
Deep learning based speaker recognition tutorial:
Using ECAPA-TDNN as an example

National Univeristy of Singapore
Tao Ruijie

ruijie.tao@u.nus.edu

Overview: Speaker Recognition (SR)
1. Introduction: Definition, application, history and dataset.
2. How to train a SR model:

2.1. Data format for training
2.2. Feature extraction
2.3. Data augmentation
2.4. Speaker model
2.5. Loss function & training performance

3. How to evaluate a SR model:
3.1. Data format for evaluation
3.2. Metrics for evaluation
3.3. How to get the final scores
3.4. Backend methods

About this tutorial

1. This project is basic, the target is to assist the researcher who just
start this topic.

2. The whole tutorial will contain about 10 sessions, each session will
has about 8-15 mins. Total time is about 90 mins.

3. Will try to introduce the code at the same time.

Annotation

1. I am still an beginner of speaker recognition topic, this
sildes&tutorial is only used to share some knowledge and coding
experience of speaker recognition that I learnt.

2. If you find anything wrong in this tutorial, I apologize for that,
please feel free to let me know. Thanks for your understanding!

3. Let’s build a better community!

1 Introduction: Definition

Speaker recognition (SR) is the identification of a person from
characteristics of voices.

Face recognition

1 Introduction: Definition
Speaker recognition (SR): One-to-many
Speaker verification (SV): One-to-one

1 Introduction: Application
1. Call center operation: Know the id of customer
2. E-commerce: Verify the user for payment
3. Criminal inverstigation: Similar to face recognition
4. Smart speaker and Robotics: Know who is talking
5. Security for phone and bank

1 Introduction: History
1987: Vector Quantization [1]
1997: Gaussian Mixture Model (GMM) [2]
2000: GMM-Universal Background Model (GMM-UBM) [3]
2006: Support vector machines (SVM) [4]

2007: Joint factor analysis (JFA) [5]

2010: I-Vector [6]

2018: X-Vector [7]

Others: ANNs, speaker-specific mapping, d-vector, end-to-end …

Ref: https://www.zhihu.com/people/leonjin

[1] Text-dependent speaker verification using vector quantization source coding
[2] Robust text-independent speaker identification using Gaussian mixture speaker models
[3] Speaker verification using adapted gaussian mixture models
[4] Support vector machines for speaker and language recognition
[5] Joint factor analysis versus eigenchannels in speaker recognition
[6] Front-End Factor Analysis For Speaker Verification
[7] X-vectors robust dnn embeddings for speaker recognition

Other dataset for SR: NIST SRE(CTS SRE04-16, SRE18, SRE19…),
Fisher, SITW, Switchbroad, Mixer 6, Dihard, CnCeleb, LRS2/3

1 Introduction: Dataset

Dataset we used in this project: VoxCeleb 1 & 2 [8][9]

[8] VoxCeleb: A large-scale speaker identification dataset
[9] VoxCeleb2: Deep speaker recognition

Download data: https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox2.html
Preprocess data: https://github.com/clovaai/voxceleb_trainer

https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox2.html

2.1 Data format for training & Dataloader
About the data for training

File Format: .wav
Length: Random 2 or 3 seconds from each utterance(fixed length)

(If duration is not enough, require padding)
Content: speech only, no VAD (voice activity detection)

2.1 Data format for training & Dataloader
Dataloader
“At the heart of PyTorch data loading utility is the torch.utils.data.DataLoader class. It
represents a Python iterable over a dataset”

How to get the key, filename/path for training?

Read the official training list, map the speaker id to the class id.

2.1 Data format for training & Dataloader

File list: [‘id00012/C_FAL9gv8bo/00026.wav’,
‘id00012/C_FAL9gv8bo/00026.wav’,
‘id00015/HG2AS_DV241/00001.wav’,

…..]
Label list: [0,0,1,....]

Do we use the waveform directly for speaker recognition?

What is the feature extraction?

Why we need feature extraction?

How to do that?

2.2 Feature Extraction

If you feel this process is boring, you can only know one sentence: “In preprocess, we extract
the frequency feature (which named Fbank) from the originial waveform to the speaker model.”

2.2 Feature Extraction: FBank

Step 1: Pre-emphasis
Step 2: Frame blocking and windowing
Step 3: Fourier-Transform and Power Spectrum
Step 4: Filter Banks

Ref1: https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
Ref2: http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
Ref3: https://zhuanlan.zhihu.com/p/276394091
Ref4: https://link.springer.com/content/pdf/bbm%3A978-3-319-49220-9%2F1.pdf

Original waveform: Sampling frequency (16k)

http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
https://zhuanlan.zhihu.com/p/276394091

2.2 Feature Extraction: FBank

Step 1: Pre-emphasis

Amplify the high frequencies

2.2 Feature Extraction: FBank
Step 2: Frame blocking and windowing

Method: split the signal into short-time frames

2.2 Feature Extraction: FBank

Step 3: Fourier-Transform and Power Spectrum

Do an N-point FFT on each frame (Short-Time Fourier-Transform (STFT)) to calculate the
frequency spectrum

Compute the power spectrum

2.2 Feature Extraction: FBank
Step 4: Filter Banks (or Mel spectrum)
Mel spectrum is computed by passing the Fourier transformed signal through a set of
band-pass filters known as Mel-filter bank

2.2 Feature Extraction: FBank

Step 5: Mel-frequency Cepstral Coefficients (MFCCs)

Discrete Cosine Transform (DCT)

Step 6: Mean normalization

Fbank: mean
MFCC: mean & var

2.2 Feature Extraction: Coding
Coding is very simple, there are many feature extraction toolkit.
For instance:

librosa: https://librosa.org/doc/main/generated/librosa.feature.mfcc.html

python_speech_features: https://github.com/jameslyons/python_speech_features

pytorch: https://pytorch.org/audio/stable/_modules/torchaudio/transforms.html#MFCC

kaldi: https://kaldi-asr.org/doc/feat.html

Here I use pytorch as the example.

https://librosa.org/doc/main/generated/librosa.feature.mfcc.html
https://github.com/jameslyons/python_speech_features
https://pytorch.org/audio/stable/_modules/torchaudio/transforms.html#MFCC
https://kaldi-asr.org/doc/feat.html

2.3 Data Augmentation
What is data augmentation?

Make the speech noise & Hard to recognize

Why we need that?
This increases the amount and diversity of the existing training data, and achieves a

significant improvement for the x-vector system.[7]

Is that useful?
Without that you can hardly get a very good result

[7] X-VECTORS: ROBUST DNN EMBEDDINGS FOR SPEAKER RECOGNITION

Dataset we need:

MUSAN [11]: There are 3 kinds of wav files (Speech&Noise&Music)

RIR [12]: Real world reverberation

2.3 Data Augmentation

[11] D. Snyder, G Chen, and D. Povey, “MUSAN: A Music, Speech, and Noise Corpus,”
[12] T. Ko, V. Peddinti, D. Povey, M. Seltzer, and S. Khudanpur, “A study on data augmentation of
reverberant speech for robust speech recognition,”

Type of noise, Kaldi based:
1. RIR
2. Music (add 1 music)
3. Noise (add 1 noise)
4. Babble (add 3-8 speech)
Others
1. Speaker Augmentation (change speed to get a new speaker)
2. Tempo up, tempo down, faster, slower
3. TV noise (add 1 speech + 1 music)
4. Spec Aug

2.3 Data Augmentation

Spec Aug

2.3 Data Augmentation

What next?
We use the speaker model to learn the speaker embedding.

Why we need that?
The input feature contains many information, we need the

information specifically for speaker recognition (identity information).

What is the speaker embedding?
We hope the speaker embedding contains the identity related

speaker information, this embedding is very smaller than the orginal
speech feature.

2.4 Speaker Model

How to achieve that?
We use a speaker model (neural network) to learn a mapping or

extractor, which from the input speech features, to the speaker
embedding.

During training, we have the speaker label for each utterance, so a
supervised method can be used to guide the model learn that
mapping.

Here we use ECAPA-TDNN as the example [13]

2.4 Speaker Model

[13] B. Desplanques, J. Thienpondt, and K. Demuynck, “ECAPA- TDNN: Emphasized channel attention, propagation and
aggrega- tion in TDNN based speaker verification,

2.4 Speaker Model: ECAPA-TDNN Model

The details for the model and the code can be found in my
previous video:

https://www.bilibili.com/video/BV1fQ4y1Y75w/

Here I describe more for the code in
https://github.com/TaoRuijie/ECAPATDNN

2.4 Speaker Model: ECAPA-TDNN Model

https://www.bilibili.com/video/BV1fQ4y1Y75w/

2.5 Loss function
What is the loss function?

Prediction vs Ground Truth

What is the loss function in speaker recognition?
Classification loss

How to connect the speaker embedding to the classification loss?
Classifier or classification layer

2.5 softmax with cross-entropy loss
Softmax:
N = 192 (Dimension of speaker embedding)
T = 5994 (Number of speaker & class)
Ground Truth: [T * 1] (One hot)

Speaker
Embedding

2.5 Problem of softmax

Specific for face recognition & speaker recognition:
1. Data in the same class: distance become smaller
2. Data in the different class: distance become larger
Based on that, there are many well-performed loss function

L2 distance and cos distance

2.5 Triple Loss [14]

[14] Facenet: A unified embedding for face recognition https://zhuanlan.zhihu.com/p/34404607

2.5 L-Softmax [15]

[15v] Large-Margin Softmax Loss for Convolutional Neural Networks

Softmax Loss

L-Softmax Loss

Make the angle for the target class smaller

2.5 SphereFace [16]

[16] SphereFace: Deep Hypersphere Embedding for Face Recognition

Make the angle for the target class smaller

Add the weight norm, also call A-softmax

2.5 Center Loss [17]

[17] A discriminative feature learning approach for deep face recognition

Make the angle for the target class smaller

2.5 Feature Normalization
Feature norm & Scale factor

Why feature norm:
1. Make the system focus on the angle
2. L2 dis = cos dis

Why scale factor:
1. Make a bigger ball space with more information
2. Deal with the feature norm’s training problem

2.5 AMsoftmax & Cosface [18][19]

[18] Additive Margin Softmax for Face Verification
[19] CosFace: Large Margin Cosine Loss for Deep Face Recognition

cos(mθ) to cos(θ) - m

2.5 AAM softmax [20]

[20] ArcFace: Additive Angular Margin Loss for Deep Face Recognition

cos(θ) - m to cos(θ+m)

2.5 Why large margin

[20] ArcFace: Additive Angular Margin Loss for Deep Face Recognition

Compared with cos(θ) [softmax],
cos(θm) [Sphereface], cos(θ) - m [AMsoftmax], cos(θ + m) [AAMsoftmax]

1. They are more difficult to meet the training requirement.

2. Lead to a smaller θ for each sample in the class

What next?

Talk is cheap,
show me your performance.

3.1 Data format for evaluation

3.1 Evaluation file format

1 means postive pair
0 means negative pair

These utterances come from the unkown speakers !

3.1 Pipeline for evaluation

Input: Utterance A and utterance B
(Raw wav files, without data augmentation)

Then: Get speaker embedding from A and B
(Do not need the classification layer now!)

Output: The similarity score between these two utterances

3.2 Metrics for evaluation
trials.txt

scores.txt

Performance?

Equal Error Rate (EER) and Minimum Detection Cost (MinDCF)

3.2 Metrics for evaluation: EER

T or F: Based on the “comparison”
P or N: Based on the “prediction” itself

False Acceptance Rate (FAR), label is 0, prediction is 1.

False Rejection Rate (FRR), label is 1, prediction is 0.

3.2 Metrics for evaluation: EER

1) Lower is better. 2) For EER, FAR and FRR is equally important

3.2 Metrics for evaluation: minDCF

1) Lower is better. 2) In this setting, FAR is more important than FRR

Setting in VoxCeleb2

1. CMiss (cost of a missed detection) = 1
2. CFalseAlarm (cost of a spurious detection) = 1
3. PTarget (a priori probability of the specified target speaker) = 0.05

(NIST SRE18 Plan)

Miss: False Reject
FalseAlarm: False Accept

3.3 How to get the final scores

Step 1: Read all the test utterance’s name from the given list
Step 2: Extract the speaker embedding for each utteranace, Norm
Step 3: For each Pair, utterance A and B, compute cosine similarity to get the final score.

3.3 How to get the final scores

L2 euclidean distance vs cosine distance

Conclusion: that will not effect the
performance if you use norm!

Trick: Two kinds of scores to improve the performance

For utterance A and B:
Score 1: extract 1 embedding for the entire A or B, compute score
Score 2: extract 5 embedding from 5 equally-spaced 3-seconds segments in A
and B, compute the score matrix and get the average

Final score = score 1 + score 2, can get about 5% improvement

3.3 Trick for the score

3.4 Backend methods

Score Norm, a useful method to improve the performance. [21]

The goal of score normalization is to reduce within trial vari-
ability leading to improved performance, better calibration, and
more reliable threshold setting

[21] Analysis of Score Normalization in Multilingual Speaker Recognition

3.4 Backend methods: Z-norm
E T

C

3.4 Backend methods: T-norm

3.4 Backend methods: ZT-norm

3.4 Backend methods: S-normc

3.4 Backend methods: Adaptive S-norm

From my experience, Adaptive S-norm can improve the result by about 10%

End

Try to enjoy your research !
Try to do meaningful research forever !

Life is more important than study !

