# MMClassification算例测试 ## 测试前准备 ### 数据集准备 使用dummy数据集。 ### 环境部署 ```python yum install python3 yum install libquadmath yum install numactl yum install openmpi3 yum install glog yum install lmdb-libs yum install opencv-core yum install opencv yum install openblas-serial pip3 install --upgrade pip pip3 install opencv-python ``` ### 安装python依赖包 ```python pip3 install torch-1.10.0a0+gitcc7c9c7-cp36-cp36m-linux_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple pip3 install torchvision-0.10.0a0+300a8a4-cp36-cp36m-linux_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple pip3 install mmcv_full-1.3.16-cp36-cp36m-linux_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple mmcls 安装: cd mmclassification pip3 install -e . ``` 注:测试不同版本的dtk,需安装对应版本的库whl包,dtk22.04.1使用python3.7,dtk21.10.1使用python3.6 ## ResNet18测试 ### 单卡测试(单精度) ```python ./sing_test.sh configs/speed_test/resnet18_b32x8_imagenet.py ``` 若使用dtk22.04.1测试,需设置`export MIOPEN_FIND_MODE=1,export MIOPEN_USE_APPROXIMATE_PERFORMANCE=0`以下测试均相同. #### 参数说明 configs/speed_test/datasets/imagenet_bs32.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time ![1](image/train/1659061854685.png) #### 性能关注:time ### 多卡测试(单精度) ```python ./multi_test.sh configs/speed_test/resnet18_b32x8_imagenet.py ``` ### 单卡测试(半精度) ```python ./sing_test.sh configs/speed_test/resnet18_b32x8_fp16_imagenet.py ``` ### 多卡测试(半精度) ```python ./multi_test.sh configs/speed_test/resnet18_b32x8_fp16_imagenet.py ``` ## ResNet34测试 ### 单卡测试(单精度) ```python ./sing_test.sh configs/speed_test/resnet34_b32x8_imagenet.py ``` #### 参数说明 configs/speed_test/datasets/imagenet_bs32.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time ![1659064427635](image/train/1659064427635.png) #### 性能关注:time ### 多卡测试(单精度) ```python ./multi_test.sh configs/speed_test/resnet34_b32x8_imagenet.py ``` ### 单卡测试(半精度) ```python ./sing_test.sh configs/speed_test/resnet34_b32x8_fp16_imagenet.py ``` ### 多卡测试(半精度) ```python ./multi_test.sh configs/speed_test/resnet34_b32x8_fp16_imagenet.py ``` ## ResNet50测试 ### 单卡测试(单精度) ```python ./sing_test.sh configs/speed_test/resnet50_b32x8_imagenet.py ``` #### 参数说明 configs/speed_test/datasets/imagenet_bs32.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time ![1659064905610](image/train/1659064905610.png) #### 性能关注:time ### 多卡测试(单精度) ```python ./multi_test.sh configs/speed_test/resnet50_b32x8_imagenet.py ``` ### 单卡测试(半精度) ```python ./sing_test.sh configs/speed_test/resnet50_b32x8_fp16_imagenet.py ``` ### 多卡测试(半精度) ```python ./multi_test.sh configs/speed_test/resnet50_b32x8_fp16_imagenet.py ``` ## ResNet152测试 ### 单卡测试(单精度) ```python ./sing_test.sh configs/speed_test/resnet152_b32x8_imagenet.py ``` #### 参数说明 configs/speed_test/datasets/imagenet_bs32.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time ![1659064905610](image/train/1659064905610.png) #### 性能关注:time ### 多卡测试(单精度) ```python ./multi_test.sh configs/speed_test/resnet152_b32x8_imagenet.py ``` ### 单卡测试(半精度) ```python ./sing_test.sh configs/speed_test/resnet152_b32x8_fp16_imagenet.py ``` ### 多卡测试(半精度) ```python ./multi_test.sh configs/speed_test/resnet152_b32x8_fp16_imagenet.py ``` ## Vgg11测试 ### 单卡测试(单精度) ```python ./sing_test.sh configs/speed_test/vgg11_b32x8_imagenet.py ``` #### 参数说明 configs/speed_test/datasets/imagenet_bs32.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time ![1659064905610](image/train/1659064905610.png) #### 性能关注:time ### 多卡测试(单精度) ```python ./multi_test.sh configs/speed_test/vgg11_b32x8_imagenet.py ``` ### 单卡测试(半精度) ```python ./sing_test.sh configs/speed_test/vgg11_b32x8_fp16_imagenet.py ``` ### 多卡测试(半精度) ```python ./multi_test.sh configs/speed_test/vgg11_b32x8_fp16_imagenet.py ``` ## SeresNet50测试 ### 单卡测试(单精度) ```python ./sing_test.sh configs/speed_test/seresnet50_b32x8_imagenet.py ``` #### 参数说明 configs/speed_test/datasets/imagenet_bs32.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time ![1659064905610](image/train/1659064905610.png) #### 性能关注:time ### 多卡测试(单精度) ```python ./multi_test.sh configs/speed_test/seresnet50_b32x8_imagenet.py ``` ### 单卡测试(半精度) ```python ./sing_test.sh configs/speed_test/seresnet50_b32x8_fp16_imagenet.py ``` ### 多卡测试(半精度) ```python ./multi_test.sh configs/speed_test/seresnet50_b32x8_fp16_imagenet.py ``` ## ResNext50测试 ### 单卡测试(单精度) ```python ./sing_test.sh configs/speed_test/resnext50_32x4d_b32x8_imagenet.py ``` #### 参数说明 configs/speed_test/datasets/imagenet_bs32.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time ![1659064905610](image/train/1659064905610.png) #### 性能关注:time ### 多卡测试(单精度) ```python ./multi_test.sh configs/speed_test/resnext50_32x4d_b32x8_imagenet.py ``` ### 单卡测试(半精度) ```python ./sing_test.sh configs/speed_test/resnext50_32x4d_b32x8_fp16_imagenet.py ``` ### 多卡测试(半精度) ```python ./multi_test.sh configs/speed_test/resnext50_32x4d_b32x8_fp16_imagenet.py ``` ## MobileNet-v2测试 ### 单卡测试(单精度) ```python ./sing_test.sh  configs/speed_test/mobilenet_v2_b32x8_imagenet.py ``` #### 参数说明 configs/speed_test/datasets/imagenet_bs32.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time ![1659064905610](image/train/1659064905610.png) #### 性能关注:time ### 多卡测试(单精度) ```python ./multi_test.sh configs/speed_test/mobilenet_v2_b32x8_imagenet.py ``` ### 单卡测试(半精度) ```python ./sing_test.sh configs/speed_test/mobilenet_v2_b32x8_fp16_imagenet.py ``` ### 多卡测试(半精度) ```python ./multi_test.sh configs/speed_test/mobilenet_v2_b32x8_fp16_imagenet.py ``` ## ShuffleNet-v1测试 ### 单卡测试(单精度) ```python ./sing_test.sh  configs/speed_test/shufflenet_v1_1x_b64x16_linearlr_bn_nowd_imagenet.py ``` #### 参数说明 configs/speed_test/datasets/imagenet_bs64.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time ![1659064905610](image/train/1659064905610.png) #### 性能关注:time ### 多卡测试(单精度) ```python ./multi_test.sh configs/speed_test/shufflenet_v1_1x_b64x16_linearlr_bn_nowd_imagenet.py ``` ## 单卡测试(半精度) ```python ./sing_test.sh configs/speed_test/shufflenet_v1_1x_b64x16_linearlr_bn_nowd_fp16_imagenet.py ``` ### 多卡测试(半精度) ```python ./multi_test.sh configs/speed_test/shufflenet_v1_1x_b64x16_linearlr_bn_nowd_fp16_imagenet.py ``` ## ShuffleNet-v2测试 ### 单卡测试(单精度) ```python ./sing_test.sh  configs/speed_test/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet.py ``` #### 参数说明 configs/speed_test/datasets/imagenet_bs64.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time ![1659064905610](image/train/1659064905610.png) #### 性能关注:time ### 多卡测试(单精度) ```python ./multi_test.sh configs/speed_test/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet.py ``` ### 单卡测试(半精度) ```python ./sing_test.sh configs/speed_test/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_fp16_imagenet.py ``` ### 多卡测试(半精度) ```python ./multi_test.sh configs/speed_test/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_fp16_imagenet.py ``` ## Vgg16测试 ### 单卡测试(单精度) ```python ./sing_test.sh configs/vgg/vgg16_b32x8_imagenet.py ``` #### 参数说明 configs/speed_test/datasets/imagenet_bs32.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time ![1659064905610](image/train/1659064905610.png) #### 性能关注:time ### 多卡测试(单精度) ```python ./multi_test.sh configs/vgg/vgg16_b32x8_imagenet.py ```