Collections: - Name: Shufflenet V2 Metadata: Training Data: ImageNet Training Techniques: - SGD with Momentum - Weight Decay - No BN decay Training Resources: 8x 1080 GPUs Epochs: 300 Batch Size: 1024 Architecture: - Shufflenet V2 Paper: https://openaccess.thecvf.com/content_ECCV_2018/papers/Ningning_Light-weight_CNN_Architecture_ECCV_2018_paper.pdf README: configs/shufflenet_v2/README.md Models: - Config: configs/shufflenet_v2/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet.py In Collection: Shufflenet V2 Metadata: FLOPs: 149000000 Parameters: 2280000 Name: shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet Results: - Dataset: ImageNet Metrics: Top 1 Accuracy: 69.55 Top 5 Accuracy: 88.92 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/shufflenet_v2/shufflenet_v2_batch1024_imagenet_20200812-5bf4721e.pth