in [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://huggingface.co/papers/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin,
Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen,
CPM-Ant is an open-source Chinese pre-trained language model (PLM) with 10B parameters. It is also the first milestone of the live training process of CPM-Live. The training process is cost-effective and environment-friendly. CPM-Ant also achieves promising results with delta tuning on the CUGE benchmark. Besides the full model, we also provide various compressed versions to meet the requirements of different hardware configurations. [See more](https://github.com/OpenBMB/CPM-Live/tree/cpm-ant/cpm-live)
This model was contributed by [OpenBMB](https://huggingface.co/openbmb). The original code can be found [here](https://github.com/OpenBMB/CPM-Live/tree/cpm-ant/cpm-live).
## Resources
- A tutorial on [CPM-Live](https://github.com/OpenBMB/CPM-Live/tree/cpm-ant/cpm-live).
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
*This model was released on 2025-02-27 and added to Hugging Face Transformers on 2025-05-07.*
# Csm
## Overview
The Conversational Speech Model (CSM) is the first open-source contextual text-to-speech model [released by Sesame](https://www.sesame.com/research/crossing_the_uncanny_valley_of_voice). It is designed to generate natural-sounding speech with or without conversational context. This context typically consists of multi-turn dialogue between speakers, represented as sequences of text and corresponding spoken audio.
**Model Architecture:**
CSM is composed of two LLaMA-style auto-regressive transformer decoders: a backbone decoder that predicts the first codebook token and a depth decoder that generates the remaining tokens. It uses the pretrained codec model [Mimi](./mimi), introduced by Kyutai, to encode speech into discrete codebook tokens and decode them back into audio.
The original csm-1b checkpoint is available under the [Sesame](https://huggingface.co/sesame/csm-1b) organization on Hugging Face.
CTRL model was proposed in [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://huggingface.co/papers/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and
Richard Socher. It's a causal (unidirectional) transformer pre-trained using language modeling on a very large corpus
of ~140 GB of text data with the first token reserved as a control code (such as Links, Books, Wikipedia etc.).
The abstract from the paper is the following:
*Large-scale language models show promising text generation capabilities, but users cannot easily control particular
aspects of the generated text. We release CTRL, a 1.63 billion-parameter conditional transformer language model,
trained to condition on control codes that govern style, content, and task-specific behavior. Control codes were
derived from structure that naturally co-occurs with raw text, preserving the advantages of unsupervised learning while
providing more explicit control over text generation. These codes also allow CTRL to predict which parts of the
training data are most likely given a sequence. This provides a potential method for analyzing large amounts of data
via model-based source attribution.*
This model was contributed by [keskarnitishr](https://huggingface.co/keskarnitishr). The original code can be found
[here](https://github.com/salesforce/ctrl).
## Usage tips
- CTRL makes use of control codes to generate text: it requires generations to be started by certain words, sentences
or links to generate coherent text. Refer to the [original implementation](https://github.com/salesforce/ctrl) for
more information.
- CTRL is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
the left.
- CTRL was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next
token in a sequence. Leveraging this feature allows CTRL to generate syntactically coherent text as it can be
observed in the *run_generation.py* example script.
- The PyTorch models can take the `past_key_values` as input, which is the previously computed key/value attention pairs.
Using the `past_key_values` value prevents the model from re-computing
pre-computed values in the context of text generation. See the [`forward`](model_doc/ctrl#transformers.CTRLModel.forward)
method for more information on the usage of this argument.
[Convolutional Vision Transformer (CvT)](https://huggingface.co/papers/2103.15808) is a model that combines the strengths of convolutional neural networks (CNNs) and Vision transformers for the computer vision tasks. It introduces convolutional layers into the vision transformer architecture, allowing it to capture local patterns in images while maintaining the global context provided by self-attention mechanisms.
You can find all the CvT checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=cvt) organization.
> [!TIP]
> This model was contributed by [anujunj](https://huggingface.co/anugunj).
>
> Click on the CvT models in the right sidebar for more examples of how to apply CvT to different computer vision tasks.
The example below demonstrates how to classify an image with [`Pipeline`] or the [`AutoModel`] class.
print(f"The predicted class label is: {predicted_class_label}")
```
</hfoption>
</hfoptions>
## Resources
Refer to this set of ViT [notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/VisionTransformer) for examples of inference and fine-tuning on custom datasets. Replace [`ViTFeatureExtractor`] and [`ViTForImageClassification`] in these notebooks with [`AutoImageProcessor`] and [`CvtForImageClassification`].
<-- Copyright 2025 the HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer.
-->
*This model was released on {release_date} and added to Hugging Face Transformers on 2025-10-09.*
# Code World Model (CWM)
## Overview
The Code World Model (CWM) model was proposed in [CWM: An Open-Weights LLM for Research on Code
Generation with World Models](https://ai.facebook.com/research/publications/cwm) by Meta FAIR CodeGen Team.
CWM is an LLM for code generation and reasoning about code that has, in particular, been trained
to better represent and reason about how code and commands affect the state of a program or system.
Specifically, we mid-trained CWM on a large number of observation-action trajectories from Python
execution traces and agentic interactions in containerized environments. We post-trained with
extensive multi-task RL in verifiable coding, math, and multi-turn software engineering environments.
The abstract from the paper is the following:
> *We release Code World Model (CWM), a 32-billion-parameter open-weights LLM, to advance research
on code generation with world models. To improve code understanding beyond what can be learned
from training on static code alone, we mid-train CWM on a large amount of observation-action
trajectories from Python interpreter and agentic Docker environments, and perform extensive multi-
task reasoning RL in verifiable coding, math, and multi-turn software engineering environments. With
CWM, we provide a strong testbed for researchers to explore the opportunities world modeling affords
for improving code generation with reasoning and planning in computational environments. We
present first steps of how world models can benefit agentic coding, enable step-by-step simulation of
Python code execution, and show early results of how reasoning can benefit from the latter. CWM is
a dense, decoder-only LLM trained with a context size of up to 131 k tokens. Independent of its world
modeling capabilities, CWM offers strong performance on general coding and math tasks: it reaches
pass@1 scores of 65.8 % on SWE-bench Verified (with test-time scaling), 68.9 % on LiveCodeBench,
96.6 % on Math-500, and 76.0 % on AIME 2024. To support further research on code world modeling,
we release model checkpoints after mid-training, SFT, and RL.*
Tips:
CWM requires a dedicated system prompt to function optimally during inference. Without proper prompt
configuration, CWM's output quality may be significantly degraded. The following serves as the default
system prompt for reasoning tasks. For agentic workflows, append the relevant tool specifications
after this base prompt. Checkout the original code repository for more details.
```text
You are a helpful AI assistant. You always reason before responding, using the following format:
<think>
your internal reasoning
</think>
your external response
```
This model was contributed by [Meta FAIR CodeGen Team](https://huggingface.co/facebook).
The original code can be found [here](https://github.com/facebookresearch/cwm).
Okay, I need to write a haiku about recursion in programming. Let's start by recalling what recursion is. Recursion is a programming technique where a function calls itself in its own definition, often used to solve problems that can be broken down into smaller, similar sub-problems.
A haiku is a three-line poem with a syllable count of 5-7-5. So, I need to capture the essence of recursion in a concise and poetic way. Let's think about the key elements of recursion: the function calling itself, the base case that stops the recursion, and the idea of breaking down problems into smaller parts.
Maybe I can use imagery related to mirrors or reflections, since recursion often involves a function reflecting or repeating itself. Alternatively, I could use natural imagery like a spiral or a tree, which suggests self-similar patterns.
Let me try to come up with some ideas. For example, "Function calls itself" could be a starting point. But how to make that into a haiku? Maybe something like:
Function calls itself
Base case stops the endless loop
Spiral of code
Hmm, that's a start. But maybe I can make it more poetic. Let's think about the idea of a function calling itself as a kind of infinite loop, but with a base case that stops it. That's like a spiral that unwinds at the center.
Another angle: recursion is often used for problems that have a recursive structure, like tree traversals or factorial calculations. Maybe I can use a natural image to represent that.
How about:
Branches split again
Leaves unfold in endless dance
Roots hold the base case
That's a bit more poetic. The branches splitting represent the recursive calls, the leaves unfolding could represent the processing of each sub-problem, and the roots holding the base case are what stops the recursion.
Alternatively, maybe something simpler:
Mirror within mirror
Reflections infinite deep
Base case breaks the glass
This uses the mirror metaphor to represent the function calling itself, with the base case being the point where the recursion stops, breaking the infinite reflection.
I think I like the mirror idea better. Let me refine that:
Mirror within mirror
Infinite reflections dance
Base case shatters glass
Yes, that seems to capture the idea of recursion well. The mirror represents the function calling itself, the infinite reflections are the recursive calls, and the base case shattering the glass is what stops the recursion.
Let me check the syllable count:
Mirror within mirror (5 syllables: Mir-ror-with-in-mir-ror)
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
*This model was released on 2024-10-17 and added to Hugging Face Transformers on 2025-04-29.*
# D-FINE
## Overview
The D-FINE model was proposed in [D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement](https://huggingface.co/papers/2410.13842) by
*We introduce D-FINE, a powerful real-time object detector that achieves outstanding localization precision by redefining the bounding box regression task in DETR models. D-FINE comprises two key components: Fine-grained Distribution Refinement (FDR) and Global Optimal Localization Self-Distillation (GO-LSD).
FDR transforms the regression process from predicting fixed coordinates to iteratively refining probability distributions, providing a fine-grained intermediate representation that significantly enhances localization accuracy. GO-LSD is a bidirectional optimization strategy that transfers localization knowledge from refined distributions to shallower layers through self-distillation, while also simplifying the residual prediction tasks for deeper layers. Additionally, D-FINE incorporates lightweight optimizations in computationally intensive modules and operations, achieving a better balance between speed and accuracy. Specifically, D-FINE-L / X achieves 54.0% / 55.8% AP on the COCO dataset at 124 / 78 FPS on an NVIDIA T4 GPU. When pretrained on Objects365, D-FINE-L / X attains 57.1% / 59.3% AP, surpassing all existing real-time detectors. Furthermore, our method significantly enhances the performance of a wide range of DETR models by up to 5.3% AP with negligible extra parameters and training costs. Our code and pretrained models: this https URL.*
This model was contributed by [VladOS95-cyber](https://github.com/VladOS95-cyber).
The original code can be found [here](https://github.com/Peterande/D-FINE).
The DAB-DETR model was proposed in [DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR](https://huggingface.co/papers/2201.12329) by Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi, Hang Su, Jun Zhu, Lei Zhang.
DAB-DETR is an enhanced variant of Conditional DETR. It utilizes dynamically updated anchor boxes to provide both a reference query point (x, y) and a reference anchor size (w, h), improving cross-attention computation. This new approach achieves 45.7% AP when trained for 50 epochs with a single ResNet-50 model as the backbone.
*We present in this paper a novel query formulation using dynamic anchor boxes
for DETR (DEtection TRansformer) and offer a deeper understanding of the role
of queries in DETR. This new formulation directly uses box coordinates as queries
in Transformer decoders and dynamically updates them layer-by-layer. Using box
coordinates not only helps using explicit positional priors to improve the query-to-feature similarity and eliminate the slow training convergence issue in DETR,
but also allows us to modulate the positional attention map using the box width
and height information. Such a design makes it clear that queries in DETR can be
implemented as performing soft ROI pooling layer-by-layer in a cascade manner.
As a result, it leads to the best performance on MS-COCO benchmark among
the DETR-like detection models under the same setting, e.g., AP 45.7% using
ResNet50-DC5 as backbone trained in 50 epochs. We also conducted extensive
experiments to confirm our analysis and verify the effectiveness of our methods.*
This model was contributed by [davidhajdu](https://huggingface.co/davidhajdu).
The original code can be found [here](https://github.com/IDEA-Research/DAB-DETR).
The DAC model was proposed in [Descript Audio Codec: High-Fidelity Audio Compression with Improved RVQGAN](https://huggingface.co/papers/2306.06546) by Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, Kundan Kumar.
The Descript Audio Codec (DAC) model is a powerful tool for compressing audio data, making it highly efficient for storage and transmission. By compressing 44.1 KHz audio into tokens at just 8kbps bandwidth, the DAC model enables high-quality audio processing while significantly reducing the data footprint. This is particularly useful in scenarios where bandwidth is limited or storage space is at a premium, such as in streaming applications, remote conferencing, and archiving large audio datasets.
The abstract from the paper is the following:
*Language models have been successfully used to model natural signals, such as images, speech, and music. A key component of these models is a high quality neural compression model that can compress high-dimensional natural signals into lower dimensional discrete tokens. To that end, we introduce a high-fidelity universal neural audio compression algorithm that achieves ~90x compression of 44.1 KHz audio into tokens at just 8kbps bandwidth. We achieve this by combining advances in high-fidelity audio generation with better vector quantization techniques from the image domain, along with improved adversarial and reconstruction losses. We compress all domains (speech, environment, music, etc.) with a single universal model, making it widely applicable to generative modeling of all audio. We compare with competing audio compression algorithms, and find our method outperforms them significantly. We provide thorough ablations for every design choice, as well as open-source code and trained model weights. We hope our work can lay the foundation for the next generation of high-fidelity audio modeling.*
This model was contributed by [Kamil Akesbi](https://huggingface.co/kamilakesbi).
The original code can be found [here](https://github.com/descriptinc/descript-audio-codec/tree/main?tab=readme-ov-file).
## Model structure
The Descript Audio Codec (DAC) model is structured into three distinct stages:
1. Encoder Model: This stage compresses the input audio, reducing its size while retaining essential information.
2. Residual Vector Quantizer (RVQ) Model: Working in tandem with the encoder, this model quantizes the latent codes of the audio, refining the compression and ensuring high-quality reconstruction.
3. Decoder Model: This final stage reconstructs the audio from its compressed form, restoring it to a state that closely resembles the original input.
## Usage example
Here is a quick example of how to encode and decode an audio using this model: