Collections: - Name: Shufflenet V1 Metadata: Training Data: ImageNet Training Techniques: - SGD with Momentum - Weight Decay - No BN decay Training Resources: 8x 1080 GPUs Epochs: 300 Batch Size: 1024 Architecture: - Shufflenet V1 Paper: https://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.html README: configs/shufflenet_v1/README.md Models: - Config: configs/shufflenet_v1/shufflenet_v1_1x_b64x16_linearlr_bn_nowd_imagenet.py In Collection: Shufflenet V1 Metadata: FLOPs: 146000000 Parameters: 1870000 Name: shufflenet_v1_1x_b64x16_linearlr_bn_nowd_imagenet Results: - Dataset: ImageNet Metrics: Top 1 Accuracy: 68.13 Top 5 Accuracy: 87.81 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/shufflenet_v1/shufflenet_v1_batch1024_imagenet_20200804-5d6cec73.pth